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Abstract. Dynamic resource provisioning is an important driver for
pay-on-demand cloud computing. Virtualized resources open for resource
awareness, such that applications may use resource management strategies
to modify their deployment resource consumption at run-time. The ABS
language supports the modeling of deployment decisions and resource
management for active objects. An important property in this context is
to ensure that the resource management does not lead to starvation of
the executing objects. In previous work, we have formally translated the
semantics of the ABS language into a parameterized Coloured Petri Net
(CPN) model, such that any ABS program can be represented by setting
the initial marking accordingly. In this paper, we characterize starvation
using Computation Tree Logic (CTL), and demonstrate how CTL model
checking of the CPN encoding of the ABS model, in combination with path
finding, can be used to detect starvation and synthesize load balancers
that guarantee starvation freedom.

1 Introduction

Pay-on-demand resource provisioning is an important driver for cloud comput-
ing [16]: Using resources on the cloud to deploy a service, the service provider does
not need to cater hardware resources upfront to launch the service but can lease
resources as required depending on demand. Resources may be dynamically added
or removed depending on the traffic to a service. The enabling virtualization
technology introduces a software layer representing hardware resources. This soft-
ware layer allows deployment decisions to be programmed. Virtualized resources
open for resource-aware applications; these applications may contain resource
management strategies to modify their own or other applications’ deployment
and reduce resource consumption. In this context, it is interesting to model and
analyze deployment scenarios for services with respect to client traffic in order to,
e.g., establish the amount of resources required for timely delivery of a service.

Programming models that decouple control flow and communication, such
as Actors [1,2] and active objects [9, 17,33], inherently support both scalability
(as argued with the Erlang programming language [5] and Scala’s actors [29])



Model Checking Starvation 69

and compositional reasoning [12,20–22]. These features are also interesting for
distributed services that should adapt to elastic cloud deployment. For these
services, this decoupling may be exploited to make deployment decisions and
their validation a part of the design phase rather than a post-hoc activity [28]:
The elasticity of software executed in the cloud gives designers control over
the execution environment’s resource parameters, such as the number and kind
of processors, memory, storage capacity, and bandwidth. ABS is a formally
defined active object language [33,36], which directly supports the modeling of
deployment decisions and resource management for active objects, and which
has been used for industrial case studies of cloud computing services [4]. When
executing an ABS program, it is clearly important to ensure that computing
resources are not over-provisioned as this leads to unused computing resources.
At the same time, it is equally important to ensure that the computing resources
are not under-provisioned as it may lead to starvation of objects, i.e., that the
execution of some objects are blocked due to the lack of computing resources.

In this paper, we develop a method to investigate resource distribution for
deployed active objects in ABS programs by a translation into Coloured Petri Nets
(CPNs) [32]. The method provides an automated approach to reason about the
starvation of objects in the ABS program under different deployment scenarios.
Our approach uses Computation Tree Logic (CTL) [19] to formalize the notions of
strongly starvation free states (states from which starvation cannot occur), weakly
starvation free states (states from which starvation may occur), and inevitable
starving states (states from which starvation will eventually occur). We use the
ASK-CTL model checker [18] of CPN Tools to automatically identify such states
and synthesize resource allocation strategies that ensure starvation freedom. We
extend previous work on encoding behavioral ABS models [23,24] and deployment
models [25] in CPN, such that the formal semantics of deployment models in
ABS is captured directly as a hierarchical CPN. The number of places in the
CPN model is independent of the size of a program, and a specific ABS program
can be represented by setting the initial marking (i.e., the initial state) of the
CPN model accordingly. The modeling approach captures how computation in
the behavioral ABS model interacts with virtual resources and allows virtual
resources to be dynamically launched in the CPN model by the firing of CPN
transitions.

The paper is organized as follows: Section 2 introduces the ABS language,
focusing on the modeling of deployment. Section 3 presents the CPN encoding
of the ABS semantics. Section 4 shows how the CTL model checking and path
finding can be used for the resource analysis of ABS programs, and in Section 5
discusses related work and summarizes our conclusions.

2 Deployment Modeling in ABS

ABS [33] is a formally defined actor-based language for the executable modeling
of distributed, object-oriented systems. ABS supports deployment modeling by
separation of concerns between the resource costs of executions and the resource
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Syntactic categories.
𝑠 in Stmt

𝑒 in Expr

𝑔 in Guard

Definitions.
𝑃 ::= CL {𝑇 𝑥; 𝑤𝑠 }

𝐶𝐿 ::= class 𝐶 (𝑇 𝑥) { 𝑇 𝑥; 𝑀}
𝑀 ::= 𝑇 𝑚 (𝑇 𝑥) {𝑇 𝑥; 𝑤𝑠 }

𝑠 ::= skip | 𝑥 = rhs | [DC:𝑒] 𝑥 = new 𝐶(𝑒) | suspend | await 𝑔
| if 𝑒 { 𝑤𝑠 } else { 𝑤𝑠 } | while 𝑒 { 𝑤𝑠 } | return 𝑒

𝑤𝑠 ::= 𝑠 | [Cost: 𝑒] 𝑠 | 𝑤𝑠; 𝑤𝑠
rhs ::= 𝑒 | 𝑒!𝑚(𝑒) | 𝑥.get

𝑔 ::= 𝑥? | duration(𝑒, 𝑒) | 𝑔 ∧ 𝑔

Fig. 1. ABS syntax. Overbar notation denotes lists.

capacities of deployment components on which executions take place [36]; de-
ployment components can be understood as (virtual) locations for computation.
Deployment decisions can be made inside models, by allocating active (also called
concurrent) objects to deployment components with given resources at creation
time (e.g., [4,34]).

ABS consists of a functional layer to express computation, an imperative
layer to express communication and synchronization, and a deployment layer
to express deployment decisions. In this paper, we elide the functional layer to
focus on control flow and deployment; the relevant syntax is shown in Figure 1.
A program 𝑃 consists of class definitions 𝐶𝐿 which contain field declarations
𝑇 𝑥 (where 𝑇 is the type of field 𝑥) and method definitions 𝑀 , and a main block.
We follow the syntactic conventions of Java and only explain syntax that differs
from Java.

The Imperative Layer. The imperative layer of ABS is used for internal control
flow, and for communication and synchronization between concurrent objects.
Objects are instantiated from classes by the statement [DC: server ] 𝑜 = new
𝐶(𝑒), where 𝑒 are constructor arguments and the optional annotation DC:

server expresses the deployment component server on which the new object
should be created. A reserved field thisDC points to the object’s deployment
component, just like this points to the object’s identifier. Concurrent objects
execute processes which stem from asynchronous method calls and terminate upon
method completion. Asynchronous method calls 𝑓 = 𝑜!𝑚(𝑒) are non-blocking
and return a future, i.e., a placeholder for the method reply (see, e.g., [9]). The
blocking expression 𝑓.get retrieves the return value from a future 𝑓 .

Objects combine reactive and active behavior (i.e., a run method is auto-
matically activated upon object creation) by means of cooperative scheduling:
Processes in an object may suspend at explicit scheduling points, allowing the
scheduler to transfer control to another enabled process. Between the scheduling
points, only one process is active in each object, so race conditions are avoided.
Unconditional scheduling points are expressed by the statement suspend, condi-
tional scheduling points by await 𝑔, where 𝑔 may be a synchronization condition
on a future, written 𝑓? (where 𝑓 points to a future) or a duration guard, written
duration(𝑏, 𝑤) where 𝑏 and 𝑤 are bounds on the time interval before the condition
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(New-DC)
fresh(𝑑𝑐) [[𝑒]]𝑎∘𝑙 = 𝑛

𝑜(𝑎, {𝑙 | 𝑥 = new DC(𝑒); 𝑠}, 𝑞)
→ 𝑜(𝑎, {𝑙 | 𝑥 = 𝑑𝑐; 𝑠}, 𝑞) 𝑑𝑐(𝑛, 0, 𝑛)

(Run-To-New-Interval)
blocked(𝑐𝑛, 𝑡)

0 < 𝑑 ≤ mte(𝑐𝑛, 𝑡) ⌈𝑡⌉ = 𝑡 + 𝑑
{𝑐𝑛 𝑐𝑙(𝑡)}

→𝑡 {timeAdv(rscRefill(𝑐𝑛), 𝑑) 𝑐𝑙(𝑡 + 𝑑)}

(Cost1)
𝑎(thisDC) = 𝑑𝑐 𝑎𝑛 = Cost: 𝑒

[[𝑒]]𝑎∘𝑙 = 𝑐𝑠𝑡 𝑐𝑠𝑡 ≤ 𝑛 − 𝑢
𝑜(𝑎, {𝑙 | [𝑎𝑛′] 𝑠}, 𝑞) 𝑐𝑛 → 𝑜(𝑎′, 𝑝′, 𝑞′) 𝑐𝑛′

𝑜(𝑎, {𝑙 | [𝑎𝑛] 𝑠}, 𝑞) 𝑑𝑐(𝑛, 𝑢, 𝑘) 𝑐𝑙(𝑡) 𝑐𝑛
→ 𝑜(𝑎′, 𝑝′, 𝑞′) 𝑑𝑐(𝑛, 𝑢 + 𝑐𝑠𝑡, 𝑘) 𝑐𝑙(𝑡) 𝑐𝑛′

(Cost2)
𝑎(thisDC) = 𝑑𝑐 𝑎𝑛 = Cost: 𝑒
[[𝑒]]𝑎∘𝑙 = 𝑐𝑠𝑡 𝑐𝑠𝑡 > 𝑛 − 𝑢 𝑛 ̸= 𝑢
𝑐𝑠𝑡′ = 𝑐𝑠𝑡 − (𝑛 − 𝑢) 𝑎𝑛′ = Cost: 𝑐𝑠𝑡′

𝑜(𝑎, {𝑙 | [𝑎𝑛] 𝑠}, 𝑞) 𝑑𝑐(𝑛, 𝑢, 𝑘) 𝑐𝑛
→ 𝑜(𝑎, {𝑙 | [𝑎𝑛′] 𝑠}, 𝑞) 𝑑𝑐(𝑛, 𝑛, 𝑘) 𝑐𝑛

(Transfer)
fresh(𝑓) [[𝑒]]𝑎∘𝑙 = 𝑑𝑐 [[𝑒′]]𝑎∘𝑙 = 𝑑𝑐′ [[𝑒′′]]𝑎∘𝑙 = 𝑖 𝑖 ≤ 𝑘

𝑜(𝑎, {𝑙 | 𝑥 = 𝑒!transfer(𝑒′, 𝑒′′); 𝑠}, 𝑞) 𝑑𝑐(𝑛, 𝑢, 𝑘) 𝑑𝑐′(𝑛′, 𝑢′, 𝑘′)
→ 𝑜(𝑎, {𝑙 | 𝑥 = 𝑓 ; 𝑠}, 𝑞) 𝑑𝑐(𝑛, 𝑢, 𝑘 − 𝑖) 𝑑𝑐′(𝑛′, 𝑢′, 𝑘′ + 𝑖) 𝑓(𝑖)

Fig. 2. Semantics of the deployment layer of ABS.

becomes true. ABS supports the modeling of dense time [8]; the local passage of
time is expressed in terms of durations (as in, e.g., UPPAAL [38]).

The Deployment Layer. Deployment models capture physical or virtual infras-
tructure in ABS using dynamically created deployment components [35,36] to
represent computing environments. A deployment component is a modeling
abstraction which represents locations offering (restricted) resources to com-
putations. Deployment components are created as instances of a special class
𝐷𝐶 which takes as parameter a number expressing the resource capacity of the
deployment component per time interval. These components implement a method
transfer(𝑑𝑐, 𝑒) which enables vertical scaling by shifting up to 𝑒 resources to a
target deployment component 𝑑𝑐. This is in contrast to the horizontal scaling
which is realized by the dynamic allocation of deployment components.

ABS also supports cost annotations to model resource consumption. Thus,
weighted statements 𝑤𝑠 are statements [Cost: 𝑒] 𝑠 which express that 𝑒 resources
are required to complete execution of the statement 𝑠. In this paper we model
so-called elastic computing resources, where the computation speed of virtual
machines is determined by the amount of elastic computing resources allocated to
these machines per time interval. The computation time of processes depends on
the available resources of their deployment component and on how many other
processes are competing for these resources.

Semantics. The semantics of ABS is given by a (transitive) transition relation
→ over configurations realizing a maximal progress time model, in which time
will only advance if the execution is otherwise blocked. We here focus on the
transition rules formalizing the cost and deployment aspects of the execution
of ABS programs (shown in Figure 2). Configurations include objects 𝑜(𝑎, 𝑝, 𝑞),
where 𝑜 is an object identifier, 𝑎 a state, 𝑝 an active process, and 𝑞 a queue
of suspended processes; futures 𝑓(𝑣) with identifier 𝑓 and return value 𝑣; and
deployment components 𝑑𝑐(𝑛, 𝑢, 𝑘) with identifier 𝑑𝑐, 𝑛 resources available in the
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current time interval, 𝑢 resources already used in the current time interval, and
𝑘 resources available in the next time interval.

The deployment components keep track of the resource consumption of
their allocated objects per time interval. Thus, in New-DC, a new deployment
component with a fresh identifier 𝑑𝑐 is created, with 𝑛 resources available in each
time interval. Rule Run-To-New-Interval captures the advancement of time.
Here, the brackets enclose all objects in the configuration as well as a global
clock cl(t) to ensure that time advances uniformly. The predicate blocked(𝑐𝑛, 𝑡)
expresses that no (further) reduction is possible in 𝑐𝑛 at time 𝑡, so time may
advance. Let mte(𝑐𝑛′, 𝑡) denote the maximal time advance until enabled(𝑐𝑛′).
The condition ⌈𝑡⌉ = 𝑡 + 𝑑 expresses that time advance has arrived at the next
resource provisioning (a corresponding rule without this condition advances time
without resource provisioning). Two auxiliary functions recursively change the
state 𝑐𝑛′: timeAdv decrements counters for duration-expressions and rscRefill
provisions resources in the deployment components by changing each 𝑑𝑐(𝑛, 𝑢, 𝑘)
to 𝑑𝑐(𝑘, 0, 𝑘).

Rule Cost1 removes the cost annotation of a statement if the associated
deployment component has sufficient resources to execute the statement in the
current time interval. Rule Cost2 reduces the remaining cost of executing
a statement if the deployment component can provision some but not all of
the required resources. Rule Transfer shifts 𝑒′′ resources from a deployment
component 𝑒 to another deployment component 𝑒′, up to the amount of resources
that 𝑒 has allocated for the next time interval. This change only affects 𝑒′ for the
next time interval. For further details on the semantics of deployment components
in ABS, we refer to [36].

3 A CPN Model of ABS Semantics

The communication and concurrency aspects of ABS was presented in [24] as
a CPN model, where active objects were represented as tokens whose colour
contains their identifier and process pool. The process pool was implemented
as a list, the head of which was the active process and the tail the list of the
processes that were candidates to be activated by the scheduler. This list was
being updated according to the calling methods of the other objects following the
communication mechanism of ABS. This paper extends [25] where we focused
on the deployment part of ABS. In [25] we presented a new hierarchical CPN,
modeling the deployment fragment of the language. We modeled the life-time
of program execution in a cyclic way, where the resources are refilled at the
completion point of each cycle. This is illustrated in Figure 3 where we have
the top-layer of the model with dotted line around the program execution cycle.
In the bottom part of this figure, we see the resource refill happens before the
process execution in the next cycle.

This model takes as input tokens that can be produced from the imperative
part [24] of ABS as described above, and we add information concerning the
cost of each process and the deployment component they are located in. This



Model Checking Starvation 73

Busy
Objects

BO

DC
Allocated

p2
DC

Completed
Execution

Completed
Reconfig

()

Execute

Current
Configuration

Config

Current
State

Config

Imperative Layer

Imperative Layer

Create
Deployment Components

Create Deployment Components

Resource
Refill

Resource Refill

Component
Reconfiguration

Component Reconfiguration

Process
Execution

Process Execution

Create Deployment ComponentsImperative Layer
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Fig. 3. Top-level module of the CPN deployment model

information, together with the deployment semantics of ABS can be used to verify
starvation freedom of active objects and explore resource management strategies.
In this paper, we extend the resource analysis of [25] by a characterization of
starvation based on CTL model checking as will be presented in Section 4. In
the rest of this section, we briefly present the CPN model of [24] on top of which
we extend the starvation analysis.

3.1 Telephone and SMS Services at Midnight on New Year’s Eve

The ABS program that we use as an example is inspired by the behavior of
cellphone clients at midnight on New Year’s eve, with a sudden change from
regular to irregular behavior. Our aim is to illustrate the relation between the
CPN model and ABS programs, and to show how we can use the model checker
of CPN Tools for load balancing scenarios.

The average demand on phone calls and SMS messages from cellphone clients
during the year is relatively low and the available resources suffice in the current
distribution. However, there are some particular moments of the year like, for
example, around the midnight of new year’s eve, where this behavior changes
and a large number of SMS is requested by the clients while the call requests are
negligible. Then, the initial distribution is not adequate, since there is a lack of
resources for the SMS and an overplus for the calls.

In Figure 4, we provide the ABS implementation of the above scenario [36]
where telephone and SMS servers have been realized with the two corresponding
classes TelephoneServer and SMSserver. The operational costs are annotated in
square brackets at the beginning of the statements (line 3 and line 7). We see
that each SMS has cost 1 and each call has cost proportional to its duration.
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Cellphone clients can be implemented with corresponding classes allowing objects
to make method calls to the SMS and telephone services.

1 class TelephoneServer{

2 Unit call (Int calltime) {

3 while (calltime > 0) { [Cost:1] calltime = calltime − 1; await duration (1,1); }

4 }

5 }

6 class SMSServer {

7 Unit sendSMS () { [Cost:1] skip; }

8 }

9 {// Main block
10 DC telcomp = new DC(1);

11 DC smscomp = new DC(2);

12 [DC: smscomp] SMSServer sms = new SMSServer();

13 [DC: telcomp] TelephoneServer tel = new TelephoneServer();

14 // Start client handsets...
15 }

Fig. 4. Implementation of Telephone and SMS Service.

As mentioned above, we use CPNs to model the deployment part of ABS.
The markings shown in the current section are related to our running example.
It is important to note that our CPN model is parametric and different ABS
programs can be analyzed by setting the initial marking accordingly. In our
example, we modeled the SMS and the telephone servers in CPNs as two different
tokens representing the corresponding objects of Figure 4 (tel and sms). Those
tokens have as colour (values) triples of the form (ob, dc, lst), where ob is the
object identifier and dc is the deployment component of the object execution.
The last component, lst, models the client behavior. In particular, it represents
the process pool of the server object that keeps all the processes created from
the clients’ calls to the corresponding service. Each process comes along with the
cost of its execution, so lst is a list of triples (proc, cost, bool), where 𝑏𝑜𝑜𝑙 is a flag
indicating whether the process has completed its execution.

Figure 5 shows the CPN module representing the imperative layer of ABS.
Initially, the model has one token in place Ready and the transition Imperative
Layer is enabled. Recall that the colour of the object tokens have the form
(ob, dc, lst) as explained above. In Figure 5, we have two tokens produced in
place Busy Objects. The first one represents the TelephoneServer object with the
identifier 1 located in the first deployment component and has two processes
in its process pool: one with identifier 1 and cost 2 and one with identifier 2
and cost 4. The boolean flags set to false indicate that the processes have not
been executed yet (it can be changed to true after firing Process Completed).
Similarly, the second token represents the SMSServer object. Place DC Allocated
is a counter of the deployment components created so far (for details, see [26]).
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Fig. 5. CPN module of the imperative layer

Places Current State and Current Configuration have as a colour set a list of pairs
(dc, cap) referring to the capacities of each deployment component. Place Current
State keeps the current resource distribution while place Current Configuration
records the distribution that will take place in the next cycle (resp. next time
interval in ABS).

Figure 6 shows that when transition Reconfigure fires, the marking of the
place Current Configuration is updated according to the function Transfer of its
incoming arc inscription:

fun Transfer (fromdc,todc) cap config = List.map (fn (dc,ccap) =>
if (dc = fromdc) then (dc,ccap - cap)
else (if (dc = todc) then (dc,ccap+cap)
else (dc,ccap))) config

This function transfers resources from one deployment component to another.
When transition Reconfigure Done fires, the reconfiguration has been completed.
Then the resources can be refilled (details of the related implementation can
be found in [26]), and the marking of the place Current State can be updated
according to the function Transfer and proceed to the execution.

Figure 7 shows the module related to the process execution and the resource
consumption. Places Busy Objects and Current State are fusion places (i.e they
appear in more than one module and share the same marking). Recall the meaning
of their markings from Figure 5. Object 2 needs for the execution of its first
process in the list (having identifier 3) 1 resource and the availability of the
second deployment component according to the marking of the place Current
State is 2 resources (having colour (2, 2)). As a result, transition Fully Executable
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fun Transfer (fromdc,todc) cap config  = List.map (fn (dc,ccap) => if (dc = fromdc) 
then (dc,ccap - cap) else (if (dc = todc) then (dc,ccap+cap) else (dc,ccap))) config
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Config
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Execution
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Reconfig

p5
OutOut
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config

Transfer (fromdc,todc) cap config
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b true

1 1`[(1,1),(2,2)]

1 1`()

1 1`true

Fig. 6. CPN module for component reconfiguration

(Figure 7) can fire and set its cost to zero and the boolean flag to true (recall
that the boolean flag is related to whether the process has been fully executed
or not). After this, transition Process Completed of Figure 5 is enabled and the
corresponding element of the list (head) is removed.

Consider again Figure 7: object 1 needs 2 resources to fully execute its first
process while there is only 1 available, according to the marking of the place
Current State. Hence it can only partially execute process 1 by consuming all
available resources (here 1) when transition Partially Executable is enabled. Then
the token of object 1 will be moved to the place Starving Objects with the
remaining cost updated to 1, until the marking of place Current State shows
resource availability at the deployment component greater or equal to 1. This
can be done at the next cycle in the model, after possible resource transfer and
refill. In such a case, transition Execute Starving will be enabled and send the
token back to the Busy Objects place; otherwise, in case of insufficient resource
for completion, it will be placed again to the place Starving Objects.

4 Resource Analysis and Management

We now show how explicit state space exploration and CTL model checking of
the CPN model can be used to reason about starvation properties of an ABS
program. In presence of starvation, we demonstrate how the state space of the
CPN model can be used to synthesize a sequence of resource reconfigurations
which can eliminate starvation. Finally, we show how a sequence of resource
reconfigurations can be used to automatically obtain an implementation of a
starvation free load balancer.

For the experiments related to resource analysis, we rely on the state space
exploration support in CPN Tools in combination with the ASK-CTL library [18]
supporting model checking using a state- and action-oriented variant of the
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1`(1,1,[(1,2,false),(2,4,false)])++
1`(2,2,[(3,1,false),(4,7,false)])

1

1`[(1,1),(2,2)]

Fig. 7. CPN module for process execution

Computation Tree Logic (CTL) [19]. All experiments have been conducted on
an Intel i7 3.4 GHz PC with 16 GB of memory. We use the running example
from the previous section for illustration purposes, but our analysis approach
generalizes to all instantiations of the CPN model, i.e., independently of which
ABS program is considered. The state space for the running example has 776
nodes (states) and 1,069 arcs (occurring events), and could be generated in less
than 1 second.

4.1 Starvation Analysis

Section 3 covered the deployment layer as a CPN model. We obtained the
execution cost of a program by adding cost tags to the tokens representing the
active objects. More concretely, we matched each process of the process pool with
the corresponding cost. Recall that the colour of an active object is represented
as a triple (ob, dc, lst), where ob is the object identifier, dc is the deployment
component where the object is being executed, and lst is the process pool of the
objects. The latter is represented as a list of triples (proc, cost, bool) where proc
is the process identifier, cost is the related execution cost to the current process,
and bool is boolean flag indicating whether the process has fully executed (value
true) or not (value false). The head of lst represents the active process.

As shown in Figure 7, the model has been constructed with place Current
State which record the resource availability of each deployment component by
hosting the corresponding tokens of colour (dc, cap), where dc is the deployment



78 A. Gkolfi, E. B. Johnsen, L. M. Kristensen, I. C. Yu

component identifier and cap its resource capacity. By model construction, place
Starving Objects keeps track of starving objects, i.e., objects whose execution
has been blocked because of lack of resources at the current time interval. This
in turn means that the current marking of this place gives information about
whether the current resource distribution provides sufficient resources for the full
execution of the processes the objects have in their process pools. This makes it
possible to implement a state predicate starving as a Standard ML function in
CPN Tools shown below to determine whether there is any starving objects in a
given marking.

fun starvingObjects M =
let

val mSO = Mark.Process_Execution’Starving_Objects_p9 1 M
val soid = List.map (fn (ao,_,_) => ao) mSO

in
soid

end

fun starving M = (findStarvingObjects s) <> nil

The function starvingObjects takes a marking (state) 𝑀 as argument and
extract the list of object identifiers from any tokens on place Starving Objects.
Such object identifiers represent objects that are starving in 𝑀 . This function is
then used in the predicate starving which can be used to determine whether or
not there are any starving objects in state 𝑀 .

For our running example, CPN Tools returns a non-empty list containing
several markings when invoking the starving predicate on each marking of the
state space. This means that starvation is possible. In order to provide a more
detailed account of starvation freedom, we now use the temporal operators from
CTL to characterize various forms of starvation. We use 𝜑strv as an atomic
proposition on states equivalent to the starving state predicate implemented
in Standard ML above, and we use the standard notation from temporal model
checking 𝑀 |= 𝛷 to denote that a CTL formula 𝛷 is satisfied in the marking
(state) 𝑀 .

The characterization of starvation freedom is based on the standard CTL
operators of AG (always globally), EG (exists globally) and AF (always eventu-
ally), where AG𝛷 holds in a marking 𝑀 if 𝛷 holds in all markings reachable from
𝑀 ; EG𝛷 holds in a marking 𝑀 if there exists a path starting in 𝑀 such that 𝛷
holds in all markings along the path; and AF𝛷 if all paths starting in 𝑀 contains
a marking where 𝛷 holds. Based on this, we formalize the characterization of
starvation freedom as follows:

Definition 1. Let ℳ𝑟𝑒𝑎𝑐ℎ be the set of reachable states of the CPN model, and
let 𝜑strv : ℳ𝑟𝑒𝑎𝑐ℎ → B be an atomic state proposition which is satisfied in a
marking iff there are starving objects in the marking. Let 𝑀 ∈ ℳ𝑟𝑒𝑎𝑐ℎ be a
reachable state, then:
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– 𝑀 is strongly starvation free iff 𝑀 |= AG¬𝜑strv
– 𝑀 is weakly starvation free iff 𝑀 |= EG¬𝜑strv
– 𝑀 is inevitably starving iff 𝑀 |= AF𝜑strv

The model is starvation free if the initial state 𝑀0 is strongly starvation free.

It follows from the above definition that a marking being strongly starvation
free implies that starvation will never occur once that marking has been entered.
For weakly starvation free markings, there exist executions in which starvation
can be avoided depending on the execution of objects and the reconfigurations
performed. For our running example, there are 128 strongly starvation free
markings which by definition are also weakly starvation free. There are no
weakly starvation free markings that are not also strongly starvation free. So
in this case, the two sets of markings coincides. The running example has 648
markings in which starvation is inevitable. The set of inevitable starving markings
includes the initial marking which implies that with the given initial resource
allocation, starvation is inevitable when starting the system from the initial
resource distribution.

Since the initial resource distribution of our CPN model may lead to starvation,
an interesting question is whether there exists a resource reallocation strategy
leading to a strongly starvation free state. To determine this, we conduct a
breadth-first search of the state space in order to find one of the shortest paths
leading from the initial marking to a strongly starvation free marking. For such
a path, we are interested only in the information related to resource transfer.
Recall that the module Component Reconfiguration (see Figure 6) is related to the
resource refill, and the Reconfigure transition related to the resource transfer. We
therefore filtered the path returned from CPN Tools to show only the occurrences
and bindings of this transition, where the binding specifies the values bound to
the variables of the transition. This is the synthesized sequence of the resource
transfers we need to perform in order to avoid starvation.

For our running example, this resulted in the following sequence of resource
transfers representing by the bindings of the Reconfigure transition:

{cap = 1, config = [(1,1),(2,2)], fromdc = 1, todo = 2}
{cap = 3, config = [(1,0),(2,3)], fromdc = 2, todc = 1}
{cap = 2, config = [(1,3),(2,0)], fromdc = 1, todc = 2}

where cap is the amount of the resources we need to move, config is the current
resource distribution, fromdc is the source deployment component and todc is the
target deployment component. The resource transfer represented by the sequence
hence provides a non-starvation strategy.

4.2 Implementation of Load Balancing

Above, we saw how the state space analysis of the CPN model can be used to
prove starvation freedom or, in case of possible starvation to synthesize a path
from the initial resource distribution to a starvation free marking. In the rest
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of this section, we will see how this path can be used in load balancing. Recall
that in ABS, the discrete time follows maximal progress semantics: the time
advances when no further execution can happen. In that case, the resources are
refilled according to the transfer function, if any; otherwise they are updated
as in the previous time interval. Recall also that the colour of the deployment
components is (dc, cap) where the first element is the deployment component
identifier and the second one its capacity. As an example, the pair (1, 2) means
that the deployment component 1 has a capacity of 2 resources.

Let us consider again our running example. Below follows a more detailed
version of the path discussed in Sect. 4.1. For the sake of simplicity, we present
only the name of the transition followed by the corresponding binding. The
enumeration on the left corresponds to the respective ABS time point:

[Imperative Layer(1, {𝑐𝑎𝑝 = 1, 𝑐𝑎𝑝1 = 2})
t=0 Resource Refill(1, config = [(1, 1), (2, 2), oldconfig = [(1, 1), (2, 2)]})

· · ·
Reconfigure(1, {𝑏 = true, cap = 1, config = [(1, 1), (2, 2)], fromdc = 1, todc = 2})
Reconfigure Done(1, {𝑏 = false})

t=1 Resource Refill(1, config = [(1, 0), (2, 3), oldconfig = [(1, 0), (2, 0)]})
· · ·
Reconfigure Done(1, {𝑏 = true})

t=2 Resource Refill(1, config = [(1, 0), (2, 3), oldconfig = [(1, 0), (2, 0)]})
· · ·
Reconfigure(1, {𝑏 = true, cap = 3, config = [(1, 0), (2, 3)], fromdc = 2, todc = 1})
Reconfigure Done(1, {𝑏 = false})

t=3 Resource Refill(1, config = [(1, 3), (2, 0), oldconfig = [(1, 0), (2, 0)]})
· · ·
Reconfigure Done(1, {𝑏 = true})

t=4 Resource Refill(1, config = [(1, 3), (2, 0), oldconfig = [(1, 0), (2, 0)]})
· · ·
Reconfigure(1, {𝑏 = true, cap = 2, config = [(1, 3), (2, 0)], fromdc = 1, todc = 2})]
Reconfigure Done(1, {𝑏 = false})

t=5 Resource Refill(1, config = [(1, 1), (2, 2), oldconfig = [(1, 1), (2, 0))]

In the above path, the highlighted lines are resource transfers that will lead
to a starvation free state, as we saw in Sect. 4.1. In our example, we consider
two objects located in two deployment components. The first line shows the
resource initialization. The variables 𝑐𝑎𝑝 and 𝑐𝑎𝑝1 refer, respectively, to the
capacities of the first and the second deployment component. Hence we obtain
the initial distribution: (1, 1), (2, 2). During the first time interval, the highlighted
line shows that we need to transfer 1 resource (variable 𝑐𝑎𝑝) from the first
deployment component (variable fromdc) to the second one (variable todc). Here,
we notice that the variables are local to each transition, hence a possible name
reuse (e.g. 𝑐𝑎𝑝) should not create confusion. As a result of the first transfer, we
obtain the distribution (1, 0), (2, 3), as we can see at the corresponding resource
refill (variable config) of the beginning of the second time interval (when 𝑡 = 1).
During the second time interval, we do not need to transfer resources, hence
the refill of the beginning of the third time interval (when 𝑡 = 2) updates the
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resources according to the last distribution, i.e. (1, 0), (2, 3). Similarly, we obtain
the distributions (1, 3), (2, 0) when 𝑡 = 3, (1, 3), (2, 0) when 𝑡 = 4 (no transfer)
and (1, 1), (2, 2) when 𝑡 = 5.

The variable oldconfig of the transition Resource Refill shows the available
resources that we have before time advances. Because of the maximal progress
semantics of ABS, the second component of each pair should be zero in all the
time intervals except the extremal ones: the first is the initialization and the last
one shows that we have remaining 1 resource at the first deployment component
after the full execution of the processes of the first object. This is possible since
the last state is starvation free.

From the above path information we can implement very easily a load balancer
like the one of Figure 8. We match object 1 with the telephone service and object
2 with the SMS service and we assume they are located at the deployment
components telcomp and smscomp, respectively, having the capacities as in the
model, i.e. 1 and 2. In our load balancer we applied the strategy given by the
path explained above, so we transfer 1 resource from the deployment component
telcomp to the smscomp during the first time interval, 3 resources from the
deployment component smscomp to the telcomp during the third time interval,
and 2 resources from the deployment component telcomp to the smscomp during
the fourth time interval. Notice here that each time we transfer resources, they
take place at the next time interval according to the semantics of ABS.

1 class Balancer(DC telcomp, DC smscomp) {

2
3 Unit run() {

4
5 telcomp!transfer(smscomp,1);

6 await duration(2,2);

7 smscomp!transfer(telcomp, 3);

8 await duration(2,2);

9 telcomp!transfer(smscomp,2);

10
11 }

12 }

13
14 {

15 // Main block
16 . . . // deployment components, etc. as before
17 new Balancer(telcomp,smscomp);

18 }

Fig. 8. Synthesized ABS load balancer implementation.
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5 Related Work

Some of the earliest applications of CPNs for analysis of distributed objects
appeared in [37] focussing on spatial distribution of objects and not resource
consumption. Early work [41] also considered simulation-based capacity planning
of web-servers, but not in a context with dynamically configurable resources.
CPNs have also recently been used to analyze deadlock situations for active objects
with futures by de Boer et al. [10, 11] and by the authors [24], as found in the
ABS language. More recent work [14] has considered the COSTA language [3] for
deployment and management of cloud applications. Their work, however, focused
on the deployment language and management operations. COSTA is able to
approximate the computational cost of a program, but does not provide resource
management. Recent work [30] has also explored evaluation of cloud deployment
strategies for distributed NoSQL databases using CPN simulation, but without
dynamic reconfiguration. In contrast to previous modeling of programming
languages into Petri nets like Ada [31], Java [39], Orc [15], where the model
depends on the program, we suggest a fixed sized model where the markings
are program configuration abstractions. This means that different programs can
be analyzed by one single model upon different initialization according to the
abstraction function.

More broadly, process algebras [7], priced [13] and probabilistic [6] automata
have been proposed for performance analysis of embedded systems with resource
constraints. Also, other resource analysis on resource aware programs like [40]
and [27], aim to guarantee that the program cost does not exceed a resource
threshold. Our work is not restricted only to the guarantee of resource sufficiency,
but also in case of possible starvation, proposes strategies for vertical scaling that
can be retrieved by the counter examples of CPN Tools.

Our present work extends [24] by taking as input the communication status of
resource aware active objects and performing resource analysis. We demonstrated
how to statically construct a load balancer. A direction for future work will be
to extend the model to support dynamic load balancing and investigate optimal
vertical scaling using the CPN CTL model checker. Another direction will be
to perform a comprehensive experimental evaluation on a larger set of ABS
programs.

6 Conclusion

We have presented a CPN model of the deployment layer of ABS [36], a resource
aware programming language suitable for cloud applications. A key characteristic
of our approach is that the compact modelling supported by CPNs allowed
us to develop a CPN model capable of simulating any ABS program by only
changing the initial marking. This work adds the deployment layer of ABS to
our previous work translating the imperative part of the language and analysing
the communication of the active objects according to the semantics of the
language [23, 24]. In the current work, we focus on the representation of the
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deployment features of the language which induce resource awareness and take
as an input to our previous analysis the communication status of the objects.
This separation of concerns follows naturally the corresponding layers of ABS,
since the communication of the active objects (i.e. the method calls) is related
to the process creation, hence the cost of the program. Here, we combine this
information to the resource availability and use the model checker of CPN Tools
for resource management options over ABS time intervals. The main benefit of
our approach is the ability to use model checking techniques to identify starvation
for resource-aware active objects, and to synthesize reconfiguration sequences
that eliminate starvation and which in turn can be used to automatically obtain
load-balancer implementations.
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