

Ch.3     Art Gallery Problem & 
Triangulating Polygons







Art Gallery Problem


! Problem : Want to place 
cameras so that entire 
gallery can be viewed


! How many cameras do
we need to guard a
given gallery?


! How do we decide 
where to place them?


Floor plan of 1 floorpaintings







Assumptions/Definitions
!Floor plan of gallery is a simple polygon


( i.e., a region enclosed by a single closed polygon 
chain that does not intersect itself. So no “holes” in 
gallery. )


!Camera corresponds to point light source in polygon


a camera sees all point in the polygon that can be 
connected to it by an open segment that lies in interior 
of polygon.







Assumptions/Definitions


!Number of cameras depends on particular polygon


• a convex polygon can be guarded with one camera


• the problem of finding minimum number of      
cameras for a specific polygon is NP-Hard problem


⇒ We’ll look at worst-case, that is how many 
cameras are needed to guard a simple-polygon 
with n vertices in the worst-case







!Let P be a simple polygon with n vertices    


Approach: We’ll decompose P into piece that can be 
guarded with one camera 
-- convex pieces would do the trick 
-- we’ll go “all the way” and decompose P into triangles  
( ok for our worst-case scenario )


!Def : A diagonal of a simple polygon P is an open 
line segment connecting tow vertices of P that lies in 
the interior of P.


!Def : A triangulation of a simple polygon P is a 
decomposition of P into triangle’s by a maximal set of 
non-intersecting diagonals.  ( a maximal set ensures no 
triangle has a vertex in its interior )







-- triangulation #1


-- triangulation #2


⇒ triangulations generally 
not unique


So what ? …
⇒ Can we guard a polygon by placing a camera in every 
triangle? (actually overkill, but we’ll come back to this later)


Questions :
1. Does a triangulation always exist?


2. How many triangles can there be in the 
triangulation?







Theorem 3.1
Every simple polygon has a triangulations. Every triangulation 
of an n-vertex simple polygon has exactly n-2 triangles.


Proof
By induction on n, number of vertices of polygon P.


basis : n=3  P is a triangle and   n-2 = 3-2 = 1


inductive hypothesis : every polygon with n’ < n vertices 
has a triangulation with exactly n’-2 triangles. 


inductive step :


• Let P be a polygon with n vertices







•We first argue P has a diagonal ( & can be triangulated )


⇒ this will break P into two subpolygons, each with <n vertices 


let v be leftmost vertes in P (lowest if tie) and let u & w be   
vertices adjecent to v on P’s boundary


Case 1 open segment uw lies in interior of P ( & is a diagonal )


⇒ uw is a diagonal







Case 2 open segment uw intersects boundary of P ( & is 
not diagonal ) 


• there is at least one vertex of P on uw or inside 
∆(u,v,w)


• let v’ be the farthest from uw of thest vertices


• v v’ cannot intersect any edge of P because that edge 
would have vertex farther from uw (contradicting choice of 
v’ )


⇒ v v’ is a diagonal







⇒P always has a diagonal


-- cuts P into P1 + P2 with m1 < n & m2 < n vertices, 


-- so, by induction, P1 + P2 can be triangulated, so can P


Now show triangulation of P has n-2 triangles


Let Tp be triangulation of P and let d be any diagonal of 
Tp, which breaks P into P1 & P2







� D cuts P into P1 + P2 with m1 < n & m2 < n vertices, 


• m1+m2 = n+2 ( diagonal’s vertices appear in P1 & P2 )


• by induciton: triangulation of P1 has m1-2 triangles


P2 has m2-2 triangles


So, triangulation of P has (m1-2)+ (m2-2) = m1+m2-4 = 
n+2-4 = n-2  triangles.


☺


n   = 11


m1 = 7


m2  = 6







⇒ Any polygon can be guarded by n-2 cameras


⇒ seems overkill…


� camera on diagonal “sees” both adjacent triangles 


⇒ n/2 cameras?


� camera at vertex “sees” all incident triangles 


⇒ ? Cameras?


Idea : Select a subset of vertices of P so that every 
triangle in Tp has at least one selected vertex          ( 
place cameras at vertices )


Def : A coloring of a graph is an assignment of colors to the 
vertices so that the endpoints of every edge have different 
colors.







We want a 3-coloring of Tp


That is, a coloring of Tp with 3 colors.


⇒ every triangle will have a red,blue & green vertex


⇒ place cameras at, say, every red vertex (all triangles 
visible) choose smallest color class & we’ll need at most 
n/3 cameras
Does a 3-coloring of Tp always exist ? YES


� Consider dual graph of Tp, G(Tp) 


-- has vertex for every  ∆∈ Tp ( v = node 
in G(Tp), ∆(v) = ∆ in Tp


-- edge (v,w) ∈ G(Tp) ⇔ ∆(v) & ∆(w) share 
diagonal in Tp


( so, every edge in G(Tp) corresponds to 
diagonals in Tp )







Key observation: G(Tp)  is a tree ( no cycles! )


Diagonals cut Tp in two so the removal of edge in G(Tp)  
disconnects it ( every edge is a cut edge )


( not true if P has holes )


Since G(Tp)  is a tree, we can 3-color the vertices of Tp


by a simple graph traversal, e.g., DFS of G(Tp) 


-- Visit ∆ of Tp & color its vertices.


-- Just visit neighbors according to travel order & color the 
(last) vertex.


Any simple polygon can be guarded with n/3 cameras.







Can we do better? i.e.   is there a simple polygon with 
requires n/3 cameras? YES…


Art Gallery Theorem ( Thrm 3.2 )


n/3 cameras are always sufficient and sometimes 
necessary to have every point in an n-vertex simple polygon 
visible from at least one of the cameras.







Triangulating a Simple Polygon
First Try:


We proved that every simple polygon can be triangulated.


That proof was constructive


!We proved that every polygon had a diagonal by finding one


!Can be applied recursively to completely triangulate P


How long does this take?
!At each iteration find leftmost vertex & check if two neighbors form 
a diagonal (& possibly choose farthest) Linear Time
!Could have n-3 iterations (if break into P1 & P2 of size n-1+3)


Total = Quadratic Time


But, it could sometimes be faster…







Convex Polygons: Triangulate easily in O(n) time


So,


!Possible approach: Decompose P into convex pieces?


!Unfortunately, decomposition is as hard as triangulation


But, something similar can be done…







Y-monotone: A simple polygon, P, is y-monotone if the intersection 
of P with any horizontal line is connected (i.e. a point, a segment, 
or ø).


(P is strictly y-monotone if it has no horizontal edges.)


DEF:


FACT:
Let P be y-monotone, 
and let v & w be top and 
bottom vertices.  If we 
move on left (or right) 
boundary chain of P 
from v to w, then we 
always move down or 
horizontally (never up).


Not y-monotoney-monotone







Triangulating a Strictly Y-monotone 
Polygon
Basic Idea: Work our way “down” P on both left 


and right chains, adding diagonals whenever 
possible


A Greedy Plane Sweep Algorithm:
! Process vertices in order of decreasing y-coordinate (left if tie)
! Stack keeps vertices that have been encountered, but not yet 


used in a diagonal.   (Stack ordered by increasing y, LIFO)
! When a vertex is encountered, add as many diagonals as possible 


from it to the stack vertices.  (Each diagonal splits off a triangle 
and a vertex from the stack)







Funnel Structure of Stack Vertices
Untriangulated portion of P above lowest encountered vertex is a


funnel:


!One boundary is chain of 
reflex vertices (interior angles 
at least 180º) except for lowest 
vertex (top of stack).


!Other boundary is (partial) 
edge.  (We have not seen 
bottom endpoint yet).


Sweepline Invariant: Vertices 
on the stack conform to this 
funnel structure.
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What happens when we encounter the next vertex?
Case 1: Vj is on the side opposite the reflex chain on the stack
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!Left with new funnel: Vj & Vk


!Push Vj & VkVj


!Can add diagonals from Vj to all 
vertices on reflex chain except Vl
(bottom of stack/highest) which is 
already connected


Vl !Can pop vertices on reflex 
chain except Vk first (top of 
stack/lowest)


Vk


!Vj is lower endpoint to edge e 
bounding funnel


e







What happens when we encounter the next vertex?
Case 2: Vj is on the same side as the reflex chain on the stack
!Can add diagonals from Vj to a consecutive set (possibly empty) of vertices in 
its same reflex chain (starting from the top of the stack/lowest vertex)


!Check each vertex in turn until finding one that does not make a diagonal


pushed


In this case the first vertex 
popped cannot be connected 
to Vj, so we push it back onto 
the stack.


Popped and 
pushed


Vj


In this case, we can connect 
some popped vertices to Vj.  
The last one is pushed back 
onto the stack.


Popped and 
pushed


pushed


popped


Vj


Note: Checking if each diagonal can be drawn from Vj to Vk on the stack can be done by looking at Vj, 
Vk and previously popped vertex.







Sweep-line Algorithm to Triangulate a 
Monotone Polygon


! Input:  A strictly monotone polygon P, represented by a doubly-
connected edge list D


! Output:  A triangulation of P, stored in doubly-connected edge list 
D u1


u3


u7


u4


u8 u9


u2


u6


u5


u1


u3


u7


u4


u8 u9


u2


u6


u5







u2


u1


S


u1


u3


u7


u4


u8 u9


u2


u6


u5


! Merge vertices in left and right chains sorted on 
decreasing y-coordinate (breaking ties by increasing 
x-coordinate), producing an ordering of vertices u1, 
u2, …, un


! Push u1 and u2 onto stack S







! for j=3 to (n-1)
if (uj and top(S) are on different chains) then
! Pop all vertices from S
! Insert into D diagonals from uj to all popped vertices (except 


last)
! Push uj-1 and uj onto S


u1


u3


u7


u4


u8 u9


u4


u3


S


u2


u6


u5







else
! Pop one vertex from S
! Pop vertices from S and insert diagonals from uj to popped vertices, so 


long as they are in P
! Push last popped vertex and vj onto S


u1


u3


u7


u4


u8 u9


u6


u4


S


u2


u6


u5







! Add diagonals to D from un to all stack vertices except first and 
last


u1


u3


u7


u4


u8 u9


S


u2


u6


u5







! Running Time of the Algorithm
– Merging the vertices takes linear time
– There are (n-3) iterations of the for loop, each of which can push at 


most two vertices, which gives a maximum number of pushes of 
2(n-3) + 2 (from Step 2) = 2n – 4 pushes, and the total number of 
pops cannot exceed the total number of pushes, so overall the 
event processing takes linear time


– Add diagonals from the last vertex takes linear time
! Theorem


A strictly monotone polygon can be triangulated in linear time
! Non-strict Monotonicity


The algorithm still works if two vertices have the same y-
coordinate; they may be processed in increasing order of their x-
coordinates







Decomposing a Polygon into Monotone 
Pieces


! If you “walk” down a boundary chain of a polygon and at some 
vertex you switch directions, it is not monotone


! These “turn” vertices must be removed by adding diagonals, 
breaking the polygon into sub-polygons, each of which is 
monotone







! Split and Merge Vertices


Merge Vertex
Both neighbors are above it
Interior angle > 1800


Need to add diagonals down


Split Vertex
Both neighbors are below it
Interior angle > 1800


Need to add diagonals up







! Lemma
A polygon P is y-monotone if and only if it has no split or merge 
vertices


! Proof
– Suppose P is not y-monotone.  Then some horizontal line l


intersects P in more than one component.  Without loss of 
generality, assume the leftmost component is segment pq.


– Start at q and follow the boundary to the left.  Let r be the first 
point encountered where the boundary of P intersects l.







! Case 1:  If (r ≠ p),  then the highest encountered vertex was a 
split vertex


p q r l


There must be a split vertex 
here somewhere







! Case 2:  If (r = p),  then
– Follow the boundary of P to the right again.  Since l


intersects P in two components, there will be a point r’ ≠ p 
where l again intersects the boundary of P


– The lowest vertex encountered from q to r’ is a merge 
vertex


p q r l


There must be a merge 
vertex here somewhere







Sweepline Algorithm
! Sweep down by the y-coordinate
! Event points are vertices of P
! GOAL of SWAP


– To add diagonals from split vertices to 
vertices above


– To add diagonals from merge vertices to 
vertices below







Definition


! Let ej be an edge intersection the current 
sweepline “l”  helper(ei) = lowest vertex v 
above “l” that can see ej horizontally. 
– Helper(ej) can change as “l” moves down, and 


can be the upper endpoint of ej (initially)
! Sweepline Status


– Edges of P intersection “l” stored in Binary Search 
Tree, left to right


– Store helpers with edges (so will need to update 
them as “l” moves)







Handle Split Vertex
!HandleSplitVertex(vi) 
!(add diagonal from split vertex up)
!1. Search T for Edge ej directly left of vi


!2. Add diagonal from vi to helper (ej)
!/*  Note:  vi can always see it */ 
!3. Set helper (ej):= Vi (update helper)
!4. Insert ei in T and set helper(ei) := vi (upper   
! endpoint


ej
vi


Helper(ej)


New Helper (e) and 
first helper(ej)ei-1 ei







Handle Split Vertex
!HandleSplitVertex(vi) 
!(add diagonal from split vertex up)
!1. Search T for Edge ej directly left of vi


!2. Add diagonal from vi to helper (ej)
!/*  Note:  vi can always see it */ 
!3. Set helper (ej):= Vi (update helper)
!4. Insert ei in T and set helper(ei) := vi (upper   
! endpoint


ej
vi


Helper(ej)


New Helper (e) and 
first helper(ej)ei-1 ei







Handle Split Vertex
!HandleSplitVertex(vi) 
!(add diagonal from split vertex up)
!1. Search T for Edge ej directly left of vi


!2. Add diagonal from vi to helper (ej)
!/*  Note:  vi can always see it */ 
!3. Set helper (ej):= Vi (update helper)
!4. Insert ei in T and set helper(ei) := vi


!(upper endpoint)


ej
vi


Helper(ej)


New helper (ej) and 
first helper(ej)ei-1 ei


Convention:  vertices 
numbered counter 
clockwise and ed =(v,v)







Handle Merge Vertex
!HandleMergeVertex(vi)
!(add diagonals from higher merge vertices down to this merge vertex)
!1. If helper (ei-1) is merge vertex add diagonal vi to 
! helper (ei-1)
!2. Delete ej-1 from T
!3. Search T for edge ej directly to left of vi


!4. If helper (ej) is merge vertex add diagonal vi to 
! helper(ei)
!5. Helper (ej) := vi (update helper)


ej


helper(ej) 


(merge vertex) vi


ei


Vi+1 Vi-1


helper(ei-1) 
(merge vertex)


New helper (ej)







Handle Merge Vertex
!HandleMergeVertex(vi)
!(add diagonals from higher merge vertices down to this merge vertex)
!1. If helper (ei-1) is merge vertex add diagonal vi to 
! helper (ei-1)
!2. Delete ej-1 from T
!3. Search T for edge ej directly to left of vi


!4. If helper (ej) is merge vertex add diagonal vi to 
! helper(ei)
!5. helper (ej) := vi (update helper)


ej


helper(ej)


(merge vertex) vi


ei


Vi+1 Vi-1


helper(ei-1) 
(merge 
vertex)New helper (ej)







Handle Merge Vertex
!HandleMergeVertex(vi)
!(add diagonals from higher merge vertices down to this merge vertex)
!1. If helper (ei-1) is merge vertex add diagonal vi to 
! helper (ei-1)
!2. Delete ej-1 from T
!3. Search T for edge ej directly to left of vi


!4. If helper (ej) is merge vertex add diagonal vi to 
! helper(ei)
!5. helper (ej) := vi (update helper)


ej


helper(ej)


(merge vertex) vi


ei


Vi+1 Vi-1


helper(ei-1) 
(merge 
vertex)New helper (ej)







Handle Merge Vertex
!HandleMergeVertex(vi)
!(add diagonals from higher merge vertices down to this merge vertex)
!1. If helper (ei-1) is merge vertex add diagonal vi to 
! helper (ei-1)
!2. Delete ej-1 from T
!3. Search T for edge ej directly to left of vi


!4. If helper (ej) is merge vertex add diagonal vi to 
! helper(ei)
!5. Helper (ej) := vi (update helper)


ej


helper(ej) 


(merge vertex) vi


ei


Vi+1 Vi-1


helper(ei-1) 
(merge 
vertex)new helper(ej)







General Strategy


! Always add a diagonal for Split 
Vertex (diagonal up)


! Add diagonal when replace helper  
and previous helper was the verge 
vertex
– For these we may change the helpers 


and thus might add diagonals   







In addition to split & merge vertices we have


Start vertex vs


End vertex ve


Regular vertex vi


! both neighbors below vs


! interior angle < 180°


! both neighbors above ve


! interior angle < 180°


! one neighbor above & one below vi


! interior angle doesn’t matter


regular vertex


end vertex
we may change helpers and  thus add diagonals !







Start vertex


!First event point
!Highest vertex 


Handle start vertex (vs=vi)


!Insert ei in T
!Set helper (ei)=vi


ei


ei-1


vi







End vertex


!Last event
!Lowest vertex 


Handle end vertex (ve=vi)


!If helper(ei-1) is a merge vertex, add diagonal vi to helper(ei-1)
!Delete ei-1from T 


eiei-1


vi


helper(ei-1)







Handle regular vertex (vi)


Case 1: 
Polygon lies to the right of vi


!If helper(ei-1) is a merge 
vertex then add diagonal vi to 
helper(ei-1)
!Delete ei-1 from T
!Insert ei in T
!Set helper(ei):=vi


ei


ei-1


vi


helper(ei-1)







Handle regular vertex (vi)


Case 2: 
Polygon lies to the left of vi


!Search T for edge ej directly 
to the left of vi
!If helper(ej) is a merge vertex 
then add diagonal vi to 
helper(ej)
!Set helper(ej):=vi


ei


ei-1


vi


helper(ej)
ej







Lemma 3.5 (Correctness)
The algorithm adds a set of non-intersecting diagonals 


that partition P into monotone pieces.


Proof
Easy to see P contains no split or merge vertices now. So 


need to argue diagonals were “valid”, that is, they don’t intersect P 
or each other.







Consider handling split vertex (others similar)
! helper(vi):=ej


! vivm is added diagonal
!No vertices of P in Q (since vm=helper(ej))
!No edge of P intersects vmvi


- Since no verts in Q, any edge 
intersecting vivm would have to pass 
through at least one of (vm-ej) or (vi-ej)
- But this is not possible since vi&vm are 
closest to ej


!No (previous) diagonal intersects vivm


- All are above vi and no vertices in Q


Q


vm


vi


ej







Running Time


1. Sort vertices by y-coord => O(nlogn)


2. Handle each vertex ~ O(logn), there are n vertices => O(nlogn)


Total: O(nlogn)


Storage O(n)


Theorem 3.6


A simple polygon with n vertices can be partitioned into y-
monotone polygones in O(nlogn) time using O(n) storage







Triangulation of simple polygon


1. O(nlogn) to partition into monotone pieces


2. O(n) to triangulate monotone pieces


⇒ O(nlogn)


We can decompose P into monotone pieces, triangulate pieces, 
and color resulting triangulation and place cameras in O(nlogn) 
time.






