Diploma Thesis

A Tool for Editing Agent Organization
Models and Their Deployment in
MULAN

submitted by
Endri Deliu

supervised by

Dr. Michael Kdhler
Prof. Bernd Neumann, Ph.D.

University of Hamburg
January 18, 2008

Declaration

I declare that this work has been prepared by myself, all literal or content-based quota-
tions are clearly pointed out, and no other sources or aids than those declared have been
used.

Endri Deliu, January 18, 2008

ii

Acknowledgements

My sincere thanks go to all who contributed to the success of this work:

Dr. Michael Kohler for the exciting topic and the outstanding supervision and support
of this work;

Prof. Dr. Bernd Neumann for his consent to supervise this diploma thesis;

Dr. Daniel Moldt, Matthias Wester-Ebbinghaus, Lawrence Cabac, Michael Duvigneau,
Christine Reese and Benjamin Schleinzer for their motivational hints and support;

A special thank to my brother Orges and my friend Lidia, for their continuous support
and their help in proof-reading this work.

iv

Contents

1. Introduction
1.1. Motivationand Scope L.
1.2. Structureofthe Work

2. Agents and Multi-Agent Systems

21. Agents e
21.1. Definitions e
2.1.2. Environment Types and Agent Architectures

2.2. Multi-agentsystems L
2.21. Agent Communication
2.2.2. Agent Interaction Protocols

23, SUMMATY o

3. Organizations and Multi-Agent Systems
3.1. Organizations
3.1.1. Organizations as Rational, Natural and Open Systems
3.1.2. Computational Organization Theory (COT).
3.2. Organizational Perspective of Multi-Agent Systems
33. Summary

4. Petri Nets, Renew and Mulan
4.1. PetriNets. e e e e e
42, P/TNets o s,
43. Reference Nets. e e
43.1. Reference Net ElementsinRenew
44, RENEW o e e e e e e e e
44.1. Renew Editor
442. Renew Simulator,
44.3. Renew Plug-In Architecture
45. Mulan. e e
451 MulanAgents L o
452. MulanProtocols
46. Summary

5. Models of Multi-Agent Organizations

5.1. Some OrganizationModels
51.1. AGR e
5.1.2. MOISE™ e
5.1.3. AUML e

Contents

5.1.4. ISLANDER e
5.2. SONAR, a Formal Model of Organizations
52.1. ServiceNets e
522. R/DNetsandTeams
52.3. OrganizationNets
5.2.4. Task Sequences in OrganizationNets
53. Summary

. OREDI, a Tool for Modeling SONAR Organizations

6.1. Specificationsand Design
6.1.1. General Requirements
6.1.2. Modeling Organizationand R/DNets
6.1.3. Service and Refinement DefinitionNets
6.1.4. Context Based Suggestions for R/D Net Inscriptions
6.1.5. Organization and R/D Net Validation and Evaluation
6.1.6. Exporting Organization and R/D Nets in a Standard Format

6.2. ToolDevelopment.
6.2.1. Organization and R/D Net Editor
6.2.2. Role and Refinement Definition Editor
6.2.3. Generation of Service Definition Nets From AUML Diagrams . . .
6.2.4. Generating Context Based Suggestions
6.2.5. Validation and Evaluationof Nets
6.2.6. Parsing of Nets and XML Generation

6.3. SumMmary

. Deploying SONAR Formal Organizations into Mulan Agent Organizations
7.1. From Formal Organization Models to Mulan Agent Organizations
7.1.1. Multi-Agent System Design
712, Approach
713. Ontology
7.2. Generating Position Agents from OrganizationNets
7.3. Assigning Member Agents to Position Agents
7.3.1. Member Assignment Interface,
74, SUMMATY e

. Conclusion

81. SummaryandResults L.
82. Outlook

A. XML Schema of Formal Organization Nets

Bibliography

vi

Chapter 1.
Introduction

The agent concept has been around for several decades in computer science. Since their
infancy in artificial intelligence where they were first used, agents have successfully crept
from academic research into many application areas such as expert systems, search, lo-
gistics, financial markets, trading, etc. Yet, in software development, despite the fact that
the agent concept is seen as a natural development of the concept of objects, agent tech-
nology still struggles to be accepted and adopted as a mainstream solution. One of the
main reasons that objects have the upper hand on agents is that systems which are build
on objects mostly deliver reliability and predictability, despite their level of complication.
Agents have instead retained their initial AI' flair of building systems whose behavior
emerges from the autonomous actions of the agents composing them. While emergent be-
havior of systems is desirable in some areas, in many other areas system properties such
as predictability and reliability are among the top priorities in system design. Agents also
represent too small components to be viewed as modules in terms of software develop-
ment [WEMO06]. In modern software applications, modularity is a key requirement that
any approach to developing software can not afford to neglect.

1.1. Motivation and Scope

Recently, important influxes from sociology and organization theory have begun deline-
ating what may dissolve the trade-off between agent autonomy and multi-agent system
reliability and predictability. Between the system and the agents composing it, other lev-
els of control have been introduced which are mainly derived from sociological concepts.
The concept of organization is used as an umbrella term for groups of agents and their
dependencies, interaction channels or relationships. As a result, an organizational per-
spective on multi-agent systems has emerged which focuses on organizational concepts
such as groups, communities, organizations, etc., in contrast to the former focus of multi-
agent systems on the agent’s state and its relationship to the agent’s behavior. Agent or-
ganizations may also provide the lacking concepts for making multi-agent systems more
modular.

! Artificial Intelligence.

Chapter 1. Introduction

Since the rise of the organizational perspective, modeling agent organizations has be-
come important for the construction of multi-agent systems. This process requires at
least a modeling language that is able to express most (possibly all) of the notions that
the concept of organization encompasses in an intuitive and easily understandable way:.
Several languages for modeling multi-agent organizations have been proposed includ-
ing AGR [FGMO03], MOISE™ [HSB02], AUML [POO01] as an extension of UML [OMG99]
as well as other languages. While these languages emphasize the most important mod-
eling dimensions of organizations they still do not offer a complete formal body which
allows a formal approach on modeling.

Petri nets are well suited for use in modeling systems and simultaneously offer a com-
plete formal frame. Petri nets can also be used for programming despite being still un-
popular in this area. Nevertheless, petri nets have advantages for development of con-
current and distributed systems. Also, in the face of the current direction of the computer
industry to deliver multi-core processors instead of increasing the clock speed of a single
processor, the importance of tools which can handle parallelism in an easy way will rise.
These developments might usher the revival of petri nets in the programming field.

In this context, a framework for the development of concurrent and distributed software
systems has been built as a multi-agent system basing on reference nets?> [Kum02]. Mu-
lan (Multi Agent Nets) [KMRO01] provides the framework’s reference architecture used
for the the multi-agent system. Mulan is built on Java and reference nets and can be
executed in Renew [KWDO1]. The framework has already been successfully used in sev-
eral software application projects at the Department of Informatics of the University of
Hamburg [MKR01, MDORO3].

In the modeling area, a formal model of agent organizations based on P/T petri nets
with inscriptions named SONAR, is introduced in [K6h06]. SONAR is developed to be
used for modeling formal organizations. It represents a model of agent organizations
that is built on top of concepts like organizational positions, roles, tasks, services and
delegation relationships. Being a petri net model, SONAR has the advantage of enabling
formal analysis of the SONAR organization models over important properties. If used
in conjunction with Renew and Mulan, SONAR can help close the gap between modeling
agent organizations and their implementation for both the modeling process and the im-
plementing process are based on petri nets. Such a close affinity between the model and
its implementation can ensure shorter development cycles and can support the overall
software development process.

However, no tool still exists which supports the creation of SONAR organization models.
The scope of this thesis is to build a prototype graphical tool that supports users in the
building process of SONAR organization models. The tool should offer an intuitive inter-
face which can effectively shield users as much as possible from the formal background
underlying the organization models that they create. It should also provide some eval-
uation features with the help of which the models constructed can be evaluated on for-
mal properties. In addition, the SONAR formal organization models constructed with

Reference nets are high level petri nets.

Chapter 1. Introduction

the aforementioned tool should be deployed in Mulan as agent organizations. The de-
ployment process should generate agent organizations in Mulan out of SONAR formal
organization models.

1.2. Structure of the Work

This thesis consists of eight chapters. The following chapter makes an introduction to
the concept of agents and multi-agent systems. Chapter 3 presents the most important
aspects of organizations from the point of view of computer science. Besides, it presents
the organizational perspective of multi-agent systems. Chapter 4 gives a brief introduc-
tion to petri nets. Additionally, reference nets (a high level petri net type) and a reference
net editor and simulator, Renew, are also presented. Mulan is also discussed as a reference
architecture for multi-agent systems based on reference nets. In Chapter 5, several mod-
eling languages for the design of multi-agent organizations are presented. The SONAR
model, which is the model of reference for this work, is described in detail. The specifi-
cation and implementation of ORED]I, a tool for building SONAR organization and R/D
nets, is introduced in Chapter 6. Chapter 7 describes the process of deploying SONAR
organization nets into Mulan. Finally, a summary of the thesis and its main results are
presented in Chapter 8.

Chapter 1. Introduction

Chapter 2.

Agents and Multi-Agent Systems

Agent based technology has called much attention because of its promise to become a
new paradigm for the design and implementation of software systems in recent years.
This technology is already used in financial markets, trading, logistics, industrial robotics
etc. It is also continuously taking ground in mainstream commercial applications. Multi-
agent systems rely on the concept of agents and are an important section of the agent
based technology. These systems are adequate for designing and implementing com-
plex distributed applications in which information and resources are shared among the
parties. This chapter is dedicated to agents and multi-agent systems and focuses on com-
munication and interaction aspects. The agent concept and some of the basic agent types
are first introduced. Then, an introduction to multi-agent systems follows.

2.1. Agents

The concept of agents lies at the basis of the agent technology. Agents are known as
computer systems which can make decisions for themselves and react autonomously to
changes. Computer systems are generally perceived as systems for which their creators
have to foresee every possible situation and accordingly program the reactions. Unfore-
seen situations are generally known to be dangerous to computer systems and lead to
system crashes or to false results. An agent instead, can deal with unexpected or un-
known situations and it can decide for himself what actions it should take.

An example for an agent would be an intelligent car that drives itself through the traffic
and wants to move from point A to point B. The environment relevant to our intelligent
car would be in its simplest case the streets and the other cars (neglecting pedestrians,
nearby buildings, etc.). Our intelligent car can move, stop, accelerate in every direction
on the streets and can sense the cars in its vicinity. The intelligent car has to make several
decisions. For example, it should decide if it is too close to another car and what direction
it should take in order to avoid a crash. It also should decide how much to accelerate if it
is too close to another car.

Chapter 2. Agents and Multi-Agent Systems

The concept of agents was first introduced and applied in Artificial Intelligence (AI).
Now, agent technology is creeping into a mainstream with applications in many domains
ranging from expert systems to Internet search applications.

2.1.1. Definitions

Similar to many other abstract concepts with widespread use in many areas agents have
no exact definition. Rather, many definitions can be found depending on the application
domains. Indeed, for several years there has been an ongoing debate on a universally ac-
cepted definition of the term “agent”. While there is widespread consensus on autonomy
as a central property of agency, opinions about other properties of agency differ quite re-
markably. The ability of agents to learn is, for example, required in some domains while
it is not desired in other domains. Agents are mostly referred to as entities embedded in
an environment which can make decisions and act autonomously through sensing a part
of their environment. Most definitions ascribe a goal to agents which they should strive
to achieve.

One of the classic definitions on agents is the one made in [RN95] describing an agent
as anything that can perceive its environment through sensors and act upon that environ-
ment through effectors. In [RN95] rationality and autonomy are introduced as properties of
agents. Rational agents act so that they maximize the expected success given what they
have perceived.

sSensors

percepts

actions

actuators

Figure 2.1.: Agents ([RN95]).

The degree of success is defined in [RN95] by the performance measure which is the crite-
ria that determines how successful an agent is. Rationality depends on the performance
measure, on the knowledge the agent has about its environment, on everything perceived
by the agent and on the actions that the agent can perform. Autonomy is introduced in
[RNO95] as a property of rational agents. The degree of autonomy of an agent is presented
as the extent to which an agents behavior is determined by its own experience. So, if
an agent acts only according to its built-in knowledge without consulting its current and
past perceptions this agent lacks autonomy as it is defined in [RN95]. An example would
be a dog which has the built-in knowledge that it will receive its meal every day in a

Chapter 2. Agents and Multi-Agent Systems

given place. Even if the meal is not at the right place anymore the dog would continue to
go to the meal place and would try to eat the inexistent meal regardless of the meal being
there or not.

Another classic and comprehensive definition of agents can be found in [W]95]. Agents
are split there in two categories : agents complying to the weak definition and those which
comply to the strong definition. The weak definition ascribes agents the following prop-
erties:

e autonomy, agents are not influenced directly from people or other systems;

e social ability, agents can communicate with other agents or people through an agent
communication language;

e reactive, agents can perceive part of their environment and can react to changes of
the environment;

e proactive, agents do not only start actions as a reaction to changes of their environ-
ment but they can also take the initiative and act independently to achieve their
goals.

This weak definition of agents seems to comply to a wide range of definitions from other
researchers in mainstream computer science. The strong definition of an agent is rele-
vant in Al and includes some additional properties besides those included in the weak
definition that are usually seen as human-like properties. In many cases in Al agents
are described using mentalistic notions such as belief, intention or knowledge. The strong
definition in [W]J95] includes:

e mobility, the ability of agents to move in their environment;

e veracity, the assumption that agents will not knowingly communicate false infor-
mation;

e benevolence, the assumption that agents do not have conflicting goals and therefore
every agent will always try to do what it is asked;

e rationality, the assumption that an agent will always act in order to achieve its goals.

Another aspect of agents that is not mentioned in the definitions above is the authoriz-
ing and the delegating properties of agents. A user can delegate tasks to an agent and
authorize this agent to execute these tasks in his name [Che96].

An interesting definition of agents is introduced in [Ode02]. Agents are introduced in
[Ode02] as objects (as known in the object oriented paradigm) with a greater autonomy.
This perception of agents is close to the notion of agent which is currently relevant for
mainstream applications. In [Ode02] two aspects of autonomy are introduced:

Chapter 2. Agents and Multi-Agent Systems

o dynamic autonomy, the ability of the agent to start an action on its own, without
being called from something else;

o unpredictable autonomy, describes the ability of the agent to deny the execution of a
service that it offers;

While objects are strictly passive as they only react when their methods are called from
methods of other objects, agents as described in [Ode02] can start actions on their own
initiative. They do not need to wait for an external call from the other agents to become
active. Agents in [Ode02] have the choice to refuse the execution of a service when they
are called while objects are predictable and always execute their methods on call. The
decision to execute a service depends only on the internal state of the agent. Another
important aspect of agents mentioned in [Ode02] is the way how they interact and com-
municate with each other. Agents follow interaction templates, so called protocols, during
communication. Agent interaction is based on the theory of communicative acts. The
messages that the agents exchange with one another represent different communicative
acts like request, query, refusal, etc.

It is interesting that the definitions of agents above as well as other well-known defini-
tions of agents refer to an environment which exists independently of the agents and in
which the agents are embedded. The environment is an important concept linked to the
very definition of agents.

2.1.2. Environment Types and Agent Architectures

Independently of how diverse and complicated the properties attributed to agents in the
existing definitions may be, all of these properties have to somehow face the challenges
of implementation. The key issue an agent is concerned about is to make the right deci-
sion. That is, to choose the next action so that it can satisfy its goals or objectives best.
Agent architectures are software architectures that enable agents situated in a particu-
lar environment to make decisions. The properties that the environment displays affects
decision making in the agents situated in this environment. Environments can dramat-
ically increase the complexity of the decision making process in agents. In the example
of the intelligent car given at the beginning of this section the environment relevant for
our agent-car was deliberately simplified. Imagine how complex the system would be
if pedestrians, nearby buildings, sets of traffic lights and so on are included into the en-
vironment. In fact the inclusion of the other cars in our environment alone is enough to
produce a complexity of high order. In [RN95], Russel and Norvig suggest the following
classification of environment properties:

o Accesible vs inaccesible: in an accessible environment the agent can take anytime
complete up-to-date information about the state of the environment.

Chapter 2. Agents and Multi-Agent Systems

o Deterministic vs non-deterministic: in a deterministic environment every action has
a single guaranteed effect. There is certainty about the state of the environment
resulting after performing the action.

e Episodic vs non-episodic: an episodic environment consists of discrete episodes. The
performance of an agent is dependent on a number of discrete episodes, with no
link between the performance of an agent in different scenarios. The agent can
make decisions what action to perform next based on the knowledge of only the
current episode.

e Static vs dynamic: a static environment remains unchanged except by the perfor-
mance of the agents actions. A dynamic environment contains changing processes
that take place independently of the actions of the agents. The environment can
change in ways beyond the agents control.

e Discrete vs continuous: an environment is discrete if there is only a finite number of
actions and percepts in it. Chess is a good example that Russel and Norvig give for
a discrete environment.

The most difficult and complex environments to handle are those that are inaccessible,
non-deterministic, non-episodic and continuous. However, as Russell and Norvig ob-
serve in [RN95] even sufficiently complex deterministic environments are as difficult to
handle as non-deterministic ones. From the point of view of the complexity of decision
making for an agent there is no difference and these kinds of environments may as well
be non-deterministic.

So far only properties that agents should display have been presented. Agents were
viewed as some kind of black boxes that mysteriously display a certain behavior that
allows them to deal with the complexity of their environment. Building a practical agent
requires that the model of the agent needs to be refined by breaking it into sub-systems.
In [RN95] four categories of agents are introduced:

o Simple reactive agents. The next action of the agent is a function of its immediate
perceptions and static rules. These agents do not refer to their past experience to
make decisions and take the next actions. Also, they only respond to changes in
their environment and do not take the initiative.

o Agents with internal state. The next action of an agent is a function of its internal
state, the behavior of the environment, the action sequence of the agent and static
rules. These agents have some kind of internal data structures to save information
about the state, the environment and history.

o Goal based agents. The next action of an agent is a function of its internal state, the
behavior of the environment, the action sequence of the agent and the goals of the
agent.

Chapter 2. Agents and Multi-Agent Systems

o Utility based agents. The next action of an agent is a function of its internal state, the
behavior of the environment, the action sequence of the agent and a utility function.

These categories can be viewed in Figure 2.2.

In [Wo095], a less abstract classification of agents is made. It defines:

Logic based agents: decision making is realized through logical deduction;

Reactive agents: decision making is implemented as a direct mapping between situ-
ation and action;

Belief-desire-intensions agents, decision making is derived from manipulation of data
structures representing the believes desires and intentions of the agents;

layered architecture. Decision making is realized via various software layers, each of
which explicitly reasons about the environment at different levels of abstraction.

Simple Agents Goal — Based Agents
Agent Sensors '/ \\\ Sensors
i\glllwigétggwworld How the world evolves stnlié[r?gv:/,vorld
o k o
é. What my actions do V\ilfhlaéli)t ;Vciltli(?:/l\ike é
(@) o
= =)
= =
g g
T . e -
\ Actuators \Agent Actuators / /
Utility — Based Agents Learning Agents
Performance standard
‘ S,) art D
_ Sensors Critic Sensors
\
How the world evolves ?/s\lnsét:lgwworld feedback m
% m
—¥ n =) =)
What my actions do N V\i’fhlaége‘:‘gltlic?:kke <. : changes _5‘
3 Learning Performance o
How TiTh S element element =
™ ow happy | will be
3 3
5 goals =]
What action | - -
should do now Problem
generator
Agent Actuators \Agent Actuators < /

Figure 2.2.: Agent Categories ([RN95]).

Logic based agents have their roots in the traditional approach of building intelligent sys-
tems called symbolic Al The basic assumption of symbolic Al is that intelligent behavior

10

Chapter 2. Agents and Multi-Agent Systems

can be generated by a system by giving a symbolic representation of the environment and
of its desired behavior to this system, and by manipulating the representation syntacti-
cally. Typically, symbolic representations are logic formula and the syntactic manipula-
tion means theorem proving by deduction. Agents here are mainly theorem provers.

The reactive architecture is the result of an alternative approach to symbolic Al This
approach relies on the idea that intelligent behavior is seen as innately linked to the en-
vironment and is a product of the continuous interaction of the agent with its environ-
ment. Another basic assumption is that intelligent behavior emerges from the interaction
of many simpler behaviors. There are several architectures relying on these ideas. The
prominent architecture of the reactive approach is the subsumption architecture which has
two main characteristics. The first is that the decision-making of an agent is implemented
through a set of task accomplishing behaviors. Each of these behaviors is designed to
achieve a particular task and is mostly implemented as a module in which situations are
directly mapped to actions. So the agent here does not think or reason about its envi-
ronment, it simply reacts to it. The second characteristic of the subsumption architecture
is that many behaviors can be produced simultaneously resulting in conflicts which are
solved through a subsumption hierarchy of the behavior modules. The behaviors are ar-
ranged in layers where lower layers have the priority over the higher and where higher
layers represent more abstract behavior.

The belief-desire-intention (BDI) architecture has its roots in the understanding of prac-
tical reasoning which includes deciding moment after moment which action to take to
achieve the goals. Agents are ascribed with intentions which lead to actions to achieve
these intentions, and affect believes/assumptions of the agents on the future. The chal-
lenge in BDI agents lies in the question when an agent has to abandon its intentions. It
seems obvious that a BDI agent should stop and periodically analyze its situation to de-
cide if the achievement of its intention is still realistic. An agent that only analyzes or an
agent that never analyzes results in inefficient behavior.

In layered architectures, proactive and reactive behavior are dealt with by being imple-
mented separately in at least one sub-system for each behavior. These subsystems are
arranged in a hierarchy of interacting layers. There are two types of control flow be-
tween these layers. The first is the horizontal layering where the software layers are each
directly connected to the sensory input and action output and each of these layers pro-
duces suggestions on what action to perform next. Horizontal layers compete with each
other and need a central mediator for deciding which of the layers has control over the
agent at the given time. The second type is vertically layering where sensory input and
action output are each dealt with by at most one layer each.

2.2. Multi-agent systems

Agents are always embedded in some kind of environment. Nearly every definition of
agents refers explicitly or implicitly to an environment in which the agents are situated.

11

Chapter 2. Agents and Multi-Agent Systems

Agents are also seldom stand-alone systems. From an agent’s point of view, other agents
can be part of its own environment and it has to deal with them in some way or another.
If this is the case, agents can choose between two possible options. One option would be
to ignore the other agents. This option would be a sound choice for the agent only if the
other agents are completely irrelevant to its design goals which is seldom the case. The
very fact that many agents are situated in the same environment means mostly that they
share some of the resources needed for the completion of their tasks. In this case, the only
possible option for the agent would be to interact with the other agents.

In the previous subsection, a social ability was mentioned as one of the main properties
of agency. Such an ability which includes the ability of agents to communicate with each
other in an agent communication language is the basis for building multi-agent systems.
The study of multi-agent systems (MAS) focuses on systems in which many agents interact
with each other. Depending on their goals their interactions can be either cooperative
or selfish. If the agents share a common goal they cooperate with each other. If they
have conflicting goals they can pursue their own interests and mostly compete with each
other. The use of multi-agent systems is generally seen as appropriate in systems where
information and resources are shared between many autonomous participants. In this
case, no participant has a complete view and knowledge of the overall system and the
solution is reached through interaction with the other participants.

2.2.1. Agent Communication

Multi-agent systems rely on the ability of agents to communicate with each other and
exchange their knowledge. Communication is seen as an ability of agents which is a part
of perception (receiving messages) and part of action (sending messages). In order to
communicate agents have to perceive, act and reason. Communication can be used to co-
ordinate the actions of the agents. Another way to coordinate is precomputing the actions
and behavior of other agents. However, this is an approach which requires knowledge on
the overall state of the system and knowledge on the models of the other agents. Com-
munication is appropriate in cases where agents have incomplete knowledge on their
environment and on the other agents. Cooperation is a possible type of of coordination.
Agents cooperate in a MAS when they do not have conflicting goals or when they are
not antagonistic. Selfish agents typically compete with each other and have to coordinate
their actions by negotiations.

Agent communication includes two types of messages: assertions and queries. Depend-
ing on the capabilities of agents to send or receive these types of messages, following
categories of agents can be distinguished:

e Basic Agents are only able receive assertions.

e Passive Agents are able to send and receive assertions. Additionally, they can receive
queries.

12

Chapter 2. Agents and Multi-Agent Systems

e Active Agents are able to send and receive assertions. Additionally, they can send
queries.

e Peer Agents are able to send and receive assertions and queries.

Agent communication relies on concepts used for human communication and is founded
on the theory of speech-acts and on ontologies. The speech act theory was introduced in
[Aus62] and models communication as actions that are able to change the mental state of
the participants. This theory views a certain class of utterances in the human language
as actions such as requests, suggestions, commitments and replies. Under actions it is
meant that this certain class of utterances can change the world similar to physical ac-
tions. Austin gives examples such as declaring war or declaring a pair as husband and
wife. The speech act theory distinguishes three aspects:

e Locution, the act of making an utterance.
e Illocution, the meaning of the utterance intended by the speaker.

e Perlocution, the effect that was generated as a consequence of the locution.

Austin uses the so called performative verbs to identify different types of speech acts by
their illocutionary degree. Some example performatives are inform, request, promise, de-
mand, propose, etc. Speech act theory helps determine the type of messages by using the
illocutionary force. Thus, the intention of the sender is always defined and the receiver
understands the type of the message.

Communication protocols used in agent communication serve to enclose messages in an
“envelope” that every agent understands. There are binary (one sender-one receiver) and
n-ary (one sender-multiple receivers) communication protocols. A protocol is defined by
a data structure containing the following fields:

e sender,

receiver(s),

language in the protocol,

encoding functions,

actions that the receiver(s) should take,

Protocols are generally specified at several levels. The top and middle levels respectively
define the semantics where the type of the message is described together with the sub-
stance of the message, and the syntax of the information. The lowest level specifies the
method of interconnection. The semantics of the communication protocol is separated

13

Chapter 2. Agents and Multi-Agent Systems

from the semantics of the enclosed message which may be domain specific. This separa-
tion allows the protocol to be universally shared by all agents independently of the do-
main specific languages they speak. The Knowledge Query and Manipulation Language
(KQML) [Gro] is such a protocol. KQML defines a common format for messages. KQML
protocol has a performative and parameters as key/value pairs. The basic structure of
KQML messages looks like:

(KQML-performative
:sender value
:receiver value
:language value
:ontology value
:content

The parameters “:content”, “:language” and “:ontology” characterize the semantics of the
message while other parameters including :sender, :receiver etc. are used for message
passing. Any agent communication language can be used as content language. This
includes KIF [Gin91], LISP, PROLOG and KQML itself. Indeed, it is possible to send
embedded KQML messages inside other KQML messages.

FIPA (Foundation for Intelligent Physical Agents) ACL [FIP00] is another protocol for
message exchange whose syntax is quite similar to that of KQML. The structure of a
FIPA ACL message is the same as that of a KQML message. They differ literally only in
the collection of performatives. Unlike KQML which lacks formal semantics FIPA ACL
has semantics which is described using a formal language called Semantic Language
(SL) [FIP02]. This language allows to represent believes, desires, uncertain believes and
actions. FIPA ACL also accepts every possible agent communication language as a con-
tent language.

Ontologies are another important aspect of agent communication. During communica-
tion, agents mostly exchange domain specific information. However, in order to really
understand each other they have to share a common terminology. That is, both agents
should understand the same under each word they use. It is generally known that many
words have different meanings in different domains. This kind of ambiguity has to be
solved in communication between agents. Thus, during its communication an agent has
to know about the domain in which he is talking and about the domain’s related termi-
nology with all the relations between the specific words/terms. Ontologies are the right
answer to this problem. An ontology is a shared vocabulary of agents. It is a formal def-
inition of a knowledge body which typically involves a structural component. Basically,
an ontology represents a taxonomy of classes where the relationships are also included.
Thus, an ontology has to include classes and relationships in its representation. However,
an instance of a class does not need to be included in an ontology as its possible relation-
ships are defined through its class. Several languages exist for defining ontologies. KIF
(also used as a content language in KQML) is based on first order logic. Other languages,
such as XML [XMLO07] or DAML [DAR], are also used for defining ontologies.

14

Chapter 2. Agents and Multi-Agent Systems

2.2.2. Agent Interaction Protocols

In this subsection some of the main principles and techniques of agent interaction in
multi-agent systems will be described. Interaction protocols build on top of communica-
tion protocols. They are used in the case when agents intend to exchange more than one
message with each other. Interaction protocols manage conversations between agents.
While the objective in conventional distributed systems is to avoid deadlocks and live-
locks, multi-agent systems have additional concerns that have to be taken into account.
If a multi-agent system consists of selfish agents which set the priority on their own in-
terest the main objective of their interaction protocols is to maximize their utility [RZ98].
If agents have similar goals their interaction protocols are designed to maintain glob-
ally coherent performance of the agents without violation of autonomy or explicit global
control [Dur88].

Coherence refers to the ability of the multi-agent systems to behave as a unit. The Dis-
tributed Problem Solving (DPS) is such a case where the agents have similar goals. Here
is generally assumed that agents are benevolent which implies that they share a common
goal and act so that system objectives have priority over personal objectives. Typically, in
multi-agent systems such an assumption can not be made. Multi-agent systems are more
general than DPS. They are considered rather societies of self interested agents which can
be designed by and thus can represent the interests of many different persons or organi-
zations. Research of multi-agent systems is focused on why and how agents cooperate
[Wo094], how agents resolve conflicts [KB91] and on negotiation or compromise mech-
anisms when agents are in conflict [RZ94]. In multi-agent systems coordination has to
occur during runtime. The agents have to recognize situations where coordination is re-
quired and choose the appropriate actions. Several methods for dynamic coordination
have been developed which involve [Woo01]:

e Coordination through partial global planning.
e Coordination through joint intentions.
e Coordination by mutual modeling.

e Coordination by norms and social laws.

The main idea behind partial global planning [DL87] is the exchange of information be-
tween agents in order to reach common conclusions about the solution of the problem.
Agents create non-local plans by exchanging their local plans and cooperating in order
to achieve a non-local view of the solution. Three steps can be distinguished in partial
global planning which every agent repeats:

e Agents determine their goals and create plans to achieve their goals.

e Agents exchange information to resolve if and where their plans and goals interact.

15

Chapter 2. Agents and Multi-Agent Systems

e Agents change their local plans to coordinate their activities.

Coordination through joint intentions was inspired from the human team model. Being
part of a team with collective intentions toward some goal differs from individual in-
tentions of agents by the fact that agents in a team have responsibility toward the other
members of the team [LCN90]. Key agent structures in coordination through joint inten-
tions are commitments and conventions [Jen93].

Commitments are a sort of promise of the agents to hold somehow to a course of actions.
The other agents can then predict with some sort of accuracy the future behavior of this
agent and can build their future actions basing on the expected behavior of this agent.

Conventions are means of managing commitments when circumstances change. They
specify under what conditions the commitments can be dropped or changed.

Coordination by mutual modeling is based on the principle that agents have information
on the internal models of other agents. Agents can make predictions on the behavior of
other agents relying on the internal models that they have of other agents. Communica-
tion in such a coordination approach is generally unnecessary.

Coordination by social norms and laws, as the name suggests, is inspired by the coor-
dination in human societies. A norm refers to an established pattern of behavior that
the majority of the members of a society follow. A law is similar in meaning to a norm,
however, a law is always associated with an enforcing authority which ensures its im-
plementation. Norms and laws can be designed during implementation of the system
by the engineers. Designing them during implementation is simple and allows a better
system control. However, this approach is not suitable for open environments or for en-
vironments where the goals of the agents change constantly. In this kind of environments
agents that organize themselves have more advantages.

A basic strategy for coordination among cooperative agents is to divide tasks into many
smaller subtasks which require less resources. These subtasks can be distributed between
the agents. The agents solve their subtasks and reassemble their small solutions in the
overall solution. While eventually dividing tasks into subtasks alternative division pos-
sibilities and dependencies between subtasks have to be considered. The process of the
decomposition of tasks and of their distribution to the agents is also known as task shar-
ing. The main issue in task sharing is how to make the right distribution of subtasks to the
right agents as the agents in many cases have entirely different capabilities. Distribution
of tasks is mainly achieved through [HS99]:

e market system, tasks are distributed to agents through general agreements or mu-
tual selection;

e contract net, announce bid and award,;

e multi-agent planning, specific agents are responsible for task distribution;

16

Chapter 2. Agents and Multi-Agent Systems

e organizational structure, agents have fixed responsibilities for specific tasks;

The contract net protocol [Smi88] is a protocol for cooperative problem solving. It pro-
vides a solution for the correct assignment of tasks to appropriate agents. The contract
net involves some basic steps where cycles of announcements, bids and awards are ex-
ecuted by agents. An agent that needs to have a task solved, the manager, makes an
announcement which is a multicast to the agents that might be able to solve the task.
The agents that received the managers announcement, the potential contractors, evaluate
their possibility to solve the task and depending on their capabilities either make bids or
decline. The manager receives the bids and awards a suitable contractor. The contractor
performs the task and sends the result to the manager. Any agent can be a manager or it
can assume the contractor’s role. This allows even contractors to outsource their tasks to
other agents.

Another important issue in coordination is how agents reach agreements. Reaching
agreements is a capability required for cooperating as well as for competing agents. The
negotiation and argumentation capabilities of agents play a key role in reaching agree-

ments. Negotiating agents follow a negotiation protocol. It is important that any history
of the negotiation has some desirable properties which include [San99].

¢ Guaranteed success, a protocol guarantees that at the end an agreement is always
reached.

e Social Welfare, a protocol guarantees that the resulting agreement maximizes the
sum of the utilities of the negotiators.

e Pareto efficiency, a negotiation result is pareto efficient if there is no other possible
negotiation result that will make at least one agent happier without making at least

another agent worse off.

e Individual rationality, following individual rational protocols is in the best interest
of the negotiators.

e Stability, all agents in a stable protocol have an incentive to behave in a particular
way.

e Distribution, no single point of failure exists in the protocol.
The negotiation protocols mostly used are:

e voting;

e auctions;

e negotiations;

17

Chapter 2. Agents and Multi-Agent Systems

e arguments.

Voting refers to the process in which all agents give an input to a mechanism. The result
that this mechanism computes based on the inputs from the agents is the solution for all
the agents. This result is generally obligatory for all agents and there is some way the
solution computed is enforced for all agents. There are several alternatives for voting
protocols which involve the functions that compute the results out the input from the
agents. One of them is the plurality protocol where all alternatives voted are compared and
the alternative with the highest number of votes is chosen. In such a majority protocol,
just like in politics, introducing an alternative similar to the majority alternative splits
the majority and may cause another alternative that was formerly a minority to become
the majority alternative. Another voting protocol is the binary protocol where each time
only two alternatives are voted for. The winning alternative remains to challenge another
alternative and the loosing alternative is eliminated. In such a protocol the ordering of the
pairs of alternatives presented to be voted each time can change the outcome of the final
winning alternative. Also, the introduction of similar alternatives causes here a splitting
effect as in the plurality protocol.

Auctions specify an auctioneer and many bidders which interact with each other. Auc-
tions are used when the auctioneer wants to allocate some goods to one bidder. Mostly
the auctioneer tries to maximize the price of the good to be allocated to a bidder by choos-
ing the most appropriate auction protocol. Bidders, instead, want to minimize the price
at which the goods are allocated to them by choosing strategies inside the framework of
the auction protocol.

One of the most important auction properties that affects the bidders’ strategy is how the
bidders’ value of the goods being allocated is defined. If the value of the goods depends
only on the preferences of the agent the goods have private value. If an agent’s value of
a good depends completely on the values of the other agents it is said that the good has
public value. Indeed, the value of the goods in such a case is the same to all the agents.
If the value of the goods depends partly on an agent’s own preferences and partly on
the values of the other agents it is said that the goods have correlated values. The second
important property that affects auctions is if an agent sees the bids of the other agents.
If it is the case the auction is called open cry otherwise it is called a sealed-bid auction.
The third important property of auctions is how the process of bidding proceeds. One
possibility is that the price starts low and it increases with every additional bid. These
auctions are called ascending. If the price starts high and is decreased in successive rounds
by the auctioneer the auction is called descending. Several auction protocols exist:

e English auctions;
e Dutch auctions;
o first-price sealed-bid auction;

e Vickrey auction.

18

Chapter 2. Agents and Multi-Agent Systems

The English auction is an open cry and ascending auction protocol. The auctioneer starts
with a low price. After this, bids are expected from the agents with the condition that the
bids must be higher than the current highest bid. If agents do not raise the bid anymore
than the good is allocated to the current highest bidder.

Dutch auctions are open cry, descending auctions. The auctioneer starts with an unreal-
istic high price for the good. The auctioneer continues then to lower the price by small
amounts in several rounds until an agent makes a bid for the current amount. The good
is then allocated to the agent that made the offer.

In first-price sealed-bid auctions every agent makes a bid during a single round. The win-
ner is the agent that made the highest bid. The good is allocated to the price of the high-
est bid. As the name suggests, in these kind of auctions agents can not see each other’s
bids.

Vickrey auctions are also sealed-bid auctions. Here agents can make hidden bids in a single
round. The winner is the agent that made the highest bid. However, the price paid by
this agent for the allocation of the good is equal to the second highest bid made during
the bidding round. In this kind of unintuitive auction telling the truth about how much
the good is worth to them is the most efficient strategy for the bidders.

Negotiation is a mechanism where agreements are reached on the basis of mutual in-
terest. It is more general than auctions which are appropriate only for the allocation of
goods. Auctions are in fact specific negotiation examples. Typically any negotiation in-
volve four important components:

e The negotiation set, the set with the possible proposals that the agents can make

e The protocol, defines the proposals that agents can make as a function of the nego-
tiation history

e The collection of private strategies of the agents, which more or less defines the
future proposals of the agents

e The rule that specifies when a deal can be called as made and the content of the deal

[RZ94] Negotiations are executed in series of rounds where every agent makes a legal
proposal from the negotiation set following its own strategy. The negotiation terminates
if an agreement is reached as defined in the agreement rule. Negotiations can become
complicated if agents negotiate over many issues which are interrelated. A more detailed
view on Negotiations is given in [RZ94].

Argumentation in multi-agent systems is the process when agents attempt to convince
each other that one proposal is true or false by putting forward several arguments. The
concept and use of argumentation emerged as several setbacks exist in agent negotia-
tions. One of these setbacks is that the positions of agents do not change on a speci-

19

Chapter 2. Agents and Multi-Agent Systems

fied issue or task during negotiation [JEL01]. The utility function of the agent does not
change during the negotiation. This behavior does not correspond to real life situations
where argumentation is a technique that is used abundantly during negotiations. Agents
are typically involved in logic based argumentation among the several possible types
of argumentations [Gil04] that exist as logic based argumentation is easier to formalize
and implement. A system of logic based argumentation is introduced in [Woo01] where
agents argument with each other on the basis of a common set of formulas, the so called
database. Arguments are here logical conclusions inferred from formulas drawn from the
database. Arguments are given weights or are classified on the basis of their structure to
determine which arguments are stronger than others.

2.3. Summary

Agents and multi-agent systems are increasingly finding their way into mainstream soft-
ware development and are already used in a wide range of domains. Agents are au-
tonomous entities that can sense part of their environment and have the ability to make
decisions. They can be reactive or proactive meaning that they can only react to chan-
ges of their environment or act on their own initiative as well. Several architecture types
exist for building agents including, logical, reactive, belief-desire-intention (BDI) and lay-
ered architectures. Agents have also social abilities and can communicate or interact with
each other. Multi-agent systems are systems where many agents interact with each other.
Agents in multi-agent systems can cooperate or compete depending on their goals being
similar or conflicting. The ability of the agents to communicate in an agent communi-
cation language is central to multi-agent systems and to coordination between agents.
Agent communication relies on the theory of speech acts [Aus62]. Agents can coordi-
nate their actions and interact by cooperating or by competing with each other. Several
coordination techniques exist which include coordination through joint intentions, coor-
dination by mutual modeling which does not require communication capabilities, coor-
dination through social laws or norms and coordination through partial global planning.
Cooperative agents can coordinate their actions through subdivision of tasks into smaller
tasks which require less resources. The main issue here becomes the efficient allocation of
the subtasks to the cooperating agents. The most important methods for task allocation
are market systems, contract nets, multi-agent planning and organizational structures.
Reaching agreements is important for coordination between cooperating as well as com-
peting agents. Negotiation and argumentation capabilities are central for reaching agree-
ments. Negotiation requires agents to follow a specific negotiation protocol. Among the
available negotiating protocols are voting, auctions, negotiations and arguments.

20

Chapter 3.

Organizations and Multi-Agent Systems

Until recently, multi-agent systems were viewed as systems which did not need any ex-
plicitly defined structural level to handle the coordination of their autonomous agents.
The general idea behind such a view was that the interactions of the autonomous agents
and the limitation in resources would provide the basis for a self-regulatory and highly
adaptive system. This view dictates an approach in the design of multi-agent systems
where desired properties of the system are achieved through tweaking in the interaction
and coordination rules of the autonomous agents. The structure of the multi-agent sys-
tems was implicitly incorporated in the agents themselves in form of their interaction or
coordination rules. Thus, the structure of the system emerged during the interaction of the
agents. Such a bottom-up approach in designing multi-agent systems has advantages
if the system is required to have emergent properties or has to be adaptive. However,
it has several drawbacks [Jen00] and it becomes a problem if it comes to build robust
and predictable systems with specific properties. While self-regulation and adaptiveness
are certainly desirable properties for most systems, other properties such as emergent
behavior or unpredictability of the system are not. This may be one of the reasons why
agent-oriented software development have not replaced object-orientation despite agents
being seen as a natural development of objects!.

Recently, important impulses from sociology and especially concepts from the organi-
zation theory have flowed in the research on multi-agent systems. The introduction in
multi-agent systems of organizational concepts defining a structure independent from
the agents provided what the multi-agent systems lacked. An explicit structural level of
the system which exists independently of the agents and which can be easily modified.
In this chapter some key concepts from organizational theory as well as an organizational
perspective on multi-agent systems will be introduced. Additionally, the main organiza-
tion types used in multi-agent systems will be listed and briefly explained.

!Objects in the object-oriented paradigm.

21

Chapter 3. Organizations and Multi-Agent Systems

3.1. Organizations

Similar to the concept of agency the concept of organizations is still widely discussed and
lacks a broadly accepted definition. Due to the complexity of organizations in real life,
most of the books on organizational theory concentrate on specific aspects of organiza-
tions and provide different definitions for organizations which emphasize one or some
of its overall aspects. While there is no broadly accepted definition of organizations there
are some basic principles that are generally accepted as valid for organizations. Organi-
zations are characterized as [CG99]:

large-scale systems for problem solving;

o systems that include multiple human, artificial or both types of agents;

e organizations are systems of activity, they are involved in one or more tasks;
e organizations are goal directed;

e organizations can affect or be influenced by their environment;

¢ they have knowledge, culture, memory, history, and capabilities different from their
member agents;

e have legal standing different from that of individual agents.

Organizational structures exist in most of the biological species (including humans) in
various forms (families, tribes, classes, societies, etc.) as a way of coordination between
individuals and as a means of ensuring better survival chances in certain environments.
Presumably, such social and organizational structures exist for a very long time. On the
contrary, organizations such as modern bureaucratic states, Coca Cola, IBM, Greenpeace,
etc., which is generally what we mean when we speak of organizations in everyday life
are surprisingly recent. Organizations of this type began to emerge only during or after
the Industrial Revolution. It is useless to stress the importance of these organizations
in our lives as it is generally known that they are the pillar of the economic and tech-
nological development in many countries. One of the causes of the existence of such
organizations is to overcome the limitations of individual members. In [CG99] four types
of basic limitations are discerned:

o Cognitive, individuals have cognitive limitations. They can not percept all of their
environment and have to cooperate to achieve better understanding of their sur-
rounding environment and a better performance.

e Physical, individuals are physically bounded in terms of the resources available to

them as well as in terms of the actions they are capable of. They need to cooperate
to achieve better productivity levels.

22

Chapter 3. Organizations and Multi-Agent Systems

e Temporal, individuals are not eternal, they are limited in time. They have to join
with younger individuals to secure the achievement of the goals or the circulation
of their results beyond their lifetime.

e Institutional, legal or political limitations of individuals are an incentive for the cre-
ation of organizations that are able to remove such limitations.

3.1.1. Organizations as Rational, Natural and Open Systems

Research and study on organizations has produced many theories what organizations
are, how they function and what principles and factors drive their development. These
theories can be summed up in three different perspectives [Sco02] which will be briefly
introduced below:

e organizations as rational systems;
e organizations as natural systems;

e organizations as open systems.

The perspective of organizations as rational systems focuses on the characteristic of organi-
zations to accomplish specific goals and on the formalization of rules and roles. Under
this perspective organizations are created for the explicit purpose of achieving specific
goals. The goals of the organization determine the organization’s structure, its tasks and
the allocation of resources. The behavior of the organization is specified through a set
of formal rules, roles and role relationships. The main characteristics of rational orga-
nizations are thus the specification of goals and the high degree of formalization of its
structures where roles are independent of the personal attributes of the members occu-
pying these roles.

In [Sco02] four rational schools are identified:

e Scientific Management which uses time and motion studies to optimize work pro-
cesses and increase productivity.

¢ Administrative Theory which presents guidelines of how to formalize organiza-
tional structures.

e Bureaucratic Theory which focuses on the analysis of bureaucracy as a specific type
of administrative structure.

e Rational Decision-Making which analyzes how goal specification and structure for-

malization contributes to rational behavior in organizations by focusing on decision-
making.

23

Chapter 3. Organizations and Multi-Agent Systems

Scientific Management and Rational Decision-Making stressed the individual actions and
decisions of the members of organizations where the formal structure is handled as a
framework which affects the member’s behavior. Administrative Theory and Bureau-
cratic Theory attempt to conceptualize and analyze organizational forms [Sco02].

While considering organizations as natural systems they are viewed as social groups at-
tempting to adapt and survive in their particular environment. The natural perspective
developed mainly as a critical reaction to the rational perspective. The natural approach
suggests that an organization consists not only of a formal structure but also of an in-
formal structure which may play an important role in determining the organization’s
behavior. Organizations can also have multiple goals which can be complex and conflict-
ing. In [Sco02] three natural system approaches are reviewed.

o Barnard’s Conception of Cooperation handles organizations are handled as cooperative
systems integrating the contribution of their individuals.

e Selznick’s Institutional Approach stresses that individuals do not act purely based on
their formal roles and the organization structure includes not only the formal struc-
tures but also the informal systems that link individuals within and external to the
organization.

e Parson’s Social System Model, specified what an organization must meet to survive
in terms of the AGIL system (Adaptation, Goal attainment, Integration, Lattency).

The open system perspective focuses on the ties that link the organization to its environ-
ment. The environment is handled as the source of information, materials and energy.
Organizations are treated here both as hierarchical systems and as loosely coupled sys-
tems. Systems are composed of multiple subsystems and systems themselves may be
part of larger systems. Interconnections within subsystems are generally tighter than
the connections between subsystems. In [Sco02] following open system approaches are
described:

o Contingency Theory that evolved from the general assumption that organizations
that best fit the demands of their environments will have the best adaptation abil-
ities. So the best way to organize is closely related to the nature of environment of
the organization.

o Systems Design that uses simulation, probabilistic and statistical techniques to study
complex systems focusing on modeling flows of information materials and energy.

o Weick’s Theory of Organizing that is a social psychological approach which shifts the
focus from structure to process. The organization is enacted through the interpreted
meaning of the individual interactions.

24

Chapter 3. Organizations and Multi-Agent Systems

Several attempts have been made to combine the three perspectives. In [Sco02] a cross
classification of the three perspectives is made based on open/closed and rational /natu-
ral perspectives.

3.1.2. Computational Organization Theory (COT)

Another approach on understanding and analyzing organizations that has emerged in
the last years is the Computational Organization Theory (COT) which uses computa-
tional and mathematical models to study organizations. COT focuses on both the study
of human organizations which have the ability to continually gain, transform and pro-
duce information, and on the study of computational organizations consisting of mul-
tiple agents. Theories developed from COT are usually founded on the cognitive and
information-processing views of individual behavior and have contributed to the evolu-
tion of these views by adding an organizational perspective. In the information process-
ing view on organizations the basic characteristics are [CG99]:

e Bounded rationality. Agents in organizations have rational bounds. In addition
to previous specifications of bounded rationality in older information processing
theories agents have now two types of bounds: limits in capabilities and limits in
knowledge. Capabilities limits depend on the agent’s cognitive and computational
limits. Knowledge limits depend on the ability limits of the agent to learn and on
the agent’s intellectual history.

e Information ubiquity. Information is distributed in the organization among its
agents.

e Task orientation. Organizations and its member agents are continuously involved
in executing tasks.

e Distributional constraints. The performance of organizations depends on how the
information is distributed among its member agents and how can be searched for
informations. The organization’s culture is the distribution of information and pro-
cesses across the member agents of the organization.

e Uncertainty. Uncertainty about environmental conditions, task outcome etc. affects
organizational activity.

e Organizational intelligence. Organizational intelligence resides in the distribution
of knowledge and processes among the agents of the organization. As part of their
learning capabilities organizations can redesign themselves and their view on their
environment basing on the informations available. Thus, they can change their
intelligence and/or their organizational performance.

25

Chapter 3. Organizations and Multi-Agent Systems

e Irrevocable change. Organizations and agents that learn alter their intelligence
structure irrevocably. This puts an emphasis to the order in which agents and orga-
nizations learn things.

e Necessity of communication. The ability of organizations to handle as a unit re-
quires the agents of the organizations to have the ability to communicate with each
other.

Modeling organizations requires modeling factors like the agents of the organization and
their capabilities, the organizational structure, the tasks that the organization has to exe-
cute, the environment, the technology that the organization uses to process information
and stressors like deadlines, legislation changes, etc. The capabilities and knowledge of
agents in an organization as well as the situation they are in and the tasks that agents are
performing determine the actions and decisions that agents make. The organizational
roles in which agents are situated limit the range of the actions that the agents can make.
Positions in an organization specify the tasks that agents that occupy those positions can
carry out, their communicating partners in terms of roles or positions etc.

The organization structure includes procedures and rules that represent organizational
knowledge (such as procedures for hiring, firing, moving and promoting agents) and the
relations between agents and tasks. In the overall organization structure along with the
communication and authority structures other structures are included. Informal struc-
tures (friend networks, advices, etc.) are for example a subset of these additional struc-
tures along structures that define how subtasks have to be executed (task structures),
what resources tasks need to be executed (task-resource structures), and what skills are
needed by the agents to execute tasks successfully (task-skill structures).

Organizations and its agents are always involved in the execution of one or many tasks.
Tasks can contain subtasks. Such subtasks can be distributed to the other agents for ex-
ecution. However, several dependencies may exist between subtasks such as reciprocal
when subtasks depend on each other, pooled when subtasks are needed from another task
and sequential when subtasks have to be executed in a specified sequential order. The
set of tasks that an organization has to carry out is called the task environment. The
task environment can vary along the degree of repetition (agents keep doing the same
thing), volatility (how fast the task environment changes), bias (the degree that all tasks,
regardless of differences in their features, have the same solutions) and complexity (the
information that has to be processed to execute the task). The performance of an orga-
nization can be measured relying on the tasks that it performs. The basic performance
measures are three: effectiveness (how well tasks are being executed), efficiency (is the
ratio output/input optimal?) and perceived effectiveness (how is the effectiveness of
the organization perceived by the interest groups). Effectiveness itself has three aspects
which include the relative performance of the organization compared with other organi-
zations, accuracy (how many correct decisions are made) and timeliness (how much time
takes to make a decision).

26

Chapter 3. Organizations and Multi-Agent Systems

The organization technology has also been introduced in the organization models to be
able to view how it affects the actions of the agents within the organization. One way of
modeling technology is to handle it as a tool and distinguishing tools by their attributes.
Another approach is handling/modeling technology as an agent where agents that have
a technology have access to the technology agent.

As large differences can exist in the relationships between environments and organiza-
tions, tasks required to be executed by organizations, goals of organizations, cognitive
abilities of the individuals/agents in the organizations and legal framework on organi-
zations, it is generally accepted that there is no organizational structure that is optimal
in all domains, circumstances, legal frameworks, etc. The key toward the right organiza-
tional structure is understanding and evaluating the specific relevant factors that play a
role in the performance of the organizations.

3.2. Organizational Perspective of Multi-Agent Systems

Intelligence is increasingly perceived as closely related to interaction. Intelligence and
interaction are linked to each other and multi-agent systems seem to be the approach
that naturally embodies this view. Multi-agent systems handles interactions between
its agents as central to its overall design goals. However, most of the time interactions
between agents in MAS were treated on the coordination level without any structural
level on top of it. Agent-based systems were generally viewed as systems which did
not require any real structure. Such a view on MAS has several drawbacks [Jen00]. One
of them is that in such systems the outcome of the interactions becomes unpredictable.
Predicting the overall behavior of the system becomes literally impossible due to the
emergent behavior that evolves out of uncontrolled interactions. In software engineering
the development of modular software is also a central issue. Multi agent systems did not
seem to support modularity as for large systems agents represent too small entities to be
viewed as subsystems in terms of the modular approach.

The above concerns led to the gradual development of an additional perspective on MAS,
the organizational perspective, where the concept of organization plays a central role. In fact,
organizations and organizational structures have been present since the early phases of
research on multi-agent systems. However, they have been mostly implicitly or infor-
mally presented as they were often regarded as a marginal issue, more or less a tech-
nique of coordination [Gas01]. An important emphasis in MAS lied earlier on the agent,
the agent’s state and the relation between these states and the agent’s behavior. Only re-
cently, the concept of organization is becoming increasingly important in MAS and the at-
tention is shifting from the agent and its internal states to organizational concepts such as
organizations, groups, communities, etc. [FGMO03]. Almost all multi-agent systems form
organizations [HL04]. Lacking a standard definition on organizations in multi-agent sys-
tems the basic characteristics of the organizational perspective in multi-agent systems
will be presented as proposed in [Jen00]. The nomenclature of the characterization made
in [Jen00] follows that of [New82]. In [Jen00], several dimensions are distinguished:

27

Chapter 3. Organizations and Multi-Agent Systems

o The system to be characterized is an agent organization.

o The components are the primitive entities of which the system is composed. For
agent organizations, agents, interaction channels, dependencies and organizational re-
lationships are distinguished as their components. The interaction channels enable
agents to communicate and interact with each other. Dependencies between agents
drive agents to interact with each other [Cas98]. Dependencies can exist in form of
shared resources or they can be found in the agents’ objectives. Besides, various or-
ganizational relationships can exist between agents such as authority, competition
or cooperative relationships.

o The compositional laws define how the components are assembled to build the sys-
tem. For agent organizations, such laws are specified in roles and organizational
rules. The concept of roles is key to the organizational perspective in multi-agent
systems. The role’s purpose is to specify functionalities and to accomplish spe-
cific objectives without referring to agent architectures or agent technologies. Thus,
roles isolate the organization from the agents. Roles enable modeling the organi-
zational structure separated from the agents. The agents are not the organization
anymore. They simply act in the roles specified in the organization. The concept of
roles is therefore a powerful tool to model agent behavior within an organization
on an abstract level. Role specifications include objectives, responsibilities of the
agents that act in these roles, the specifications of the rights and the specification of
the system resources that the agents need to accomplish the objectives [Gas91].

Organizational rules accompany role definitions. Among other things they specify
under what terms and conditions agents can adopt specific roles, how to react if
roles are modified and how to resolve conflicts between roles.

o The behavioral laws, specify how the composition of the components affects the over-
all system. In the organizational context it refers to the organizational rationality,
the dependency of the behavior of the organization on the ways in which the roles
are enacted and the degree to which the organizations rules are adhered to. For
agents, the principle of rationality refers to their ability to ponder on their objec-
tives and actions and to choose the actions that they believe will help them most to
accomplish their goals. Organizational rationality represents the degree to which
agents follow their organizational obligations and the circumstances under which
agents follow these obligations. Organizational rationality defines the cases in
which agents can make social commitments, possibilities to violate these commit-
ments, and the compensating actions that should be demanded in such situations.

o The medium refers to the elements that are processed to achieve the desired sys-
tem behavior. Agents process knowledge to secure their goal. In an organizational
context there are three types of elements included in the medium. The organiza-
tional and social obligations that agents commit to either through the enactment of
roles or through social interaction is one type of these elements. The means and
mechanisms through which the components influence the behavior of one another
constitute the second type of elements included in the medium. Such mechanisms

28

Chapter 3. Organizations and Multi-Agent Systems

are, for example, negotiation techniques, cooperation protocols, and coordination
models. The final type of elements included in the medium are the various means
available for modifying the organizational structure. These means include, for ex-
ample, the elements processed for the creation of new roles or for the modification
of the organizational rules and rationality.

An interesting contribution to the organizational perspective of multi-agent systems in
software engineering has been made in [WEMO06]. In this contribution the concept of
organization units is introduced. The concept of organization units presented here is more
general than the concept of agents as individual agents are specified as the simplest kind
of organization units. All other kinds of organization units have a more complex nature.
Such complex organization units are presented in [WEMO6] as entities with two main
requirements. The first being that an organization unit has to serve as a platform for
its members and place them within an organizational context through the concepts and
mechanisms described in [Jen00]. The second basic requirement of complex organization
units is that they should be able to appear as holistic and autonomous from outside by
showing agency properties. This second characteristic enables agents as well as complex
organization units to enact roles within a parent organization unit. The internal structures
of the child organization unit are irrelevant for the parent unit. Organization units allow
the creation of multi-level organizations by this method.

In [WEMO6], a reference model is developed around the concept of organization units.
This model relies on some basic hypotheses on organization units. One of the hypotheses
refers to the important role that the autarchy of organization entities will play in organi-
zation oriented software development. Autarchy of an organization unit represents the
degree with which this unit uses its own resources for everything it needs. The aggre-
gation of organization units results in a greater degree of autarchy for both units taken
as a whole. Another basic hypothesis is that complex organization units should offer
physical as well as logical platform functionalities. Platforms in multi-agent systems are
typically physical as they often represent execution environments where agents are cre-
ated or destroyed and where agents can enter or leave. In the context of organization
units it means that if an organization unit serves as a physical platform for another then
the embedded one can affect the wider environment only through the parent unit. This
implies a strong coupling between these organization units with the consequence that an
organization unit can be physically embedded only within one platform unit. In a logical
platform relationship, the embedded unit and the platform unit are loosely coupled and
an organization unit can be logically embedded within many platform units.

The reference model proposed in [WEMO06] contains four abstraction levels on organiza-
tion units:

e Internals is the level that represents the internals of the organizations. Within this
level the composing organization units are strongly coupled. The notions and
methods proposed in [Jen00] can serve to model this level.

29

Chapter 3. Organizations and Multi-Agent Systems

o Organization. In this level organizations are modeled as holonic entities. They can
act, use resources, interact with other organizations and manage specific relation-
ships to other organizations. Such relationships can include nested relationships in
the form of enacting a role of a parent organization.

o Markets/Communities are modeled in this level as collections of organizations. Mar-
kets and communities have their own rules and their main function is to organize
the way that the organizations within them interact with each other. Organizations
within markets/communities are loosely coupled with one another.

e Societies, refer to the networks containing the markets and communities described
above. Societies have rules and laws which are valid for all communities and mar-
kets within them. Such overall rules and laws specify, for example, how migrations
between communities or markets can take place or how markets/communities can
communicate with each other.

Between these four levels there are three types of relationships. For each of them, the
involved levels can have a different perspective. Thus, there are six relationship perspec-
tives. Each of the above abstract levels can be modeled as an organization unit. Addi-
tionally, depending on the context organization units can be modeled to be in the role
of each of the four abstract levels. In the example given in [WEMO06] universities were
once viewed as societies (fourth level) and on another context as organizations (second
level).

The reference model presented in [WEMO06] remains however still mainly a theoretical
work for multi-agent systems that are designed basing on it have yet to be deployed.
Basing on the characterization in [Jen00], organizations are a collection of roles among
which several relations exist. This point of view has been submitted to some criticism
in [FGMO3] for the lack of partitions in organizations which would help to represent
sub-organizations, departments, etc. In [FGMO03], the possibility of partitioning the orga-
nizations has been additionally introduced. The characterization from Jennings abstracts
however, from implementation details and his proposal has been the basis for many of
the organizational multi-agent systems developed after its publication.

In [HLO04], a survey of organization types used in multi-agent systems is made identifying
hierarchies, holarchies, coalitions, teams, congregations, societies, federations, markets,
matrix organizations and compound organizations as the main organization forms used.
All these notions are shortly introduced below leaning mostly on the work in [HLO4].

In hierarchies, agents are arranged in a treelike structure where agents higher in the tree
have a more global view than those below them. Interactions do not take place across
the tree, but only between connected entities. The data coming from the agents in the
low levels travels in a hierarchy upwards to provide a broader view, while control flows
downward [BG88] as the agents in the higher levels provide direction to those below
them. In a simple hierarchy a single member on the top hierarchical level has the decision
making authority over the system. Decision requests travels here up to the top agent

30

Chapter 3. Organizations and Multi-Agent Systems

and when the decision is finally made it travels downward. In uniform hierarchies the
authority is distributed among many agents in different areas. Decision requests do not
necessarily need to travel to the top but can be processed from agents in lower levels
which have the needed information and the required authority to take the decisions. Such
an approach has efficiency advantages through locality. In multi-divisional hierarchies
the organization is divided along division lines. These lines are normally specialized for
specific products, goals, etc. and have complete control over their product. The division
lines may be situated under a higher level hierarchy which evaluates their performance.
However such higher entities do not have direct influence in the decision process inside
the division line.

Holarchies are an organization form where the defining characteristic is the partially-
autonomous holon. Each holon is composed of one or more subordinate entities, and
can be a member of one or more holons. Holons have thus a dual nature and can exist as
both entities composed of a collection of other sub-entites and as part of larger entities.
Holons have generally neither a complete nor a completely absent form of autonomy as it
would let the holarchy degrade in a strict hierarchy or an unorganized grouping. Subor-
dinate holons relinquish some of their autonomy to the superordinate holon. Holons can
display their capabilities and actions as an entity and hide their internal structure from
their parent holons. Thus they can create an abstraction over their internal structure.

Coalitions are generally goal directed and short-term groups that are formed to achieve
an objective. As soon as the objective no longer exists coalitions dissolve. Coalitions can
form among both cooperative as well as self-interested agents. Within a coalition, the
organizational structure is typically flat. However, in coalitions there may be a leading
agent who acts as the representative of the coalition. If coalitions are created they may be
handled as atomic entities.

Teams, are groups of cooperative agents that work together to achieve a common goal.
Unlike coalitions, teams attempt to maximize the utility of the team and not that of the
members. Generally, each team member accepts one or more roles with which it ad-
dresses subtasks from the general team goal. Such roles may change over time as a reac-
tion to planned or unplanned events.

Congregations, are groups of individuals with a flat organizational form. Unlike coali-
tions or teams congregations are long lived and do not form with a specific goal. They
are created among individuals with similar or complementary characteristics to facilitate
finding collaborators.

Societies are long lived social constructs. Agents may come and go, live and die but the
society remains there acting as a platform where agents can interact. Agents in a society
may have different goals, different levels of rationality, and different capabilities. Soci-
eties provide a system through which they can act and communicate with each other.
Societies may have a specific structure but they allow a flexible arrangement of inter-
actions. Agents in societies may be organized in sub-organizations. Societies have a
set of constraints on the agents’ behavior which are generally referred to as social laws
or norms. Such constraints are rules by which agents have to act. They provide some

31

Chapter 3. Organizations and Multi-Agent Systems

level of consistency of behavior and are aimed to facilitate the coexistence of the society’s
members.

Federations are groups of agents which have ceded some of their autonomy by choosing
an agent which represents the group. Group members interact only with this agent that
acts as an intermediary between the group and the environment.

Markets consist of buying agents, sellers, or sometimes designated third parties called
auctioneers. Buyers may request or place bids for a common set of items, such as shared
resources, tasks, services or goods. Sellers and auctioneers are responsible for processing
bids and choosing the winner. Unlike in federations, market members are competitive.
However, they still trust the entities managing the market and abide by decisions they
make. Any agent can take part in a market system as long as it follows the systems
rules.

In matrix organizations, many managers or peers influence the actions of an agent.

Compound organizations are based on more than one organizational structure. In a system,
control can be deployed according one form of organization and the data can travel ac-
cording another organization form. Compound organizations can be overlapped, or be
nested, so that subsets of agents in a group are organized in a potentially different way
within the larger context.

The organizational perspective of multi-agent systems has already changed the academic
and research landscape of multi-agent systems through a paradigm shift from agents to
organizations of agents. It has the potential to dissolve some serious drawbacks of multi-
agent systems and to make agents an alternative to objects in software development.
However, being a relatively new approach, effective modeling and implementation tools
that support organizational thinking in the development of multi-agent systems or gen-
eral software have yet to be developed. The development of such tools may as a conse-
quence encourage the acceptance from the industry of multi-agent systems and design.

3.3. Summary

Recently, research on multi-agent systems is especially being influenced by the organi-
zation theory from sociology. Organizations lack an exact definition, but there are some
properties of organizations that are generally agreed upon. Organizations are viewed
as goal-directed large scale systems for problem solving which can be involved in many
tasks. Organizations are also linked to their environment. They can affect it or be influ-
enced by it. Organizations can have different capabilities, knowledge, memory, culture,
history as well as limitations from their member agents. Organization theory delivers
three main perspectives on organizations including the rational perspective (organiza-
tions are viewed as systems which have specific goals and function on formal rules and
roles), the natural perspective (organizations are viewed as social groups attempting to

32

Chapter 3. Organizations and Multi-Agent Systems

adapt and survive in their environment) and the open perspective (focuses on the ties of
the organizations to its environment). Recently, computational and mathematical meth-
ods in the study of organizations have given birth to Computational Organization The-
ory (COT). COT studies organizations from a cognitive and information processing view.
Important characteristics ascribed to organizations in this view are bounded rationality,
information ubiquity, task orientation, distributional constraints, uncertainty, organiza-
tional intelligence, irrevocable change and necessity of communication. Organization
theory has flowed in the research on multi-agent systems and has had a deep impact on
it. The focus in multi-agent systems has shifted from the internal agent states toward
organizational concepts such as groups, communities, organizations, roles, etc. Since
concepts from the organization theory have been adopted for multi-agent systems the
structure of multi-agent systems is no longer incorporated in the agents in form of inter-
action or coordination rules. Rather, the structure is viewed and implemented explicitly
and independently of agents. This ensures that the multi-agent system becomes more
manageable and predictable. The main dimensions of multi-agent systems in the orga-
nizational perspective include [Jen00] the system, the components (entities of which the
system is composed), the compositional laws (define how the components are assembled
to build the system), the behavioral laws (specify how the composition of components
affect the overall system) and the medium (the elements processed to achieve the desired
behavior of the system). The organization types mostly used in multi-agent systems have
been shown in [HLO04] hierarchies, holarchies, coalitions, teams, federations, markets,
matrix and compound organizations.

33

Chapter 3. Organizations and Multi-Agent Systems

34

Chapter 4.
Petri Nets, Renew and Mulan

Petri nets have been further developed and adopted as a modeling and specification for-
malism since their proposal in 1962. In this chapter after a short introduction to petri
nets in general, P/T petri nets and reference nets will be presented. Further, a brief in-
troduction to “Renew”, a reference net editor will follow. Finally, a multi-agent reference
architecture based on reference nets and Renew will be explained.

4.1. Petri Nets

Petri nets represent a mathematical formalism for the description and/or specification of
concurrent processes or systems. Petri nets were first introduced in 1962 by Carl Adam
Petri in his dissertation thesis “Kommunikation mit Automaten”, submitted to the fac-
ulty of Mathematics and Physics at the technical university in Darmstadt, Germany. Since
then, the Petri net formalism has been widely adopted and further developed as a mod-
eling and specification tool for concurrent systems. The main reasons of the success of
the formalism of Petri nets are the rather intuitive graphical representation of the for-
malism which is very forthcoming for humans and its mathematical robustness which
makes it adequate for research on formal properties and facilitates automated machine
processing.

Petri nets consist of passive elements called places and active elements called transitions.
A place is typically drawn as a circle while a transition is drawn as a square. A place con-
tains a set of markers called tokens. Single places with their tokens represent local states
of the system. The distribution of tokens in all the places of the net is called a mark-
ing. A marking represents the overall state of the system. Transitions represent events or
actions whose execution requires specific states and produces other states. The change
of the system state through the execution of events or actions (transitions) is described
through the flow relation represented through directed arcs. The directed arcs link places
with transitions or vice versa (the arcs do not link places with places or transitions with
transitions). The places from which an arc links to a transition are referred to as the input
places of the transition while the places to which arcs link from a transition are referred
to as the output places of the transition.

35

Chapter 4. Petri Nets, Renew and Mulan

before firing after firing
O—0—0 O—1—®

Figure 4.1.: Petri Nets

A transition is said to be enabled if a specific distribution of tokens exist in its input places.
If a transition is enabled it can fire which means that it can remove a specific number of
tokens from all its input places, process some tasks and add specific number of tokens to
all its output places. After a transition fires it changes the system state.

In [JV87] petri nets are defined as a triple of sets. They represent a bipartite and directed
graph which consists of places, transitions and directed arcs which link places and transi-
tions as described above. The formal definition is presented here as given in [JV87]:
N = (P,T,F)is anetif

e Pis a finite set of places and T’ a finite set of transitions

e PNT =1

o FC (P xTUT x P)is the flow relation.
A marking of N is a multiset of places m € NF. The firing of a transition is represented

by m Lo Firing sequences are represented by m At /. The set of the reachable

markings is defined as RS(m) = {m/|3t1---t, : m Lt m'}

The preset of a node (a place or a transition) y is *y := {z | 2Fy}. The postset of a node y is
y* == {z|yFa).

4.2. P/T Nets

P/T Nets are a subclass of low level petri nets. The main characteristic of low level petri
nets is that their tokens are undistinguishable which means that one token is identical to
every other token in the net.

P/T nets extend the above definition of petri nets by adding capacities to places, an ini-
tial marking function and weights to arcs. The formal definition is given below as in
[BDC92]:

A P/Tnetisatuple (P,T, F, K, W, M) where

e (P,T,F)is anetas described above.

36

Chapter 4. Petri Nets, Renew and Mulan

e K : P — Nt Uf{oo} is a capacity function which describes the maximal number of
tokens that a place can contain.

e W :F — NTisaweight function for the arcs. It defines how many tokens have to
flow through them.

e M : P — N is an initial marking function that satisfies Vp € P : My(p) < K(p).

Before Firing tq After Firing t,
pl 3

t2
[3

> —
hd N

2 2 2 2
0 o
t1 3 p2 t1 3 2

Figure 4.2.: P/T net before and after firing.

While the formal definition may seem a little complicated the graphical representation of
P/T nets as that of most other Petri net types facilitates understanding and is much more
readable. A transition in a P/T net complying to the above definition is activated and
can fire only if all it’s input places have at least as many tokens as specified in the input
arcs that link them to the transition. The weigh function of the arcs has the same effect
as multiple arcs between the same place and transition. In Figure 4.2 a P/T net is shown
before and after one of its transitions fires.

4.3. Reference Nets

Reference nets [Kum02] are high level petri nets that can contain objects or other nets
within their places as tokens. In high level petri nets, tokens are distinguishable. Refer-
ence nets use reference semantics as their tokens can have a data type and can be refer-
ences to other nets. The net where the referencing token is contained is called the system
net while the net referenced from the token is called the object net. The object net can itself
contain tokens that refer to other nets. This “nets within nets” [Val95] paradigm makes
reference nets very interesting as it allows hierarchical structures and modular design for
large and complex systems. Reference nets are closely related to Renew [KWDO01]. Re-
new is a reference net editor. It combines the “net within net” paradigm with the Java
language and its object-oriented approach. Reference nets are instantiated like classes are
instantiated in object-oriented languages. The structure, initial marking and behavior of
instances of reference nets is specified in net templates.

37

Chapter 4. Petri Nets, Renew and Mulan

4.3.1. Reference Net Elements in Renew

Compared to P/T nets, reference nets not only have other types of tokens but also ad-
ditional inscriptions, the possibility to instantiate nets and a close affiliation to the Java
programming language.

The tokens in reference nets can be of any type available in the Java programming lan-
guage. Thus, tokens can be any kind of objects. Additionally, anonymous tokens (equal
to tokens in P/T nets) are also available. They are represented in Renew through square
brackets “[]”. Besides, in reference nets, a list of data values of different types, objects as
well as primitives, can be specified as a token. Such tokens are represented by a tuple of
the form “[object,int,..]”.

Reference nets have several inscription types including arc, place and transition inscrip-
tions. Arc inscriptions can be variables or constants. Additionally, output arcs can have
expressions as inscriptions. Place inscriptions can represent tokens as well as define the
place type. If a place is typed it means that only tokens that have the type ascribed to the
place can be contained within the place. Transitions can have a range of inscription types
including guard, action, expression, creation or synchronous channel inscriptions. Guards are
boolean expressions that have to be true so that the transition can fire. Beyond guards
resulting to true, in order to fire a transition all its input places have to contain a sufficient
number of tokens from the type specified in the arc inscriptions. Expressions are evalu-
ated before the firing of the transition while actions are expressions that are evaluated
during the firing.

Reference nets are object oriented nets. They are objects of the class NetInstance. In fact,
creation inscriptions are used to create new net instances. Net instances are instances
of net templates. The relation between net instances and net templates is similar to the
relation between objects and their classes in object-oriented programming languages. Net
templates are similar to classes. They define the initial marking and the behavior of their
net instances. Net instances have the same behavior as defined in their net template, but
they have different identities and, at a specified time, their states, represented through
their markings, can be different. In a reference net, tokens that represent nets reference in
fact net instances. A net instance can also create other net instances.

Synchronous channel inscriptions represent synchronous communication channels which
enable communication between net instances. Synchronous channel inscriptions consist
of two types of inscriptions, up-links and down-links. Up-links are used in object nets while
down-links in system nets. Synchronous channels between reference net instances are
specified in [CH92]. They consist of at least two transitions where one of the transitions
is seen as the initiator of the communication having a down-link inscription. Transitions
can have only one down-link but they can have many up-links. The transitions involved
in a synchronous channel fire simultaneously as soon as all of them are activated. Com-
munication with synchronous channels is bidirectional and is achieved through passing
objects as channel parameters between the involved transitions.

38

Chapter 4. Petri Nets, Renew and Mulan

Reference nets have some additional arc types as shown in Figure 4.3. They are test
arcs, reserve arcs and flexible input and output arcs. Test arcs and reserve arcs are very
similar. Reserve arcs behave equally to two opposite unidirectional arcs connecting the
same place and transition. Reserve arcs take a token from the place and put it back again
during the firing process of the transition. Test arcs do not take the token away so other
test arcs can have simultaneous access to the same token. Simultaneous access to tokens
is not possible with reserve arcs. Flexible input arcs are used to remove all the objects of
a Collection object within a place. A flexible output arc puts all the elements of a Collection
object in a place.

Test Arc Reserve Arc Flexible Input and Output Arcs

o

Figure 4.3.: Additional arcs in reference nets.

Virtual places are also elements specific to reference nets. A virtual place represents one
original place in the net. To have an arc to a virtual place would have the same effect as
having an arc to its original place. If an arc removed a token from a virtual place than
this token would not be even in the original place anymore. Virtual places are elements
intended to further simplify modeling reference nets. Graphically, they are represented
as a place surrounded by a double line as shown in Figure 4.4.

O0—O0 oO—{

tl pl virtual p1 t3

Figure 4.4.: Virtual place.

Declaration nodes are a special kind of inscription used in reference nets. They are used
to declare Java variables used in the reference nets or to import needed Java classes. A
reference net is allowed to have mostly one declaration node.

4.4. Renew

Renew [KWDO01] is a graphical tool for creating, editing and simulating reference nets.
Renew is implemented in Java. It unites the advantages of the object oriented paradigm
and the “nets within nets” approach in reference nets. In Renew, the behavior and the
initial marking of reference nets is specified through net templates. Net templates corre-
spond to classes in object oriented languages. All net instances of a net template have the

39

Chapter 4. Petri Nets, Renew and Mulan

same behavior. Nevertheless, net instances can have different states at a specified time.

Net templates are created (drawn) in graphical files with the Renew Editor. Net instances
are created during the simulation process.

4.4.1. Renew Editor

Designers work with Renew mainly through editing net templates. This is similar to pro-
grammers editing classes (not objects) in object oriented languages. Net templates are
created with the Renew editor in graphical files (.rnw). The editor offers features that
facilitate the creation of net templates. The editor’s graphical user interface as shown in
Figure 4.5 is composed of a range of icons and a status bar. The first row of icons repre-
sent visual features that can be added to the net template to make the nets more readable
to designers/programmers that work with them. These features have no formal mean-
ing for the nets and are ignored during simulation. The second row of icons represent
features with which formal net elements (places, transitions, arcs, tokens, inscriptions)
can be created or edited. Net elements can also be dragged, selected or edited only with
mouse actions on them, without clicking on the feature icons.

#% Reference Net Workshop

File Edit Layout Attributes Pluging Met Simulation Tools Help

hE|o o|e|A|N S| R|m|AA
| m® O/ NN /% ind

Selection Tool

Figure 4.5.: Renew editor GUL

4.4.2. Renew Simulator

In Renew, reference nets can be created as “shadow net system” files (.sns) or as graphical
files (.rnw). Shadow nets are used for simulation and are basically an abstraction of the
graphical nets. Shadow nets strip all unnecessary information such as color, position of
net elements and leave only the needed information for use in the simulation. A graphical
file can be compiled in Java. After compilation of the graphical file a simulation can be
started. During the simulation, a net instance is created and can be viewed in a separate
window as its active transitions fire. Simulation is used in Renew to view firing sequences
of active transitions in reference nets. Simulation can run in a one step modus where users
can progress in steps where only one transition fires. Renew also offers the possibility to
set breakpoints to hold the simulation process. Breakpoints can be set to places as well as

to transitions. By changing the compiler, Renew can also simulate P/T nets, timed petri
nets, boolean nets, etc.

40

Chapter 4. Petri Nets, Renew and Mulan

4.4.3. Renew Plug-In Architecture

Renew is built on a plug-in architecture since version 1.7. The Renew plug-in architecture,
which was developed and introduced in [Sch03], allows the extension of Renew with
additional functionality through the use of interfaces from Renew components without
changing the core of Renew. Additional functionality can be added to Renew through
providing the classes of the new plug-in. This means to literally add the Java archive of
the classes to the “plugins” folder inside the Renew application folder structure. Plug-ins
can not be included after Renew has started. The Java archive has to be present in the
“plugins” folder at the start of Renew.

In this work, the plug-in architecture of Renew is used to deliver an editor for organiza-
tion and R/D nets. It is also used for the development of a tool which is able to deploy
SONAR formal organizations to Mulan agent organizations. The organization editor is
described in detail in Chapter 6, while the deployment tool is described in Chapter 7.

4.5. Mulan

Mulan [KMRO1] is a reference architecture for multi-agent systems. Mulan is built on
reference nets complying to the “nets within nets” paradigm and includes four layers.
Each Mulan layer is a reference net embedded within the upper layer (reference net) as
tokens. The layers communicate with each other through synchronous channels. In cite-
Duvigneau(2, an agent platform called CAPA has been developed which extends Mulan
so that it complies to the open specifications of FIPA (Foundation for Intelligent Physical
Agents) [FIP03].

In Figure 4.6, a simplified model of the four layers is displayed. The first layer is the
multi-agent network where the places represent locations in which multi-agent platforms
can reside as tokens. The transitions represent communication paths between the loca-
tions. The multi-agent system net layer shown in Figure 4.6 is only a simple example of
how the system net layer can look like. Depending on the locations and the number of
platforms the reference net representing this layer can be different.

The second layer specifies the agent platforms. Platforms represent a physical environ-
ment where agents are embedded. They can hold many agents and can manage their
lifecycles through creation of new agents or destruction of existing ones. Platforms offer
internal or external communication paths for their agents. Internal paths are used when
agents residing on the same platform need to communicate. External communication
paths are used for cross-platform communication between agents. The platform contains
several components including the agent management system (AMS) and the directory
facilitator (DF). An AMS is a mandatory component of the platform. A platform has to
contain only one AMS. The AMS is responsible for managing the creation of agents, the
deletion of agents and for overseeing the migration of agents. Additionally, an AMS can

41

Chapter 4. Petri Nets, Renew and Mulan

Z/0_ Om agent platform
multi agent system i ~

/
i platforms @
o)

communication
structure

- internal communication

©4 .
/
agent "
N
protocol 4 \
\
out . \
in
start subcall process stop

Figure 4.6.: Mulan architecture ((KMRO1]).

be queried to obtain a description of its platform. The DF is also a mandatory compo-
nent. However, a platform can have many different DF-s. A DF provides a yellow pages
directory service to agents. Every agent within the platform that needs to make its ser-
vices public to other agents, should find an appropriate DF of the platform and request
the registration of its agent description. Agents that need to find other agents which offer
specific services can search the DF. Both AMS and DF are part of the FIPA open specifi-
cations. In Mulan/CAPA, they are implemented as agents existing within the platform
that they serve.

4.5.1. Mulan Agents

The third layer showed in Figure 4.6 is a simplified version of the agent layer. All Mulan
Agents have the same structure as shown in Figure 4.6. Mulan agents reside on plat-
forms. One place of a platform holds all the agents of that platform. Mulan agents can
receive or send messages to other agents over the platforms in which they are situated.
The incoming and outgoing synchronous channels of the agent provide this functional-
ity. Mulan agents communicate in ACL (Agent Communication Language) messages as
specified in FIPA. The content of the messages is encoded in SLO(Semantic Language,
Level 0) [FIP02]. All the information in ACL messages and in the SL content is contained
in two basic types of data structures, key-value tuples (KVT) and value tuples (VT). A
KVT can have many key-value pairs. A VT is a tuple containing many values. KVT-s

42

Chapter 4. Petri Nets, Renew and Mulan

and VT-s also have a special name which represents the type of the tuple. KVT-s an VT-s
are specified in FIPA. For Mulan, they are implemented in CAPA. Below, an example is
given showing the string representation of a KVT. The type of the tuple is specified by

the special name “inform”. The keys are preceded by a colon (“sender”, “receiver”, etc.)
and are followed by the corresponding value.

(inform
:sender (agent-identifier ...)
:receiver (agent-identifier ...)
:content " ((lasttaskfinished))"
:language FIPA-SLO)

Agents handle their communication with other agents through Mulan protocol nets. Mu-
lan protocol nets, which are also reference nets, define the behavior of the agent during
communication. The protocol nets are all contained within a place in the agent reference
net. Agents manage the lifecycles of their protocol nets by creating or destroying them.

Mulan agents also have to make decisions on how to act or how to reach their goals.
Storing and searching knowledge is important to achieve this. The knowledge of Mulan
agents is stored in their knowledge base. The knowledge base of Mulan agents is also a
reference net and is shown (simplified) in Figure 4.7. The knowledge base reference net
provides functionality for its Mulan agent to store or search information as key value
tuples. The structure of the knowledge base reference net is simple. The white elements
in Figure 4.7 initialize the knowledge base before it can be used. Initialization of the
knowledge base means that a file (with the ending .wis) where the initial information
is stored, is read and a hash table with key value tuples is created. A reference to the
hash table is placed then to the Knowledge place in the reference net. After initialization
the knowledge base can be searched or modified through the synchronous channels such
as “exists(..,..),, “new(..,..)", “modify(..,..)", etc. The knowledge base is typically used to
store property values or match received messages from other agents to specific Mulan
protocols. Thus, the knowledge base plays a crucial role in determining the behavior of
the Mulan agent.

Mulan agents can be reactive or proactive. When they receive a message from the other
agents they act reactively. First it is checked if the message belongs to an active conver-
sation. If this is not the case the protocol factory, which is responsible for initializing
protocol Mulan instances, initializes a new Mulan protocol instance after it consults the
knowledge base. The new protocol instance is put then in the conversations place where
it can begin the conversation with the sender agent. Responses from the Mulan protocol
instances used in an agent conversation are then passed through the out transition to the
outgoing synchronous channel where they are finally sent to the sender agent. Mulan
agents can also be proactive by initializing protocol instances and starting conversations
by themselves.

43

Chapter 4. Petri Nets, Renew and Mulan

:start(ald,Inh)

WBHelper.str2Hash(Inh)

:new(key,value)
action k.put(key,value)

:exists(key,bool)
bool=k.containsKey(key)

Knowledge

:modify(question,answer) D_k_,Q_k_D :ask(question,answer)

: : guard k.containsKey(question)
guard k.containsKey(question) Knowledge answer=k get(question)
answer=k.get(question)

Figure 4.7.: Knowledge base of agents.

4.5.2. Mulan Protocols

The fourth layer of Mulan represents Mulan protocols. Mulan protocols are also reference
nets and define the behavior of the agents during the communication with other agents.
In Figure 4.6, only a very simple example of the structure of a protocol is shown. Mu-
lan protocols are typically more complex. During the communication of Mulan agents
messages are actually exchanged between Mulan protocols. Mulan agents put some ad-
ditional infrastructure information and pass the messages of their Mulan protocols to
their platforms. Mulan agents control their behavior through choosing the “right” Mu-
lan protocols for given situations by consulting their knowledge base. Mulan protocols
control the conversation during their processing until they pass the control to other pro-
tocols or they finish processing. Mulan protocols determine how a message it receives is
processed, what messages to send to other Mulan agents and how to change the knowl-
edge of the Mulan agent on behalf of which it processes the message. Mulan protocols
do not belong to specific Mulan agents. Rather, they can be initialized and started by any
agent that can estimate their use as appropriate. Building agent applications in Mulan
means that programmers most of the time create Mulan protocols and knowledge base
files. In [Cab03], standard components for Mulan protocols were developed. The use of
standard components in Mulan protocols for tasks occurring repeatedly makes the pro-
tocols more readable and understandable. In Figure 4.8, the standard components for
sending and receiving messages as well as the components for branching and iteration
over a collection are exemplary shown. Such standard components are also used in this
work for the development of Mulan protocols.

44

Chapter 4. Petri Nets, Renew and Mulan

@-p’@—g Perf2

[fromAgent] [toAgen(]
:out(p2)
in(p)
P
P D/@
action p2=Sl0Creator.createActionRequest(
aid,
[comment] ‘content”)
[comment]
(a) Receive a message. (b) Send a message.

[true]

Object

action 0 =
it.next();

cond =
it.hasNext();

[false]

(c) Branching. (d) Iteration over a collection.

Figure 4.8.: Some standard components of Mulan protocols.

4.6. Summary

Petri nets represent a mathematical formalism for the description and specification of
concurrent processes or systems. The petri net formalism has been widely adopted and
further developed as a modeling and specification tool for concurrent systems since it
was first proposed. A subclass of petri nets are P/T Nets. P/T nets are low level petri
nets. The main characteristic of low level petri nets is that their tokens are undistinguish-
able which means that one token is identical to every other token in the net. In P/T nets,
places can have capacities and arcs can have weights. The firing prerequisites of a tran-
sition in P/T nets depend on the weights of its input arcs and on the distribution of the
tokens in the transition’s input places. Reference nets are high level petri nets that can
contain objects or other nets within their places as tokens. In high level petri nets tokens
are distinguishable. Reference nets can particularly contain other reference nets as their
tokens. This "nets within nets” paradigm allows the development of modular systems.
Reference nets can also be instantiated similar to how classes can be instantiated with

45

Chapter 4. Petri Nets, Renew and Mulan

objects in object oriented programming. Reference nets are closely related to Renew. Re-
new is a reference net editor. It combines the “net within net” paradigm with the Java
language and Java’s object-oriented approach. Reference nets have some additional net
elements when compared to low level petri nets such as P/T nets. These additional el-
ements include arc inscriptions, transition inscriptions, virtual places, test arcs, reserve
arcs and flexible arcs.

Mulan [KMRO01] is a reference architecture for multi-agent systems. Mulan is build on
reference nets complying to the “nets within nets” paradigm and includes four layers.
The multi-agent network layer, the platform layer, the agent layer and the protocol layer.
In Mulan, agents interact with each other through their protocols. They decide which
protocols to involve during conversation with other agents. A protocol message does not
go directly to the receiving protocol but is first passed to the agent on behalf of which
the protocol is used. The agent passes the message to its platform (second layer) which
passes the message to the receiving agent if it is situated on the same platform. The
receiving agent passes the message to the receiving protocol. If the communicating agents
are situated on different platforms the messages pass additionally through the first layer
before getting to the receiving agent/protocol.

46

Chapter 5.
Models of Multi-Agent Organizations

One of the main requirements on multi-agent systems is the adaptability of its structure.
Such a requirement becomes central if the multi-agent system is situated in a dynamic or
unstable environment. Modeling and designing the structure of a multi-agent organiza-
tion through powerful formalisms is a central issue. In this chapter some of the models
will be presented. Finally, SONAR, a formal model of Multi-agent organizations intro-
duced in [K6h06] will be described in detail. SONAR is the reference model used in this
work.

5.1. Some Organization Models

In this section four organization models will be introduced. The models chosen to be pre-
sented here are not representative of all existing multi-agent organization models. Never-
theless, they delineate important aspects and dimensions in modeling multi-agent orga-
nizations [LJO05]. The models covered here are AGR, MOISE™, AUML, and ISLAND.

5.1.1. AGR

In AGR (Agent, Group, Role) [FGMO03], the basic concepts around which an organization
is structured, as its name suggests, are roles, groups, and agents. An agent in AGR is an
active, communicating entity that can play multiple roles within one or more groups.
Agents in AGR have no constraints on their architecture or on their mental capabilities.
Groups serve to partition the organization. A group is a set of agents that share common
characteristics. Agents can communicate with each other only if they belong to the same
group. Roles are requested by agents and are local to groups. Many agents can play the
same role. Roles are an abstract representation of the functional position of an agent in
a group. The organizational structure in AGR is what persists when agents enter or leave
the organization. The organizational structure involves two aspects: a structural aspect
and a dynamic aspect. The structural aspect consists of the partitioning structure and of
the role structure. The partitioning structure defines how agents are assembled to groups
and how groups are related to each other. The role structure defines the set of roles for

47

Chapter 5. Models of Multi-Agent Organizations

each group and relationships between roles in the group. The role structure also defines
the constraints that the agents should satisfy to play a specific role. The dynamic aspect
is related to the interaction patterns defined within roles and specifies the modalities of
creating, killing, entering a group and playing roles. In AGR there are two structural
constraints between roles: correspondence and dependence. A correspondence constraint
expresses that agents that play one role automatically play another role. Dependence
constraints specify dependencies between group membership and role playing.

In AGR, the organizational structure is represented graphically by group structures (the
white boxes in Figure 5.1) which contain roles represented by hexagons and interaction
diagrams represented by rounded rectangles. In Figure 5.1 an example of the graphical
representation of the organizational structure in AGR is shown. The interaction rectan-
gles I3 and I4 represent communication (on an abstract level) between the agents that
play the roles R3, R4 and R5. The dependency d2 expresses that all agents that play R4
must play Rb5.

Figure 5.1.: AGR organizational structure representation ([FGMO03]).

Another type of diagram, called organizational sequence diagram, is used in AGR to de-
scribe the dynamic organizational activities such as creating, entering or leaving a group,
the acquisition of a role in a relation, etc. The organizational sequence diagram is a vari-
ant of AUML (Agent UML) [POO01].

5.1.2. MOISE"

MOISE* (Model of Organization for multl-agent SystEms) [HSB02] is an approach where
the structural (role, links, groups etc.), the functional (goal, plans, etc.) and the deontic
(norms, laws, etc.) aspects of the organization are clearly distinguished and integrated
in a single model. The structural aspect in MOISE™ defines the agents’ relations through
the notions of roles and links. It also includes concepts such as role inheritance, recursive
groups, role compatibility and role cardinality. The former two notions have a specifi-
cation purpose while the latter two constrain the role adoption by an agent according to
its current roles. The functional aspect describes how a multi-agent system achieves its

48

Chapter 5. Models of Multi-Agent Organizations

Groupl Group?2.
Creation of
Rolel | Role2 | Role3 anew group
Megssages

N Entering

] a group
NON |

Playing a (;%;;;3\
new role
\ T I}é]e4. \?nleﬁ.
G SRRy I
= g

oD t:w

Leaving a role

t

Figure 5.2.: AGR organizational sequence diagram ([FGMO3]).

global goals, how these goals are decomposed (by plans) and distributed to the agents
(by missions). In the functional aspect in MOISE™ the concept of a global plan, called
social scheme, and the definition of preferences between missions are included. A social
scheme is a goal decomposition tree where its root is the social scheme goal and where the
responsibilities for the sub-goals are distributed along missions. The deontic aspect de-
scribes the roles” permissions and obligations for missions. A permission(p, m,tc) states
that an agent playing the role p is allowed to commit to the mission m and tc is a time
constraint on the permission. The time constraint ¢c specifies a set of time periods during
which the permission is valid. An obligation(p, m,tc) states that an agent playing p ought
to commit to m during the time periods in tc. Permissions and obligations assign roles
to missions (collection of goals). By doing so, they can be viewed as a sort of interaction
protocols.

In Figure 5.3, a structural model on an example of a soccer team is displayed. Compared
to the structural aspect of AGR in MOISE™, additional concepts can be found such as
abstract roles, inheritance and composition between roles, as well as communication and
authority links. In Figure 5.4, the social scheme of the soccer team example is depicted.

5.1.3. AUML

AUML (Agent Unified Modeling Language) [POO01] is an extension of UML [OMG99]
developed to model agents and agent based systems. In AUML, the structural aspect
of organizations within a multi-agent system builds on the concepts of agents, roles and
groups and is based on AALAADIN [FG98] with extensions from dependency theory
and holonics. Roles are here not ontologically primitive but are defined as recurring
patterns of dependencies and actions. The definition of a group includes not only a set of
agents but also the environment through which they interact. Groups can interact with

49

Chapter 5. Models of Multi-Agent Organizations

com A

aut

p|aye|' acq coach

1.2

aut

middle

Y 44
- (_ attacker):

\:\
3.3

attack

1.1
-
t eam

R

links intra-group inter-group

inheritance: ————————>

" min..max acq ERRREE
composition: ——— >

com @

sub-groups scope: ® o
-~ wt
L group Abs Role compat p LN

Figure 5.3.: MOISE™ structural specification of a soccer team ([HSB02]).

m7
90 8
/’\ goal description
g2 ml g3 rgﬁ g4 '24'5 go score a soccer-goal
7 : : g2 the ball is in the middle field
g3 the ball is in the attack field
g4 the ball was kicked to the opponent’s goal
g6 a teammate has the ball in the defense field
m4 m5 g7 the ball was passed to a left middle
910 925 gs the ball was passed to a right middle
gg the ball was passed to a middle
gio —
ml m1,2,3 m4,5 m3 g11 amiddle passed the ball to an attacker
7 _gl4 921 g22 g1z amiddle has the ball
g1a the attacker is in good position
gie aleft middle has the ball
gi17 aright middle has the ball
m2 \'m3 m \m5 g18 aleft attacker is in a good position
g16 gl7 g18 g19 g19 aright attacker is in a good position

g21 aleft middle passed the ball to a left attacker

5 g22 aright middle passed the ball to a right attacker

S m|55|0n5 A /\ N goa @ left attacker kicked the ball to the opponent’s goal

;‘% go success rate g2s aright attacker kicked the ball to the opponent’s goal

sequence choice parallelism

Figure 5.4.: MOISE™ social scheme of soccer team ([HSB02]).

each other through identified members. In the case of unanalyzed groups, groups are
also permitted to occupy roles in higher-level groups by building holonic structures. In
Figure 5.5, the class diagram represents the AUML meta-model. It depicts a consolidated
view on the relationship between agents, roles and groups.

50

Chapter 5. Models of Multi-Agent Organizations

Interaction Action
Protocol Dependency

— dependent
- provider

= originator
— recipient

played by
Role consists of 1_* Agent
1.7 represented [
employs via f E
) * Atomic
Environment 40 Group Agent
H

supported by

Figure 5.5.: AUML meta-model ([PO01]).

In [PO01], AUML is explained by an example of a terrorist organization engaged in arm
deals with the weapon cartel and in terrorist activities in the western societies. The terror-
ist organization, the weapon cartel and the western societies are modeled as groups. The
example includes: the operative and the ringleader as roles within the terrorist organiza-
tion; the customer, the supplier and the negotiator as roles within the weapon cartel; the
citizen and student as roles in the western society. In Figure 5.6, a class diagram depicts
the roles from the weapon cartel group and their relationships in the example.

Weapons
Cartel
% deals with 1 orders from .
/Customer il /Negotiator |- il /Supplier
* | * |

delivers to

Figure 5.6.: A class diagram depicting the role relationships in the weapon cartel group
([POO1]).

Class diagrams model entities in the system and their relationships. Modeling the inter-
actions that occur between these entities is represented using an extended UML sequence
diagram as shown in Figure 5.7.

The box surrounding the sequence diagram indicates that the interaction can be viewed
as a unit called package. The diamond shaped symbol is an extension of the sequence

51

Chapter 5. Models of Multi-Agent Organizations

Interaction protocol for weapons
procurement negotiation

/Customer /Negotiator /Supplier

i request for guns

request denied <>

request accepted

it m—

pay money order guns

deliver guns

———— I —

Figure 5.7.: A sequence diagram for weapons procurement ([PO01]).

diagram and represents a decision. For more AUML extensions to the sequence diagram
see [OPB00].

5.1.4. ISLANDER

ISLANDER is a declarative language for specifying electronic institutions [EPS01]. In
ISLANDER, an electronic institution consists of: a dialogical framework, scenes, the perfor-
mative structure and norms. The dialogic framework specifies the ontology, the content-
language which has to be PROLOG, KIF, or LISP, and the valid illocutions that agents
can exchange with each other. The intention is to enable knowledge exchange between
agents using the vocabulary of the ontology. The statements composed by the agents in
the content-language are embedded in illocutionaly particles in accordance with the speech
act theory. The dialogic framework also specifies the roles involved as well as the role re-
lationships. Roles define patterns of behavior that the agents are required to adopt if they
need to communicate. There are two types of roles: internal roles and external roles. The
internal roles represent roles that can be played only by staff agents of the institution. Ex-
ternal roles can be played only by agents external to the institution. Finally, the dialogic
framework specifies the relationships between roles through its social structure.

The activities in electronic institutions are the composition of multiple, eventually con-
current, dialogic actions which involve different groups of agents playing different roles.
For each activity, interaction between agents is specified by scenes following well-defined
communication protocols. A scene models a dialogic activity. It is a directed graph where
nodes represent the different states of conversation and the directed arcs are labeled with
illocution schemes or with timeouts. A communication protocol of a scene describes the
possible dialogic interactions between roles. The number of agents that play a specific

52

Chapter 5. Models of Multi-Agent Organizations

role in a communication protocol may vary dynamically so communication protocols
define a set of access and exit states for each of the roles.

The performative structure specifies the relationships among scenes. While a scene models
a dialogic activity, more complex activities involving many dialogic activities that are
related to each other can be modeled by performative structures. In a performative struc-
ture agents can navigate from scene to scene constrained by the rules specifying the rela-
tionship between the scenes. Moreover, the same agent can participate in different scenes
at the same time. The connections between the scenes define which agents can move
from one scene to another depending on their role. The norms of an electronic institution
define the commitments, obligations and rights of participating agents. The activation
of a norm depends on the values of variables in the uttered illocutions of an agent. For
instance, in an auction scenario, a norm is specified that states that if a buyer submits a
bid which exceeds his credit possibilities, the auctioneer is obliged to sanction him.

5.2. SONAR, a Formal Model of Organizations

SONAR [K6h06] is a petri net model which is used to define formal organizations. A for-
mal organization is the name for the combination of organization structure and organi-
zational services in a multi-agent system [K6h06]. Members of the multi-agent systems
are not included in the formal organization. To introduce the petri net model of formal
organizations, an example of a market place is given in [K6h06]. A market scenario is
modeled with petri nets (Figures 5.8a, 5.8b). However, to explain the example, some
additional definitions are needed.

A causal net is a finitely branching petri net N = (P, T, F') where the transitive closure F'*
isacyclicand |*p| <1, [p®| < 1 are true forall p € P.

Foraset A C PUT, *Ais defined as *A := |J,c4 *a and A® := [J,c4a®. The min-
imal nodes are defined as °N := {x € PUT |*x = 0}, the maximal nodes as N° :=
{re PUT|2* =0}

The market place example involves the roles producer and consumer. In the two Figures
5.8a and 5.8b two aspects are shown. The first figure represents the formation process of
the team producer-consumer. The second represents the task delegation process within
the team producer-consumer. During team formation, m agents A, ..., A,, that are able
to produce and n Agents By, ..., B, that are able to consume are involved. In Figure 5.8a
the agents are modeled as transitions and roles as places. Each role can have several pos-
sible applications represented by multiple tokens that p; and py can have. The multiple
tokens in a role place, are put there from the firing processes of the (transitions) agents
that want to participate as producers or consumers. When the transition form team fires
it assigns one of the applying agents to the producer role and one to the consumer role.
The team formation process is represented in the petri net model of the marketplace ex-
ample. There are m - n possible firings from the agents A; to p; and from the agents B;

53

Chapter 5. Models of Multi-Agent Organizations

to p2 which represent the m - n possible combinations of producer and consumer. A (¢, p)
arc describes the possible application for a role and a (p, t) arc describes the assignment
of roles to tasks. While all roles in the preset of a task are needed for the team formation,
the agents in the preset of a role are all alternative applications of the role.

(b) Task execution within the team.

Figure 5.8.: Team formation and task execution ([K6h06]).

After the team formation process, the execution of tasks within the team has to be con-
sidered. This scenario involves task division and the delegation of subtasks within the
team. In Figure 5.8b, this case is modeled again as a petri net. Here, the structure of the
net is the same as the structure of the team formation net except for the arcs, which are
reversed. The agents that are chosen to participate as producers or consumers are repre-
sented by filled transitions. The places in the postset of a task represent the roles needed
to execute the task. All roles in the postset of tasks participate in the execution of the
tasks. The tasks in the postset of a role represent the assignment of the role to alternative
tasks.

Both perspectives, the team formation as well as the task execution require the same
team structure. Thus, it is enough to consider only one as it is done in [K6h06] where
only the delegation perspective is viewed. Using petri nets the formalization of the agent
interaction services, the agent teams and the organization structure will follow.

54

Chapter 5. Models of Multi-Agent Organizations

5.2.1. Service Nets

Organizational services are represented in [K6h06] through service nets. Service nets are
petri net models that specify how agents interact with each other. Nevertheless, service
nets abstract from the agents and describe interaction between roles. Roles can be viewed
as similar to types in object orienting languages. They describe the agents behavior in a
multi-agent system. All agents that acquire a specific role have to comply to the role’s
constraints and fulfill the requirements set by the role. Defining interaction protocols be-
tween roles makes such protocols independent of the agents that are assigned to the role.
In the example service net given in [K6h06] (Figure 5.9a) the roles producer and consumer
interact with each other. After firing the transition called produce the producer sends the
item to the consumer. The consumer fires the receive transition and then the acknowl-
edge transition. Finally, it consumes the item and stops while the producer receives the
acknowledgment and stops.

In [K6h06], R := 279 is defined as the role universe where Rol is a set of roles. Every
R € R is called a role profile. The set operation C defines for R a partial ordering. If
Ri,Ry; € R and R; C Ry then R, is said to be more specialized than R;. Besides, roles in
a service net are assumed to be different from roles in other service nets.

Formally, service nets are defined as a tuple D = (N, r) where N = (P, T, F) is a petri net
and 7 is a function r : " — Rol. The function r assigns a role r(t) € Rol to every transition
t of the net D. This means that the task ¢ is executed only by the agents that implement
the role r(¢). In Figure 5.9a, all transitions assigned to a role are drawn below the role,
creating a vertical line of places and transitions. As it can be seen from Figure 5.9a service
nets are very similar to agent UML (AUML). A role function for the whole service net is
defined as R(D) := r(T). If D is a set of service nets and if for each different pairs
Dy, Dy € Ditis true that R(D1) N R(D3) =), than D is called a service set.

For a service net D and a role profile R C R(D), D can be restricted to D[R] which is
a subnet of D defined as a tuple D[R] = (Pg, Tr, Fr). The subnet is determined by the
nodes Tx := r~!(R) and Py := (*TrUT},) and the arcs linking these nodes. In Figure 5.9a,
the subnet PC[producer] is shown by the filled nodes.

Because every service net in service sets has different roles (from the condition R(D;) N
R(D3) = 0)) every role can be assigned to a service net. Thus, for a service set D each role
R can be assigned to a reference service D(R, D) € D.

For the service nets D1, Dy and the role profiles Ry C R(D;) and Ry C R(D32) the rela-
tion

(D15 R1, Da; Ra))

is defined if D;[R;] and D;[Rs] can replace each other in D; or D; without changing
the behavior. That means that D[R] and D[R] are the same in terms of the input and
output. In [K6h06], an example net named P} is given where the role consumer is refined
(Figure 5.9b) when compared to the consumer of the net PC' (Figure 5.9a). The refined

55

Chapter 5. Models of Multi-Agent Organizations

Producer Consumer
start ()
produce []

start

send [[] [Jreceive

acknowledgment
receive
acknowledge

[] acknowledge

stop

consume

(a) Simple service net, PC.

|
start Consumerl ‘ \ Decision Maker\ Consumer2
produce
(start
item
send O »[] receive

consume
acknowledgment

acknowledge consume

stop stop

(b) Refined service net, PC2.

Figure 5.9.: Simple and refined service nets of producer-consumer ([K6h06]).

consumer in Figure 5.9b involves the role decision maker, consumerl and consumer2. The
decision maker decides which consumer receives the item.

56

Chapter 5. Models of Multi-Agent Organizations

5.2.2. R/D Nets and Teams

R/D nets are petri nets (P, T, F) in which the role profiles are modeled by places and the
tasks by transitions. The preset of a transition should contain exactly one place (|*¢| = 1).
A transition ¢ € T is said to be executive if t* = () and delegative if t* # (). Every place is
labeled by a role profile and the transitions are labeled by service nets.

Formally, a R/D net is a tuple (R, N, D) where:

e N = (P,T,F)isapetrinet with |*¢| =1 forallt € T and p* # 0 forall p € P.

e R: P— R\{0}whereVt €T : Vp,p' €t®* : p#p = R(p)NR(p') = 0.

e D:T —D.
The second condition represents the assignment of role profiles to places where the places
in the postset of a transition should not have intersecting role profiles. The third condition

represents the assignment of service nets to transitions.

A team is an R/D net where the N in the R/D net is a causal net and it has exactly one
place as a minimal node: °N = {po},po € P.

In [K6h06], an example of a R/D net is given (Figure 5.10). For the service net assign-
ments to the transitions the two service nets PC' and PC> specified in the previous ex-
amples are used as a set of services D = {PC, PC>}. The roles used in the example are
Rol = {Prod,Cons, DM, Consl, Cons2}.

In [Koh06], well-formed R/D nets are defined. Well-formed R/D nets have additional
properties which allow some kind of type checking. They are used for the formal analysis
of the structure and behavior of the nets. In well-formed R/D nets, the service net labeled
to a transition as well as the role profiles labeled to places are related to the structure of
the net. In the following, because in R/D nets |*¢| = 1 and there is exactly one place p in
the preset of every transition ¢, the preset of ¢ will be represented by p(t) = °t. Also, the
role profile of p(t) will be represented by R, = R(p(?)).

Now, it can be continued with the definition of well-formed R/D nets as given in [K6h06].
Formally, a well-formed R/D net is an R/D net where for all ¢ € T with ¢* # {):

e Static role compatibility: R(t*) C R(D(t)) and R(D(R,,D))\ R, = R(D(t)) \ R(t*)
e Dynamic role compatibility: (D(R,,D); Ry, R(t*); D(t))).
and for all t € T with ¢* = () the static role compatibility R(p(t)) C R(D(t)).

Thus, for all delegative transitions ¢ the roles R(t*) have to be a subset of R(D(t)) and
all the roles of the service net D(t) different from R(t*) have to be equal to the roles of

57

Chapter 5. Models of Multi-Agent Organizations

the reference service D(R,, D) that are different from R(p(t)). Moreover, the behavior
of R(p(t)) in the reference service D(R(p(t)), D) has to be equal to the behavior of R(t*)
in D(t). For the executive transitions ¢ only the static condition should be fulfilled that
R(p(t)) should be a subset of R(D(t)).

Figure 5.10.: A well-formed R/D net of producer-consumer.

In the example in Figure 5.10 the displayed net is actually a well-formed R/D net. All
of the net’s transitions comply to the conditions described in the above definition. For
the transitions ¢, t2 and t5 the compliance to the conditions of well-formedness will be
shown. These transitions were chosen as they respectively represent a simple delega-
tive transition, an executive transition, and a somewhat more complicated delegative
transition. The reference service for the roles Prod and Cons is D(Prod,D) = PC =
D(Cons,D). For t; R(t}) = {Prod,Cons} and R(D(t1)) = {Prod,Cons}. Besides,
R(D(R(po), D))\ R(pop) = {Prod,Cons}\{Prod,Cons} = 0 = R(D(t1))\R(t}). The
dynamic role condition for #;:

(D(R(po), D); R(po), R(t1); PC)) = (PC;{Prod, Cons},{Prod, Cons}; PC))

is obviously true. For ¢, only the static condition has to be considered as 2 is an executive
transition (t§ = 0).

R(p(t2)) = R(p1) = {Prod} C R(D(t2)) = {Prod,Cons}

58

Chapter 5. Models of Multi-Agent Organizations

For the delegative transition ¢s, to test the static condition, the expressions R(D(t5))\R(2)
and R(D(R(p(ts)), D))\ R(p(ts)) have to be evaluated:

R(D(R(p(t5)), D)\R(p(ts)) = {Prod, Cons}\{Cons} = {Prod}
R(D(t5))\R(t3) = {Prod, DM, Consy,Consa}\{DM, Consy,Consa}
= {Prod}

Thus, it is clear that
R(D(R(p(t5)), D)\R(p(ts)) = R(D(ts5))\R(t5)
For the dynamic condition of ¢5:

(D(R(p(t5)), D); R(p(ts)), R(t3); D(t5))) = (D(R(p2), D); R(p2), R(t3); PC2)
(D(R(p2), D); R(p2), R(t3); PCy)) = (PC; R(p2), R(t3); PCy))

The dynamic condition holds for t5 as R(t2) = {DM,Consy,Consy} in the service net
PCj is a refinement of R(p(t5)) = R(p2) = {Cons}in PC.

5.2.3. Organization Nets

Organization nets [K6h06] is defined as a formalism to represent the organizational struc-
ture. Central to this formalism is the new notion of organizational positions which represent
positions in real organizations. Organization nets involve organizational positions. Orga-
nizational positions are responsible for several tasks and can also delegate tasks to other
organizational positions.

Formally, an organization net is a tuple (N, O) where N is a petrinet N = (P, T, F) and
O is a partition on the set P U T where for all O € O the following is true:

VpeONP :*pCO AP CO (withO = (PUT)\O)
and also
VieONT :*tC O At*CO.

The elements O € O describe the organizational positions previously mentioned. If a task
belongs to an organizational position then all the role profiles that are used by the task
also belong to the organizational position. Additionally, if a role profile represented by
a place belongs to an organizational position then all tasks that use that role profile also
belong to the position. Organizational positions that have no tasks cannot be used by
other organizational positions. Also, organizational positions that have no role profiles
cannot use other organizational positions. These two properties follow from the basic
properties of the organizational positions as specified in the definition of the organization
nets (the proofs can be found in [K5h06]).

Organization nets combined with R/D nets form formal organizations. Formal organiza-
tions are defined as tuples Org = (N, O, R, D) where (N, R, D) is a R/D net and (N, O)

59

Chapter 5. Models of Multi-Agent Organizations

is an organization net. An example of a formal organization is shown in Figure 5.11. In
Figure 5.11, the same R/D net is presented as in Figure 5.10. The gray boxes represent
the organizational positions. As can be seen from Figure 5.11 an organizational position
can implement more than one role/role profiles (O4). Also, an organizational position
can use different service nets to implement a role behavior (O3).

00

rod,Cops
0O1: Prod,Cons
: 1
t
PC
2
Prod) P1 Cons
02: Prod 03: Cons
'
PC L pc2 | ©
p5
Cons1) P3 DM)P4 (cons2
05: DM 06: Cons2
¥ 7 Y g
PC2 PC2
04: Cons,Consl|

Y 3 16
PC pC2

Figure 5.11.: The organization net of producer-consumer ([K6h06]).

Organization nets are similar to organizational charts. As mentioned in [K6h06], organi-
zational charts can be viewed as a special case of organization nets. If all nodes of each
organizational positions in an organization net are merged into one single node, then
the obtained model represents an organization chart. While organization charts only
display delegation structures, organization nets can additionally display information on
execution of the tasks. Information on the execution of the tasks make organization nets
interesting for performance analysis of the organizations that the organization nets rep-
resent.

5.2.4. Task Sequences in Organization Nets

Task sequences [K6h06] in organization nets are called those firing sequence which can fire
a marking m to 0, the empty marking. Firing sequences are represented by the concatena-
tion of the transitions that fire, w € T". Task sequences are dependent on the marking of
the net to be enabled. In the following some basic definitions of specific types of markings
are given according to [K6h06].

60

Chapter 5. Models of Multi-Agent Organizations

Foran R/D net (N, R, D):
e A marking m is called processable if 0 € RS(m).
e A marking m is called strongly processable if all m' € RS(m) are processable.

e (N,R,D) is called (strongly) processable if all of its possible markings are (strongly)
processable.

An important property of R/D nets is that they have linear reachable marking sets. For-
mally, for a R/D net (N, R, D), it is true that:

RS(m1 + m2) = RS(WM) + RS(mg).

This property (s. [Koh06] for proof) allows to consider only markings of the type m = {p}
for some p € P during the analysis of the net.

R/D nets can be converted into context free grammars due to their property |*¢| = 1.
In this context, the different markings generated from the R/D net can be interpreted
as words generated from the grammar. With the set of places of the R/D net P =
{p1,...,pn}, amarking m has a string representation:

a(m) = Agi([’l) . ..Ag;(pn)_

In [K6h06], the context free grammars corresponding to R/D nets are defined. For a R/D
net (N, R,D) with N = (P, T, F) a context free grammar G(N,m) = (X¢g, Vg, Ra, S)
is defined where X¢ = {a;|t € T} are terminals, Vo = {A,|p € P} w{S} are vari-
ables, Rg = {Ayp) — atAp, -~ Ap, 1 t €T,t* = {p1,...,pn}} U{S — a(m)} are the
productions and S is the start variable.

Task sequences can also be expressed through the context free grammars defined above.
Productive variables in such grammars correspond to task sequences. Formally, a variable
A is productive if there exists a terminal string w € X* so that A = *w. A variable A is
reachable if there exist strings «, 3 € (X U V)* such that S = *aAf.

Now, the processability of markings can be expressed using the context free grammars
above and productive variables. The following propositions are true (the proofs can be
found in [K6h06]):

e A marking m is processable iff all A(p) of G(N, m) with m(p) > 0 are productive.

e A marking m is strongly processable iff all reachable variables A(p) of G(IN,m) are
productive.

The transformation of R/D nets to context free grammars facilitates the analysis of for-

mal properties of R/D nets that concern task sequences. Other properties that R/D nets
display are:

61

Chapter 5. Models of Multi-Agent Organizations

1. A marking m is processable if the markings {p} with m(p) > 0 are processable.

2. The processability of a marking m is decidable in O(|N|).

3. The strong processability of a marking m is decidable in O(|N|).

4. If all markings {p} with p € P are processable, then N is strongly processable.
Crucial to the proof of the second and third properties of R/D nets, which can be seen
at [Koh06], are the set of productive variables and the set of reachable variables for a

grammar. Both these sets are constructed inductively. The set of productive variables
PV (G) C V is constructed through:

PW(G) =X (5.1)
PVoi1(G) =PV, (G)U{A eV |I(A—w)e P:we PV,(G)"} (5.2)
The set of reachable variables is given as
RVo(G) = {5} (5.3)
RVy11(G) =RVp,(G)U{B € V|3(A— aBp) e P : Ac RV,(G)} (54)

These sets are used for the implementation of the evaluation of processability or strong
processability of markings which is described in detail in Chapter 6.

5.3. Summary

Recently, an organizational perspective on multi-agent systems has arisen in a number
of research works. In this perspective, the focus of multi-agent systems is shifted from
agents to agent organizations. As a consequence, modeling the structure of multi-agent
organizations is a central issue. Many models of multi-agent organizations exist. In AGR
(Agent, Group, Role), the organizational structure involves two aspects: a structural aspect
and a dynamic aspect. The structural aspect consists of the partitioning structure and of the
role structure. The partitioning structure defines how agents are assembled to groups and
how groups are related to each other. The role structure defines the set of roles for each
group and their relationships in the group. The dynamic aspect is related to the interaction
patterns defined within roles and specifies the modalities of creating, killing, entering a
group and playing roles.

MOISE™ is a model built around the structural (role, links, groups, etc.), as well as the
functional (goal, plans, etc.) and the deontic (norms, laws, etc.) aspects of an organiza-
tion. The functional aspect in MOISE™" includes a global decomposition tree, called the
social scheme, where the responsibilities of the sub-goals are distributed along missions.
The deontic aspect describes the roles” permissions and obligations for missions.

62

Chapter 5. Models of Multi-Agent Organizations

AUML is an extension of UML for modeling agent based systems. The structural aspect
of organizations in AUML is based on AALAADIN and also combines elements from
the dependency theory and holonics. Roles are defined in AUML as recurring patterns
of dependencies and actions. Groups in AUML can interact with each other through
identified members. In the case of unanalyzed groups, they can occupy roles in higher-
level groups by building holonic structures.

ISLANDER is a declarative language for specifying electronic institutions. Electronic
institutions correspond to human institutions which structure human interactions and
enforce norms for all individuals. In ISLANDER an electronic institution consists of: a
dialogical framework, scenes, the performative structure and norms. The activities in elec-
tronic institutions are the composition of multiple, eventually concurrent, dialogic ac-
tions which involve different groups of agents playing different roles. For each activity,
interaction between agents is specified by scenes following well-defined communication
protocols.

Petri nets are used in [K6h06] to build SONAR, a formal model on the organization struc-
ture and on the organizational services in a multi-agent system. SONAR is the model
used in this work. Organization nets are defined in this model as a formalism to represent
the organizational structure. Organization nets are a combination of R/D nets and organi-
zational positions. Organizational positions represent positions in real organizations. Posi-
tions are responsible for several tasks and can also delegate tasks to other organizational
positions. R/D nets are used for task delegation and display most of the formal proper-
ties. Organizational services are represented in this model by service nets. Service nets are
very similar to AUML interaction diagrams. They are petri net models that specify how
agents interact with each other. The formal properties of R/D nets make organization
nets adequate for performance analysis of task sequences within the organization net.

63

Chapter 5. Models of Multi-Agent Organizations

64

Chapter 6.

OREDI, a Tool for Modeling SONAR
Organizations

Building a prototype that can be used to easily create or edit SONAR organization nets
or R/D nets is one of the main goals of this thesis. In this chapter, OREDI (ORganization
EDIor), a tool for building SONAR organization and R/D nets, is presented and an
overview of the design and development process of OREDI is provided. In Section 6.1,
the design process which includes the general requirements for the tool and the concep-
tual solutions adopted is described in detail. The technical realization of OREDI and the
different aspects of its implementation are presented in the section that follows. Finally,
the process of translating OREDI nets into a cross platform standard language like XML
is discussed.

6.1. Specifications and Design

In this section the main requirements for OREDI are first specified. The presentation
of the main solutions follows. The solutions include the specification of service and re-
finement definition nets (Subsection 6.1.3) which support in the development process of
R/D nets, the organization editor (Subsection 6.1.2), the context based suggestion sys-
tem (Subsection 6.1.4) and the evaluation and validation of organization and R/D nets
(Subsection 6.1.5).

6.1.1. General Requirements

In the specification of requirements for OREDI there are some basic aspects that need
to be considered first. The first aspect to be discussed is the future usage area and the
eventual user base of OREDI Basing on assumptions about these topics the specification
of adequate requirements for the tool can follow. The usage area of OREDI will mainly
depend on the usage and popularity of SONAR as an organization model. Being a model
that is visually similar to the widespread organizational charts and additionally covering,

65

Chapter 6. OREDI, a Tool for Modeling SONAR Organizations

among other things, functional, dynamic as well as process evaluation aspects of organi-
zational structures, SONAR can have usage areas that varying from multi-agent system
design and programming to process development and optimization in real world organi-
zations. Thus, one can assume the wide user base, ranging from groups made of people
from academia, graduate and undergraduate students to multi-agent system developers
and various types of managers in real world organizations. Also, OREDI will most cer-
tainly be used as a support tool in the various undergraduate agent-oriented projects of
the Department of Theoretical Foundations of Informatics at the Hamburg University.

As a modeling software OREDI should enable users to use standard operations of graph-
ical and modeling software such as moving, dragging, selecting, resizing, connecting,
cutting and pasting different graphical components of the model as well as restrict inter-
actions that bring the model into a formally not valid state.

Because of the mentioned reasons it is clear that OREDI, apart from offering a graphical
tool with which SONAR organization and R/D nets can be built, should in the first place
support its users into building such nets without explicitly knowing the formal rules of
SONAR. Thus, one of the main requirements for OREDI is supporting users to develop
correct organization and well-formed R/D nets without requiring previous knowledge
of the formal rules of the type of nets they are creating. Users should be able to build
correct organization and well-formed R/D nets at most with the support of few, easy to
remember and intuitive thumb rules.

OREDI should also support some basic evaluation of the nets it can create and should
be able to formally validate the created nets for correctness. Especially, the validation
of the correctness of organization nets and well-formed R/D nets and the evaluation
of task sequences and markings on processability or strong processability as defined in
Subsection 5.2.4 should be supported.

Exchanging and sharing of the nets created with OREDI across platforms or applications
is also a basic requirement that can contribute to the popularity and adoption of SONAR
as an organization model. The availability of the nets created with OREDI in a standard
format is an important step toward interoperability across platforms and applications.
A standard format for the nets would allow other applications reading and parsing the
nets.

Being a prototype implementation, OREDI has at first no specific optimization or per-
formance requirements. The main issue here is to build an application that can deliver
acceptable response times and a normal user experience. Thus, optimization or perfor-
mance will not be in focus of the following discussion.

In the following subsections the main solutions to fulfill the above requirements are pre-
sented and discussed in detail.

66

Chapter 6. OREDI, a Tool for Modeling SONAR Organizations

6.1.2. Modeling Organization and R/D Nets

Building valid SONAR formal organizations is a process which involves the creation of
correct organization nets and the creation of valid and well-formed R/D nets. Following
the policy of restricting user interactions in such a way that we always have a valid formal
state of the whole model can be successful especially in the case of creating or editing
organization nets. A simple set of static user interaction restrictions can ensure that we
always have correct organization nets.

Users of OREDI should be able to create and edit transitions, places, arcs and positions
as the main graphical components of OREDI (s. Figure 6.1). Positions should contain
transitions and arcs formally representing a member of the partition O € O that hold a
subset of the places and transitions. Additionally, the users should have the possibility
to add inscriptions to places, transitions and positions. Initially, to comply to the formal
rules of P/T petri nets, arc connections should take place only between places and tran-
sitions and vice versa. A set of additional restrictions should be added to comply with
the formal rules of organization nets. Transitions and places should exist only within
position components. This rule ensures that there is a partition O on all P UT. Tran-
sitions should connect with unidirectional arcs only to places inside their own position.
The direction of the arcs here should be from the transition to the place. This rule ensures
the compliance to the rule Vt €¢ ONT : *t C O A t* C O for each O € O. Addi-
tionally, places inside a position should connect with unidirectional arcs only to transi-
tions in other positions. This rule ensures that the other formal rule of organization nets
VpeONP :*pCOAp*CO (with O = (PUT)\O) also holds. Consistently main-
taining these restriction rules throughout the whole interaction possibilities (creation of
components, dragging, dropping, moving, deleting, copying and pasting) given to the
users should ensure correct organization nets during their whole development process.
Most importantly, these static restrictions enable users to build correct organization nets
without requiring from them to know or be aware of the formal rules underlying organi-
zation nets.

© m /

Figure 6.1.: Main graphical components for organization nets (from left to right:a place
component, a transition component, an arc, a position component).

Valid R/D nets include rules involving role and service net assignments to places and
transitions as well as a rule that specifies that every transition should have exactly one

67

Chapter 6. OREDI, a Tool for Modeling SONAR Organizations

place in its preset and that every place should have more than one transition in its post-
set.

The rules specifying the number of elements in the preset of transitions or in the postset
of places can be approached in a similar manner as in the organization nets: by restricting
interaction possibilities. The role and service net assignment rules for correct R/D nets,
although trivial, can not be entirely enforced by interaction restrictions. The choice for
the preset or postset of a petri net element lies between a place or a transition, thus it lies
between two elements. The number of choices for what inscription to assign to a petri
net element is potentially much bigger !. Thus, users have to actively input inscription
assignments, either through typing the roles or service net names themselves or through
selecting the roles/service net names from a predefined list.

The inscription assignment process should be the same for the creation of R/D nets as
for well-formed R/D nets, which put additional restrictions to the inscriptions allowed.
Thus, the solution should be a shared one. Assisting users in the inscription assignment
process is important for R/D and well-formed R/D nets as both types of nets have formal
rules that require set operations which are difficult to remember let alone to be calculated
by the users. Assistance in the inscription assignment process is however only possible if
the set of service nets D (s. 5.2.2) and the roles involved in these service nets are known to
OREDIL. These sets have to be predefined before the inscription assignment process can be
supported by OREDI. Moreover, in the case of well-formed R/D nets the set of all known
refinement relationships between different sets of roles have to be known or predefined
as refinement relationships are required in the dynamic condition for well-formed R/D
nets (s. 5.2.2). If the set of the service nets D and the set of existing refinement is known
to ORED], then, it can offer a complete precomputed list of the inscriptions for a place or
transition which would lead to a valid R/D or well-formed R/D net to users. The pre-
computed list of inscriptions suggested to the users can be dynamically generated based
on the place or transition where the users need to assign inscriptions. The only thing
that users need to remember is that every place and transition has to have at least one
inscription in order to obtain a correct R/D or well-formed R/D net. However, they are
completely relieved from the burden of remembering or calculating which inscriptions
lead to correct nets. Context based suggestions (Figure 6.2) can provide the support that
makes the creation of correct and well-formed R/D nets easy and intuitive.

The definitions of the set of service nets and their involved roles as well as the existing
refinement relationships are described in detail in the next subsection. In Subsection 6.1.4,
a detailed description of how suggestions can be generated is given.

As users have the choice of filling all their nets with inscriptions or neglecting to do it,
OREDI has to offer a validation mechanism of the created R/D nets. Additionally, the
evaluation of the processability and strong processability (s. 5.2.4) of markings is offered
as an extra feature for evaluating the performance of the organizations designed with
OREDI. Both the validation of nets and the evaluation of markings are described in detail
in Subsection 6.1.5.

'In fact, |R| or |D|, see Subsection 5.2.2.

68

Chapter 6. OREDI, a Tool for Modeling SONAR Organizations

DM .

(8)[&]

Cons1
Figure 6.2.: Context based suggestions.

6.1.3. Service and Refinement Definition Nets

Service Definition Nets and Refinement Definition Nets are introduced as simple petri nets
with inscriptions that support the creation of correct R/D and well-formed R/D nets.
Service definition nets are used as a replacement for service nets in OREDI as the latter
do not have an adequate tool that supports their creation or editing. Moreover, a sin-
gle service definition net can provide the basic information that OREDI may need from
multiple service nets.

Ser