
Object Petri Nets

Using the Nets-within-Nets Paradigm.

Rüdiger Valk.

revised version from

Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg,
editors, Advances in Petri Nets: Lectures on Concurrency
and Petri Nets, volume 3098 of Lecture Notes in Compu-
ter Science, pages 819-848. Springer-Verlag, Berlin, Hei-
delberg, New York, 2004.

Copyright Springer-Verlag Berlin

Object Petri Nets

Using the Nets-within-Nets Paradigm

Rüdiger Valk

Universität Hamburg, Vogt-Kölln-Str.30, D-22527 Hamburg, Germany
valk@informatik.uni-hamburg.de

Abstract. The nets-within-nets paradigm provides an innovative mod-
elling technique by giving tokens themselves the structure of a Petri net.
These nets, called token nets or object nets, also support the object ori-
ented modelling technique as they may represent real world objects with
a proper dynamical behaviour. Between object nets and the surrounding
net, called system net, various interaction mechanisms exist as well as
between different object nets. This introduction into the field of object
Petri nets starts with small examples and proceeds by giving formal se-
mantics. Some of the examples are modelled within the formalism of the
Renew tool. Finally the differences between reference and two kinds of
value semantics are discussed.

1 Nets within Nets

Tokens in a Petri net place can be interpreted as objects. In place/transition nets
(P/T nets), in most cases these objects represent resources or indicate the state
of control. More complex objects are modelled by typed tokens in coloured Petri
nets. Object-oriented modelling, however, means that software is designed as the
interaction of discrete objects, incorporating both data structure and behaviour
[1]. From a Petri net point of view it is quite natural to represent such objects
by tokens, that are nets again. We denote this approach as the “nets-within-nets
paradigm”.

In many applications objects not only belong to a specific environment but
are also able to switch to a different one. Examples of such objects are agents,
including the classical meaning of persons belonging to a secrete service, as well
as software modules in the context of agent-oriented programming. In Fig. 1a)
the current environment of agent X is denoted as “location A”, which may be
a logical state or a physical site. The arrow represents a possible transition to
location B. A structurally similar situation is given with a mobile computer
switching between “security environments” A and B (Fig. 1b). In Fig. 2a) the
object is a task to be executed on a machine A together with a plan for the exe-
cution procedure. As before, they can move to machine B. Finally, in Fig. 2b) a
workflow is with an employee A, moving to employee B afterwards. Note, that
in all of these examples, also the internal state of the object is changed when

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 819–848, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

820 Rüdiger Valk

agent X
at location A

a) b)

mobile computer X
in security

environment A

?

agent X
at location B

!
pw

?

mobile computer X
in security

environment B

Fig. 1. Moving objects I

task X
to be executed on

machine A

task X
to be executed on

machine B

a) b)

workflow X
with employee A

workflow X
with employee B

Fig. 2. Moving objects II

location A location Bt
^

object X

p

q

Fig. 3. Object system transition with token net

moving to a different location. Abstracting from these examples, we model the
movement or switch of an object X by a transition, which is enabled by the
token “object X”, as shown in Fig. 3. In addition, as the object has a dynamical
behaviour, say alternating states p and q, the token is again a marked net. It is
therefore called a “token net”. A token net is also called object net in distinc-
tion to the system net, to which it belongs. The whole system is then called an
object net system or shortly object system. In Fig. 4 the movement of the net-
token is shown as the firing of transition t̂. Obviously, also the token net can fire
autonomously without being moved (Fig. 5). Both, transport and autonomous
firing can interleave, but are to be considered as concurrent actions. This should
be distinguished from a situation, where these transition occurrences are syn-
chronised, i.e. the object moves if and only if some object net transition occurs.
Such an action may be triggered by the object net, by the system net, or by
both of them. Therefore such a situation is denoted by the neutral term “inter-
action”. Interacting transitions are labelled by a corresponding symbol, such as
〈i〉 in Fig. 6. Finally in this introduction we discuss two different semantics of

Object Petri Nets 821

location A location Bt
^

p

q

location A location Bt
^

p

q

Fig. 4. Transport

location A location Bt̂

p

q

location A location Bt̂

p

q

Fig. 5. Autonomous transition

location A location Bt̂

p

q

location A location Bt̂

p

q

< i >

<i> <i>

< i >

Fig. 6. Interaction

object systems, namely value semantics and reference semantics. The difference
between these semantics becomes obvious when objects (in particular agents)
perform concurrent actions at different locations. A single (human) agent can
execute independent actions using his two hands. To improve conceivability we
prefer to speak of a group of agents, an agency. In Fig. 7 such an agency moves
from location A to locations B and C. This means that one or more members of
the agency are doing so. The abstract net form is given in Fig. 8. The concurrent
behaviour of the agency is represented by transitions, labelled 〈i〉 and 〈j〉. The
question now is, what will be the marking after firing the leftmost transition in
the system net? The proposal in Fig. 9 shows references to the object net from
both of the output places of the transition. This can be interpreted in such a
way, that the members of the agency refer to the same action plan as before, but
from different locations. In the graphical representation dashed arrows are used
to distinguish references from the lines used before for linking the object nets. As
the action plan matches the system net, the concurrent actions labelled 〈i〉 and
〈j〉 can be concurrently executed. Later in this paper we discuss how to define
semantics for the corresponding join of these action sequences. Distributed sys-
tems are characterised by the impossibility of direct access to common data. To

822 Rüdiger Valk

agency
at location A

??? agency
at location B

!!!

agency
at location C

!!!

Fig. 7. Creating distributed agencies

p

q

r

< i >

< i >

< j >

< j >

Fig. 8. Creating distributed object nets

p

q

r

< i >

< i >

< j >

< j >

Fig. 9. Reference semantics

meet this paradigm, value semantics have been introduced. Instead of references
identical copies of the object net are assigned to the output places of the system
net transition. This is similar to call by value in procedure parameter passing.
In the running example, with value semantics, from the marking in Fig. 8 we get

Object Petri Nets 823

p

q

r

< i >

< j >

< i >

< j >

< i >

< j >

Fig. 10. Value semantics

a successor marking as shown in Fig. 10. Note that normal lines are used again
(instead of dashed arrows).

The nets-within-nets concept was first introduced in the nineteen-eighties as
task/flow-nets, [2–4]. Further results have been published in [5], [6] and [7]. The
relation between reference and value semantics is discussed in [8–10]. Reference
semantics are carefully studied in the theses of O. Kummer [11] and F. Wienberg
[12], in particular in the context of the Renew tool [13]. In the thesis of B. Farwer
[14] value semantics is studied within the framework of linear logic (see also
[15–19]). Recent work with applications to distributed agents, mobile systems,
security problems and socionics can be found in [20–24].

Many references connect Petri net models with object orientation [25–52].
These approaches introduce features of object oriented languages into Petri
nets, like classes and inheritance, and partially also refer to the nets-within-nets
paradigm.

2 Elementary Object Systems

We now formally introduce elementary object systems which form a restricted
class of general object systems. We only allow two types (colours) for places,
namely objects from a given set of object nets (which do not contain token-
nets again) and ordinary black tokens. For general object systems more types
are allowed. By this restriction the model remains simple, yet most important
features can be introduced. To alleviate the distinction between system and
object nets the components of the system net will bear a hat: t̂, p̂, P̂ , T̂ , . . . etc.

Definition 1. An elementary object system is a tuple OS =(SN,ONm0 , �,R0)
where SN is the system net, ONm0 is a finite set {(ON1, m

0
1) . . . , (ONk, m0

k)}
of marked object nets, � is the interaction relation and R0 is the initial marking,

824 Rüdiger Valk

which are defined as follows. (The sets of places and transitions of all involved
nets are assumed to be finite and disjoint.)

a) A system net is a Petri net SN = (P̂ , T̂ , Ŵ) where
1. the set P̂ = Pob∪Pbt of places is divided into disjoint sets of object places

Pob and black-token places Pbt, T̂ is the set of transitions,
2. the set of arrows is given as a mapping Ŵ : (P̂ × T̂) ∪ (T̂ × P̂) → IN. For

Ŵ (x, y) > 0 the arrow (x, y) is called an object arrow if {x, y} ∩ Pob �= ∅
and a black-token arrow if {x, y} ∩ Pbt �= ∅.

b) An object net is a P/T net ON i = (Pi, Ti, Wi) (cf. the Appendix)1.

c) � ⊆ T̂ × T is the interaction relation where T :=
k⋃

i=1

Ti.

d) R0 specifies the initial token distribution, where R0 : P̂ → IN ∪ Bag(ON)
with ON := {ON1, . . . , ONk}. It has to satisfy the condition R0(p̂) ∈ IN ⇔
p̂ ∈ Pbt.

 agent FM.1
at location A

 agent FM.3
at location C

 agent FM.2
at location B

location D

water

fire

Fig. 11. Parallel fire extinction by agents

In the example of Fig. 12 an object system OS = (SN,ON , �,R0) is shown,
where ON = {FM.1, FM.2, FM.3}. Black-token arrows of SN can be iden-
tified by their labelling from IN. Hence water is a black-token place, whereas
{A, B, C, D} are object-places. In the initial marking places A, B and C con-
tain the object net FM.1, FM.2 and FM.3, respectively. They have the same
structure and could be generated from a type pattern FM . To keep the formal
definition simple, we start with all instances of such patterns already generated.
The interaction relation is given by corresponding labels in angle brackets:

� = {(refill,a.1), (AtoB,b.1), . . . , (refill,a.2), (AtoB,b.2), . . .}

(the labels are <refill> and <approachFire> in the given cases).
The formal behaviour of this example object system will be defined in the

next section. It is a modification of the well-known fire extinction example of
C. A. Petri [53]: tree agents (or firemen) FM.1, FM.2 and FM.3 are in locations
A, B and C (Fig. 11). The location D is empty. They can change their position

1 It is not very important, which class of Petri nets is chosen for object nets. To keep
definitions simple, we define them as P/T nets (see Appendix).

Object Petri Nets 825

<approachFire> <approachFire>

<retreat> <retreat>

<extinguish>

AtoB BtoC

CtoBBtoA

extinguish

A B

<retreat>

CtoD

DtoC D

fire

ashes

<refill> water

3

C

<approachFire>

refill

fireExtinguished

a.1

b.1

c.1

d.1

q.1

r.1

p.1

<retreat>

<refill>

<approachFire>

<extinguish>

FM.1

a.2

b.2

c.2

d.2

q.2

r.2

p.2

<retreat>

<refill>

<approachFire>

<extinguish>

FM.2

a.3

b.3

c.3

d.3

q.3

r.3

p.3

<retreat>

<refill>

<approachFire>

<extinguish>

FM.3

1

1

1

1

a.2

Fig. 12. Elementary object net for parallel fire extinction

to location A, fill their bucket2 at a water source, go to location D and help
to extinguish the fire. They do this quite independently. In a modification, that
will be shown later, they will coordinate their actions to form a chain, like
in Petri’s setting. To show progress up to termination the amount of water is
quantified by 5 black tokens, whereas the fire can be extinguished in 3 steps by
removing 3 tokens from the place fire. The final marking includes the place
fireExtinguished and the reader is invited to specify the terminal markings,
i.e. where the agents terminate.

3 Reference Semantics of Object Systems

We start by introducing the notion of a marking for object systems under ref-
erence semantics. Recall that by Definition 1 an object system contains a set
ONm0 = {(ON1, m

0
1) . . . , (ONk, m0

k)} of marked object nets. By omitting the
markings we obtain the set of (unmarked) object nets ON = {ON1, . . . , ONk}.
Hence, in general a marking is given by

2 The bucket is not modelled here, but in a version given later.

826 Rüdiger Valk

a) a distribution of object nets or black tokens R : P̂ → IN ∪ Bag(ON) and
b) the vector M = (m1, . . . , mk) with the current marking of each ONi (1 ≤

i ≤ k).

R specifies for each system net place p̂ a number of black tokens (if p̂ is a
black token place) or a multi-set of unmarked object nets (if p̂ is an object place).
Since the elements of ON are unmarked, R can be thought of as a reference to
the object nets. If we abbreviate (m1, . . . , mk) by M and the set of all such
vectors by M we obtain the following Definition 2. By pri(M) we denote the
i-th component mi of M and by Mi→m the tuple, where the i-th component is
substituted by m.

Definition 2. Given an object system OS = (SN,ONm0 , �,R0) we define M
:= {M | M = (m1, . . . , mk)∧mi ∈ Bag(Pi)}. Then a marking of an elementary
object system is a pair (R,M) where M ∈ M and R : P̂ → IN ∪ Bag(ON)
satisfying R(p̂) ∈ IN ⇔ p̂ ∈ Pbt. Specifying M0 by the initial markings of the
marked object nets M0 := (m0

1, . . . , m
0
k) we obtain the initial marking (R0,M0)

of OS.

The occurrence rule for object systems will be introduced in three parts. First
we consider the case when an interaction occurs. In this case we assume that a
system net transition t̂ ∈ T̂ and an object net transition t ∈ Ti of some object
net ONi is activated and both transitions are related by the interaction relation
�. i.e. (t̂, t) ∈ �. This case of the occurrence rule is called an interaction.

Definition 3. (interaction / reference-semantics) Let (R,M) be marking of an
object system OS = (SN,ONm0 , �,R0), t̂ ∈ T̂ a transition of SN , t ∈ Ti a
transition of an object net ON i = (Pi, Ti, Wi) ∈ ON such that (t̂, t) ∈ �. Then
(t̂, t) is activated in (R,M) if:

a) R(p̂) ≥ Ŵ (p̂, t̂)′ONi for all p̂ ∈ •t̂ ∩ Pob
3,

b) R(p̂) ≥ W (p̂, t̂) for all p̂ ∈ • t̂ ∩ Pbt
4 and

c) t is activated in m = pri(M) (see Appendix).

This is denoted by (R,M)[t̂, t〉. Let be m[t〉m′ (w.r.t. ONi, see Appendix). In
this case the successor marking (R′,M′) of OS is defined by

a) R′(p̂) = R(p̂) − Ŵ (p̂, t̂)′ONi + Ŵ (t̂, p̂)′ONi for all p̂ ∈ Pob.
b) R′(p̂) = R(p̂) − W (p̂, t̂) + W (t̂, p̂) for all p̂ ∈ Pbt.
c) M′ = Mi→m′ .

This is denoted by (R,M)[t̂, t〉(R′,M′).

3 Ŵ (p, t)′ONi denotes the multi-set containing one element ONi with multiplicity

Ŵ (p, t). Hence ≥ denotes the superset relation of multi-sets.
4 ≥ denotes the ordering relation of IN.

Object Petri Nets 827

In our running example of OS from Fig. 12 with (R,M) = (R0,M0), t̂ =
refill, ON = FM.1 and t = a.1 we obtain (R,M)[refill, a.1〉(R′,M′) where
R′ = R and M′ = M1→m1 and m1 = {q.1}, i.e. fireman FM.1 fills his bucket.
In a further step (R′,M′)[AtoB, b.1〉(R′′,M′′) a marking (R′′,M′′) is reached
where place B contains two token nets, namely R′′(B) = 1′FM.1+1′FM.2 and
M′′ = ({q.1}, {p.2}, {p.3}). In this step fireman FM.1 approaches the fire by
moving to location B.

If a system net transition is activated without being included in the inter-
action relation, a chosen object net does not change its current marking. As it
changes its location in the system net such an occurrence is called a transport.
The following definition can be seen as the special case of Definition 3 where the
involved object net is not changed, i.e. M′ = M 5.

Definition 4. (transport / reference-semantics) Let (R,M) be a marking of an
object system OS = (SN,ONm0 , �,R0), t̂ ∈ T̂ a transition of SN , such that
t̂ /∈ dom(�) := {t̂1 | ∃t : (t̂1, t) ∈ �}. Then t̂ is activated in (R,M) if there is an
object net ONi such that

a) R(p̂) ≥ Ŵ (p̂, t̂)′ONi for all p̂ ∈ •t̂ ∩ Pob,
b) R(p̂) ≥ W (p̂, t̂) for all p̂ ∈ • t̂ ∩ Pbt

Since we use τ for the empty action, this is denoted by (R,M)[t̂, τ〉. In this case
the successor marking (R′,M′) is defined by

a) R′(p̂) = R(p̂) − Ŵ (p̂, t̂)′ONi + Ŵ (t̂, p̂)′ONi for all p̂ ∈ Pob.
b) R′(p̂) = R(p̂) − W (p̂, t̂) + W (t̂, p̂) for all p̂ ∈ Pbt.
c) M′ = M

This is denoted by (R,M)[t̂, τ〉(R′,M′).

In the example of OS from Fig. 12 there is no transport as all system net
transitions are labelled for interaction. But we can easily modify the example
by deleting all the labels <retreat> in both the system net and all the object
nets. Then we obtain the same behaviour as before since there is no different
possibility to move for the firemen in the corresponding cases (and their marking
did not change anyway). As mentioned in Section 1 object nets may change their
state without moving:
Definition 5. (autonomous action / reference-semantics) Let (R,M) be a
marking of an object system OS = (SN,ONm0 , �,R0) and t ∈ Ti a transi-
tion of an object net ON i = (Pi, Ti, Wi) ∈ R(p̂) for some p̂ ∈ P̂ , such that
t /∈ range(�) := {t1 | ∃t̂ : (t̂, t1) ∈ �} and t is activated in ONi. Then we say
that (τ, t) is activated in (R,M) (denoted (R,M)[τ, t〉). The successor marking
(R′,M′) of OS is defined by

a) R′ = R.
b) M′ = Mi→m′ if m[t〉m′ for pri(M) = m.
5 Definitions 3 and 4 could be easily merged. This is not done to emphasise the dif-

ferences.

828 Rüdiger Valk

This is denoted by (R,M)[τ, t〉(R′,M′).

Definition 6. For the new alphabet Γ := (T̂ ∪ {τ}) × (T ∪ {τ})\(τ, τ), where
(τ, τ) denotes the neutral element of the free monoid Γ ∗, we define:

a) (R,M)[τ, τ〉(R′,M′) if (R,M) = (R′,M′) and
b) (R,M)[w̃(t̂, α)〉(R′,M′) if ∃(R′′,M′′) : (R,M)[w̃〉(R′′,M′′) and

(R′′,M′′)[t̂, α〉(R′,M′) for some w̃ ∈ Γ ∗, t̂ ∈ T̂ ∪ {τ} and α ∈ T ∪ {τ}.

The examples of transition occurrences given before lead to the following
occurrence sequence: (R0,M0)[(refill, a.1), (AtoB, b.1)〉(R′′,M′′).

4 Object Interaction, Object Creation and Renew

In this section we extent the definition of elementary object systems to include
interaction between objects (with respect to reference semantics). Furthermore
we show how these concepts are represented in the Renew tool which includes
the creation of object nets.

4.1 Object Interaction

Interaction between object nets is very similar to interaction of system and
object nets. But there are good reasons to define them separately. Interacting
transitions of different object nets are represented by the interaction relation σ.

Definition 7. The object-object-interaction-relation σ is defined as a set of
pairs (ti, tj) of transitions ti and tj of different object nets ONi and ONj . The
relation is supposed to be symmetric (i.e. also contains (tj , ti)) but irreflexive.
Furthermore, to have a simpler formalism it is supposed to be disjoint with the
interaction relation � in the following sense: (�, σ) are separated if (t1, t2) ∈
σ ⇒ �t1 = �t2 = ∅ 6.

As for autonomous occurrences object nets may interact without moving.
This is restricted, however, to the case where the object nets are locally “near”,
which is formalised as to be in the same place.

Definition 8. (object-object-interaction / reference-semantics) Let (R,M) be
a marking of an object system OS = (SN,ONm0 , �,R0) and p̂ ∈ P̂ a place
containing two different object nets ON i = (Pi, Ti, Wi) and ON j = (Pj , Tj, Wj),
i.e. ONi +ONj ≤ R(p̂). Then ONi and ONj can interact in (R,M) if there are
transitions ti ∈ Ti and tj ∈ Tj such that

a) tu is activated in mu = pru(M) for both u ∈ {i, j}.
b) (ti, tj) ∈ σ.

6 �t = {t̂ | (t̂, t) ∈ �}

Object Petri Nets 829

<approachFire>

<refill>
<extinguish>

[exchange] [exchange]

<retreat>FM.i

:approachFire()

:retreat()

[]

:exchange() :exchange()

:extinguish()
:refill()

a) b)
Fireman

Fig. 13. Fireman with bucket exchange for the net a) of Fig. 12 and b) of Fig. 14

This is denoted (R,M)[τ, ti|tj〉. The corresponding successor marking (R′,M′)
of OS is defined by

a) R′ = R.
b) M′ = (Mi→m′)j→m′′ if mi[ti〉m′ and mj [tj〉m′′.

This is denoted by (R,M)[τ, ti|tj〉(R′,M′).

To give an example we substitute the object nets FM.1, FM.2 and FM.3 from
Fig. 12 by three copies of the net from Fig. 13a) for i = 1, 2, 3. The modification
is the following. Each fireman can proceed only one step by a transition labelled
<retreat> or <approachFire>. Between these steps there has to be a step with
<refill>, <extinguish> or [exchange]. Transitions of different object nets
labelled by [exchange] are in the object nets interaction relation σ which is
indicated by brackets [and]. Such an interaction can occur only in the “rendez-
vous”places B and C, where they exchange their full and empty buckets. The
resulting behaviour is a firemen chain as in Petri’s original example: each fireman
moves only between two neighbouring places, whereas the buckets move from
the water to the fire and back. The place in the middle of FM.i is redundant: if
marked the fireman has a full bucket.

4.2 Object Creation and the Renew Tool

The Renew tool allows to design and simulate the example nets in a closely re-
lated manner. The system net from Fig. 12 is shown as a Renew model in Fig. 14.
There are only little differences. For instance, black tokens are represented by
[] and integer weights n by n such token symbols separated by semi-colons.

The three object nets of the example of Fig. 12 are similar in structure and
differ only in the identifiers of places and transitions. The Renew tool supports to
define object nets as patterns and to generate instances at simulation runtime.
Such a creation is executed by the transition which is placed in the leftmost,
upper part of Fig. 14. By the inscription f1:new Fireman an instance of the net
Fireman (see Fig. 13b)) is created with a new identifier Fireman[n], where n is

830 Rüdiger Valk

f1
f2

f f f f

f

f

f

fff

f:approachFire() f:approachFire()

f:retreat() f:retreat()

f:refill() f:extinguish()

f1 f2

f1:exchange()

AtoB BtoC

CtoBBtoA

Refill Extinguish

A B C

ExchangeB

f f

ff

f:approachFire()

f:retreat()

f1 f2

f2:exchange()

CtoD

DtoC D

ExchangeC

f3

Fire

Ashes

f3: new Fireman

f1: new Fireman

[]
[];[];[]

[];[];[];[];[]

[];[];[]
FireExtinguished

f2:exchange()

f1:exchange()

f2: new Fireman

Water

Fig. 14. Fire extinction net modelled with the Renew tool (system net)

an identifier chosen by the tool. Then a reference to this instance is introduced
from the place A (by the arc labelled f1)7. In total, the transition creates refer-
ences to three different object nets in the places A, B and C, 5 black tokens in
Water and 3 black tokens in Fire.

An inscription like f:approachFire() is called a downlink and is related to
a corresponding uplink :approachFire() in the net which is referenced by f (see
Fig. 13). The semantics of this pair is the same as for the interaction relation
pair (AtoB,b1) ∈ � of Fig. 12. Object-object-interaction is implemented quite
different, namely also by down- and uplinks. For such an interaction an extra
transition is introduced, like the transition ExchangeB in the Renew example
net. The downlinks f1:exchange() and f2:exchange() contain references to
nets in the place B (say Fireman[1] and Fireman[2]) to synchronise two of
their transitions labelled by an uplink: exchange(). Hence, the behaviour is like
the object-object-interaction in the formal definition.

The nets-within-nets paradigm in Renew is not restricted to a 2-level hier-
archy: in fact, there is no hierarchy necessary at all. We add a 3-level version of
the fire extinction example, where the buckets form an additional level: Fig. 15
and 16. The bucket has two states: empty and full. The initial state is intro-
duced by the transition with uplink :new(), which is executed when the net
instance is created (by firing the transition with downlink b:new Bucket in the
net Fireman). It is also interesting to observe how the exchange of a full and
an empty bucket is implemented by the transition ExchangeB or ExchangeC. In
the first case the fireman in place B, which is referenced by f1, executes the
transition with uplink :exchange(be,bf) whereas a second one, referenced by

7 For details see the documentation of the tool at http://www.renew.de.

Object Petri Nets 831

:fill() :empty()

:isEmpty()

:isFull()

:new()

empty

full

Bucket Fireman :new()

b

b: new Bucket()

be
be

bfbf

:exchange(be,bf)

:exchange(bf,be)

:approachFire()

:retreat()

b:fill()

:refill() :extinguish()
b:empty()

b b

b b

b

b

b

b

Fig. 15. Three-level fire extinction net modelled with the Renew tool (fireman and
bucket net)

f1
f2

f f f f

f

f

f

fff

f2: new Fireman()

f:approachFire() f:approachFire()

f:retreat() f:retreat()

f:refill() f:extinguish()

f1 f2

f1:exchange(be,bf)

f2:exchange(bf,be)

AtoB BtoC

CtoBBtoA

Refill

A B C

f f

ff

f:approachFire()

f:retreat()

f1 f2

f1:exchange(be,bf)

f2:exchange(bf,be)

CtoD

DtoC D

f3

Fire

Ashes

f3: new Fireman()

f1: new Fireman()

[]
[];[];[]

[];[];[];[];[]

[];[];[]
FireExtinguished

Water

ExchangeB ExchangeC Extinguish

Fig. 16. Three-level fire extinction net modelled with the Renew tool (system net)

f2, does the same for :exchange(bf,be). Hence the empty bucket (referenced
by be) and the full bucket (referenced by bf) are exchanged.

Note that the system nets of the 2-level model (Fig. 14) and the 3-level model
(Fig. 16) are very similar, showing the abstraction power of the nets-within-nets
modelling paradigm.

832 Rüdiger Valk

5 Value Semantics of Object Nets

In this section value semantics, as introduced in the introduction, will be defined
formally. We start with a general definition which will be refined in two following
subsections to distributed tokens semantics and history process semantics. To
keep definitions simpler, weights of system nets arrows different to 1 are not
considered in this section (i.e. Ŵ maps to {0, 1} instaed of IN).

5.1 Value Semantics of Object Nets: General Definition

In value semantics each object net instance has its own state (marking), which
is formalised by the following set ONm.

Definition 9. Given an elementary object system OS = (SN,ONm0 , �,R0) as
in Definition 1 with ON = {ON1, . . . , ONk}, we now define ONm :=
{(ON1, m1), . . . , (ONk, mk) | (m1, . . . , mk) ∈ M}.

Then a marking of an elementary object system under value semantics is a
mapping

V : P̂ → IN ∪ Bag(ONm)

satisfying V(p̂) ∈ IN ⇔ p̂ ∈ Pbt. The initial marking V0 has to meet the condition
V0(p̂)(ONi, m

0
i) = R0(p̂)(ONi), when p̂ is an object place and V0(p̂) = R0(p̂)

otherwise.

When an interaction occurs with a transition, where several marked object
nets are involved at the input side, some kind of unification of their current
state (marking) is to be constructed. This corresponds to the collection of partial
results (of concurrent computations) to a consistent state, unifying these partial
states. The definition of such a function unify is left unspecified in the following
definition, but made explicit in the subsequent subsections. In a symmetric way,
for the output-places a function distribute is introduced, which constructs from
the state (marking m) a tuple (mp̂1 , ..., mp̂q) of states (markings) for the object
nets to be created in the output places (p̂1, ..., p̂q) of the transition.

Definition 10. (interaction / value-semantics) Let V be a marking of an el-
ementary object system OS = (SN,ONm0 , �,R0), t̂ ∈ T̂ a transition of SN ,
t ∈ T a transition of an object net ON i = (Pi, Ti, Wi) ∈ ON such that (t̂, t) ∈ �.
Then (t̂, t) is activated in V if for each input place p̂ ∈ •t̂ ∩ Pob there is a
submultiset Vp̂ ⊆ V(p̂) such that

a) Ṽp̂ = Ŵ (p̂, t̂)′ONi for all p̂ ∈ •t̂ ∩ Pob for all p ∈ •t ∩ Pob,
b) V(p̂) ≥ W (p̂, t̂) for all p̂ ∈ • t̂ ∩ Pbt and
c) m = unify({m1 | (ONi, m1) ∈ Vp̂ ∧ p̂ ∈ •t̂ ∩ Pob}) is defined and t is

activated in m, where unify is a partial mapping from the set 22Pi of all
marking sets of ONi to the set 2Pi of markings of ONi.

This is denoted by V[t̂, t〉. Let be m[t〉m′ (w.r.t. ONi, see Appendix). In this case
the successor marking V′ of OS is defined by

Object Petri Nets 833

a) V′(p̂) = V(p̂) − Vp̂ + Ŵ (t̂, p̂)′(ONi, mp̂) for all p̂ ∈ Pob where mp̂ comes
from (mp̂1 , ..., mp̂q) ∈ distribute(m′) and {p̂1, ..., p̂q} = t̂•. Distribute is a
mapping from the set 2Pi of markings of ONi to the set (2Pi)q of all q-tuples
of markings of ONi, where q is the number of output-places of t̂.

b) V′(p̂) = V(p̂) − W (p̂, t̂) + W (t̂, p̂) for all p̂ ∈ Pbt.

This is denoted by V[t̂, t〉V′.

The definitions for transport and autonomous action are similar and omitted
here.

5.2 Distributed Tokens Semantics

In distributed tokens semantics the tokens of those object nets, whose copies are
distributed to the output-places of a transition are distributed as well, in such a
way that they form the original marking when taken all together. Hence instead
of Fig. 10 a successor marking like in Fig. 17 is appropriate.

Definition 11. (interaction / distributed tokens semantics) Distributed tokens
semantics is obtained by defining the (total) mappings unify and distribute of
Definition 10 as follows:

unify{m1, ..., ms} :=
s∑

i=1

mi

and distribute(m′) := {(m1, ..., mq) |
q∑

i=1

mi = m′}
(Recall that markings are multi-sets and the sum is the multi-set addition.)

In Fig. 18 successor markings of Fig. 17 are shown illustrating the application
“unify”of Definition 11. The figure contains two markings, namely before and
after the occurrence of the rightmost transition. The selection of tokens from the
image of the mapping distribute is nondeterministic. There are also selections
that are “wrong” in the sense that subsequent occurrences are different or im-
possible. This feature is much like nondeterministic firing of Petri net transitions
in general, where conflict solution is left out of consideration.

5.3 History Process Semantics

A different strategy of token distribution is followed by history process seman-
tics. Here all output transitions are supplied with the same information. Then by
the subsequent behaviour the appropriate selection is chosen. In order to check
whether concurrent executions are consistent instead of markings, processes (oc-
currence nets) are used as state information. There is a well-developed theory
of processes which is not repeated here (see [54] for instance). We mention that
there is a partial order on the set of all processes of a net and a well-defined
operation “least upper bound”, which is used in the following definition.

In Fig. 19 the place p̂ contains the initial process of the object net (which is
omitted in the place). After the occurrence of the interaction (â, a) the output-
places q̂ and r̂ are marked with the corresponding enlarged processes. Finally

834 Rüdiger Valk

p

< i >

< j >

< i >

< j >

< i >

< j >

q

r

Fig. 17. Successor marking for Fig. 8 with respect to distributed tokens semantics

p

q

r

< i >

< j >

< i >

< j >

< i >

< j > < i >

< j >

Fig. 18. Successor markings for Fig.17 with respect to distributed tokens semantics

from the processes in ŝ and ŝ′ (see Fig. 20) the least upper bound is constructed
and then enlarged by the transition b and added to all output-places of ê.

Definition 12. (interaction / history process semantics) History process se-
mantics is obtained by defining the mappings unify and distribute of Defini-

tion 3 as follows: unify{proc1, ..., procs} :=
s⊔

i=1

proci and distribute(proc′) :=

{(proc′, ..., proc′)}, where
s⊔

i=1

proci is the least upper bound of all processes proci

and proc′ the least upper bound enlarged by the transition t 8.

8 Recall that the transition is not activated, if the least upper bound does not exists.

Object Petri Nets 835

p

q

r

< i >

< i >

< j >

< j >

a b

<v><u>

<u>
<v>

a b

Fig. 19. Initial and first successor markings with respect to history process semantics

p

q

r

< i >

a

a b

a

< j >

<u>
<v>

s

e

s'

a b

Fig. 20. Successor markings for Fig. 19 with respect to history process semantics

6 Agency under Reference and Value Semantics

In this section we will use a simple example (due to M. Köhler) to explain
differences between the introduced semantics. An agent or an agency is designed
to first get some money by visiting a bank (3 units of money in our case). Then
the agency has to buy flowers uptown (for 1 unit of money) and independently
to buy jewels downtown (for 2 units of money). Finally they return from up- and
downtown to meet together and deliver their shoppings. We consider 4 different
scenarios system 1 to system 4 in Fig. 21 to 24. In each of these cases we consider
the three introduced semantics reference semantics (ref-semantics), distributed

836 Rüdiger Valk

tokens value semantics (dt-semantics) and history process value semantics (hp-
semantics). The behaviour is called correct if there is an occurrence sequence that
marks exactly the terminal places9 in system and object nets, when started with
the given initial marking. As discussed above, in particular with dt-semantics
there may be correct and incorrect behaviours from the same initial marking.

1. Object system 1 (Fig. 21)
a) ref-semantics: correct, b) dt-semantics: correct, c) hp-semantics: correct.

2. Object system 2 (Fig. 22)
a) ref-semantics: correct, b) dt-semantics: not correct (downtown agency
member has no money), c) hp-semantics: not correct (downtown agency
member has no money).

3. Object system 3 (Fig. 23)
a) ref-semantics: not correct (2 <visit bank>-actions are impossible), b)
dt-semantics: not correct (only one agency member has money.), c) hp-
semantics: correct.

4. Object system 4 (Fig. 24)
a) ref-semantics: not correct (2 <buy jewels>-actions are impossible), b)
dt-semantics: not correct (not enough money for both agency members: de-
tected by paying since at least one agency member has not enough money),
c) hp-semantics: not correct (not enough money for both agency members:
detected by joining since the unify-function is undefined).

Object system 3 (Fig. 23) is of particular interest as this case shows a differ-
ence between dt- and hp-semantics. The concept behind hp-semantics is similar
to transaction handling in distributed data base systems. Such a transaction
is considered consistent if it computes consistent results in all sites of the dis-
tributed data base system. The <visit-bank>-transition is executed uptown and
downtown, and latter tested on consistency by the last system net transition.

In Fig. 25 two distributed data base systems DB1 and DB2 are represented
by a simple system net. The object net reads the value of data x (either x = 0 or
x = 1) and terminates with transition end consistency check, which in fact
behaves like a consistency check under hp-semantics.

7 The Garbage Can Example

This section contains a larger example modelled with the Renew tool. Hence,
reference semantics is used. It represents a system of agents that behave partially
independent and interact in various ways. This example shows how the nets-
within-nets paradigm provides a transparent modelling concept for representing
objects of the real world by highly independent, but interacting net instances.

The example comes from a project of socionics [22], where knowledge from
social sciences and multi-agent systems are combined to profit from each other.

9 A place is called terminal if it has no output-transitions.

Object Petri Nets 837

<buy_flowers>

entering
downtown

leaving
downtown

entering
uptown

leaving
uptown

agency

<visit_bank>

<buy_jewels>

<buy_flowers> flowers bought

jewels bought

no flowers

no jewels

3

2

<buy_jewels>

money
<visit_bank>

agency

Fig. 21. Object system 1

<buy_flowers> flowers bought

jewels bought

no flowers

no jewels

3

2

<buy_jewels>

money
<visit_bank>

agency

<buy_flowers>

entering
downtown

leaving
downtown

entering
uptown

leaving
uptown

<visit_bank>

<buy_jewels>

agency

Fig. 22. Object system 2

838 Rüdiger Valk

<buy_flowers> flowers bought

jewels bought

no flowers

no jewels

3

2

<buy_jewels>

money
<visit_bank>

agency

<buy_flowers>

leaving
downtown

entering
uptown

leaving
uptown

<visit_bank>

<buy_jewels>

agency

<visit_bank>entering
downtown

Fig. 23. Object system 3

entering
downtown

leaving
downtown

entering
uptown

leaving
uptown

agency

<visit_bank>

<buy_jewels>

<buy_jewels>

<buy_flowers> flowers bought

jewels bought

no flowers

no jewels

3

2

<buy_jewels>

money
<visit_bank>

agency

Fig. 24. Object system 4

Object Petri Nets 839

x=1

x=1

x=0

<x1>

<x0>

<x0>

<x0>

<x1>

<x1>

x=0

consistency
ok

end
consistency
check

start
consistency
check

DB1

DB2

Fig. 25. Consistent distributed reading

It refers to a subfield of organisational theories, where the laws of anarchic be-
haviour in academic organisations are studied [55]. Following this paper, such
organisations - or decision situations - are characterised by three general prop-
erties. The first is problematic preferences. In the organisation it is difficult to
impute a set of preferences to the decision situation that satisfies the standard
consistency requirements for a theory of choice. The organisation operates on the
basis of a variety of inconsistent and ill-defined preferences. It can be described
better as a loose collection of ideas than as a coherent structure; it discovers pref-
erences through action more than it acts on the basis of preferences. The second
property is unclear technology. Although the organisation manages to survive
and even produce, its own processes are not understood by its members. It op-
erates on the basis of simple trial-and-error procedures, the residue of learning
from accidents of past experience, and pragmatic inventions of necessity. The
third property is fluid participation. Participants vary in the amount of time
and effort they devote to different domains; involvement varies from one time
to another. As a result, the boundaries of the organisation are uncertain and
changing; the audiences and decision makers for any particular kind of choice
change capriciously.

The authors in [56] distinguish the three notions of problems, solutions, par-
ticipants and choice opportunities. Problems are the concern of people inside and
outside the organisation. A solution is somebody’s product. Despite the dictum
that you cannot find the answer until you have phrased the question well, you
often do not know what the question is in organisational problem solving until
you know the answer. Participants come and go. Substantial variation in partic-

840 Rüdiger Valk

ipation stems from other demands on the participants’ time (rather than from
features of the decision under study). Choice opportunities are occasions when
an organisation is expected to produce behaviour that can be called a decision.
Opportunities arise regularly and every organisation has ways of declaring an
occasion for choice. Contracts must be signed; people hired, promoted, or fired;
money spent; and responsibilities allocated. The dynamic behaviour is the highly
concurrent composition of a stream of choices, a stream of problems, rate of flow
of solutions and stream of engaged participants. Where they meet and interact
in a unpredictable way is called a garbage can.

To get an approximate but more concrete impression of the model, the au-
thors of [56] reconsidered the finale of the James Bond movie, “A View to a
Kill”. Agent 007 poises on the main cable of the Golden Gate Bridge, a woman
in distress clinging to his arm, a blimp approaching for rescue: the blimp is a
solution, 007 a choice opportunity, and the woman a problem. In the movies’s
happy ending, the hero is finally picked up, together with the woman, and a
solution by resolution takes place; the problem is solved.

Now imagine numerous blimps, women, and heroes, all arriving out of the
blue in random sequence. Heroes take their positions on the main cable. Women
cling to heroes, blimps hover above the scene. Heroes are able to hold an un-
limited number of women, but the blimp’s carrying capacity is limited; heroes
with too many women cannot be rescued. Blimps retrieve rescuable, i.e., not-
too-heavy, heroes. Women in distress are aware of that and switch heroes op-
portunistically, choosing the hero closest to retrieval. (In our model, however,
women choose heroes nondeterministically.)

Since women, as well as blimps, make their choices simultaneously, but in-
dependently of each other, a light hero, on the verge of rescue, may suddenly
find himself overburdened. Heavy heroes, in turn, may become rescuable all of
a sudden as their women desert them. This mechanism, called “fluid participa-
tion”, creates the possibility of nonsensical solutions or non-solutions. Women
may switch heroes too swiftly and end up with an overburdened hero each time;
then, problems are not solved. Or heroes are rescued just as all women have
left; then, a “decision by flight” is made. Finally, heroes may be salvaged upon
arrival at the scene before any woman in distress has a chance to grab their
arm; then “decisions by oversight” are said to be made. Nevertheless, decisions
by resolution do occur. Fig. 26 shows the system net, called bridge, containing
the creation of the agents woman (by the annotation woman:new woman) and,
similarly of the agents hero and blimp. The modelling of different locations for
the heroes on the bridge is omitted, but could be easily added. The heroes
can move to the (common) place heroes on cable and are able to cling one or
more women. By the transition rescue they are picked up by a blimp, which may
continue its flight to the hangar by transition fly. As example of a runtime shot
in Fig. 26 the instances of agents woman[1], hero[3], hero[4] and blimp[1]
are shown. The instance blimp[1] is drawn from the pattern blimp, as shown
in Fig. 28. Within the place heroes on cable there are two instances hero[3]
and hero[4] of the class hero. Fig. 27 gives the classes of hero and woman.

Object Petri Nets 841

blimp

blimps

woman

hero:cling(woman)

rescue

hero

blimp

blimp

blimp

hero

hero

admit to
hospital

heroes
on cable

blimp

hero2:cling(woman)

hero1:leave(woman)

hero2

hero1

women in hospital

landed blimpsblimp

blimp

blimps in hangar

hero

woman

woman

blimp

bridge

woman: new woman

down: blimp: admit_h(hero), admit_w(woman),saveHero(hero)
 hero: leave(woman), cling(woman)
 woman: cling_on(), be_saved()

woman: cling_on()

blimp:saveHero(hero)

cling

women in
distress

up: --

blimp: new blimp

hero: new hero

heroes in hospital

fly

blimp:admit_h(hero)

blimp:admit_w(woman)
woman:be_saved()

woman[1]

hero[4]
hero[3]

blimp[1]

Fig. 26. The garbage can object system: bridge

Each hero counts the number of object net instances woman picked up by
him (see place counter in the net hero). If there are too many (≥ 3 in our case)
transition rescue cannot fire for this blimp (see leftmost transition of blimp
in Fig. 28). All down- and uplinks are given in the nets as declarations. This
allows for better reading and understanding, but is not supported by the tool.
As a modelling style a hierarchy is respected, such that downlinks refer to the
next lower level only. By this it is demonstrated how the object-relation to be
contained in is represented in our modelling style.

842 Rüdiger Valk

in distress

:be_saved()

back in safety

hero

clinging
 to hero

hero

:add(hero) :remove(hero)

woman

down: --

[]

up: hero: add(hero), remove(hero)
 bridge: cling_on(), be_saved()

:cling_on()

women
attached

n
nn+1

:cling(woman)

n
n-1

:leave(woman)

woman woman

0

woman:add(this) woman:remove(this)

down: woman: add(hero), remove(hero)

hero

:cap(n)

up: bridge: cling(woman), leave(woman)
 blimp: cap(integer)

counter

Fig. 27. The garbage can object systems: woman and hero

hero

3 blimp capacity

hero:leave(woman)
:admit_w(woman)

:saveHero(hero)

[]

:admit_h(hero)
hero:cap(0)

n

hero on board

blimp

herohero
in hangar

guard(x<n)
hero:cap(x)

approaching
bridge

up: bridge: admit_h(hero), admit_w(woman), saveHero(hero)

down: hero: cap(integer), leave(woman)

Fig. 28. The garbage can object system: blimp

Note how the change of woman[4] from hero[3] to hero[4] works in this
example. woman[4] is restricted to communicate only via “her” hero[3], who
has to forward the procedure call. hero[3] has, in turn, also no direct access
to hero[4]. Instead, he uses the common level bridge by the transition swap.
This mimics reality, where a communication medium is always necessary (e.g.
by sight, by mobile phone, by Internet).

This example of garbage cans can be seen as a prototype to other applica-
tions of interacting agents, for instance workflow or flexible manufacturing. In
the latter case the bridge stands for the machine configuration, the blimps for
a conveyors, heroes and women parts to be processed. Furthermore a “produc-
tion plan” could be added as a further object net, which takes control over the
production order, assembly, disassembly etc.

8 Conclusion and Current Research

We have shown that object Petri nets provide a “natural” modelling method,
which is easy to understand and is supported by an appropriate tool. The nets-
within-nets concept reduces much of the complexity (e.g. readability, simpler
arc inscriptions, modular structure) that would result in modelling the same

Object Petri Nets 843

application by ordinary coloured nets. This is partially a result of the direct rep-
resentation of object relations like “belongs to” or “is in location”. Furthermore
these concepts lead to natural representations of typical properties in distributed
systems or mobile computation.

Due to space limitations, it was not possible to present formal results and
further modelling examples in application domains. We therefore we give some
references to related current research. More definitions, results and examples con-
cerning the concept of history process semantics are given in [6] and [9], whereas
distributed tokens semantics are studied in [20, 21, 57–60]. The latter group of
references contains results on unbounded marking recursion, concurrency notions
and decidability properties of object Petri nets. Modelling mobility and security
properties is investigated in [61] and [62]. The bucket-chain example is extended
to processor failure (fireman failure) and analysed using the MAUDE tool in
[63]. There are also results on pattern based workflow design using reference
semantics [64] and a proposal for structuring agent interaction protocols [65].
Model checking for object Petri nets via a translation into Prolog is introduced
in [66] while some foundations of dynamic Petri net structures can be found in
[67]. Fehling’s concept of hierarchical Petri nets [68] is extended to a class of
object Petri nets in [69]. The monograph [22] (in German) reports numerous
results on the use of object Petri nets in socionics (also see [70]). Applications
to flexible manufacturing systems can be found in [71] and [72].

Appendix: Basic Concepts

Multi-sets: Let A �= ∅ be a set. A multi-set s over A is a mapping s : A → IN,
which associates to each element a ∈ A a non-negative integer coefficient (or
multiplicity) s(a). We denote by Bag(A) the set of multi-sets over A. A multi-set
will be represented as the symbolic addition of its components: s =

∑

a∈A s(a)′a.
Let s1 and s2 be two multi-sets defined over the same set A. The addition of
multi-sets is defined by s1 + s2 =

∑

a∈A(s1(a) + s2(a))′a. On the other hand,
s1 ≥ s2 when for each a ∈ A, s1(a) ≥ s2(a). The difference operation extends
the corresponding set-operation by (s1 − s2)(a) := max(s1(a) − s2(a), 0). For
short, ∅ will be used to denote the empty multi-set.

Place/Transition nets: A Place/Transition net (P/T net) N = (P, T, W) is
defined as follows.

1. P and T are finite and disjoint sets of places and transitions, respectively,
and W : (P × T) ∪ (T × P) → IN is the set of weighted arrows.

2. Specifying a marking m : P → IN we obtain a marked P/T net (N, m0).
Markings are considered as multi-sets over P .

3. For each t ∈ T let be PRE(t) and POST (t) the multi-sets over P defined
by PRE(t)(p) := W (p, t) and POST (t)(p) := W (t, p), respectively. Then
t ∈ T is activated in a marking m if PRE(t) ≤ m (denoted m[t〉) and
the transition relation is defined by: m[t〉m′ :⇔ PRE(t) ≤ m ∧ m′ =
m − PRE(t) + POST (t). m′ is called successor marking of m (w.r.t. t).

844 Rüdiger Valk

References

1. Rumbaugh, J., Jacobson, I., Booch, G.: The unified modeling language reference
manual: The definitive reference to the UML from the original designers. Addison-
Wesley object technology series. Addison-Wesley, Reading, Mass. (1999)

2. Jessen, E., Valk, R.: Rechensysteme: Grundlagen der Modellbildung. Springer-
Verlag, Berlin (1987)

3. Valk, R.: Modelling of task flow in systems of functional units. 124, Universität
Hamburg, Fachbereich Informatik (1987)

4. Valk, R.: Nets in computer organisation. In Brauer, W., Reisig, W., Rozenberg,
G., eds.: Lecture Notes in Computer Science: Petri Nets: Central Models and
Their Properties, Advances in Petri Nets 1986, Part I, Proceedings of an Ad-
vanced Course, Bad Honnef, September 1986. Volume 254., Springer-Verlag (1987)
377–396

5. Valk, R.: On processes of object Petri nets. Fachbereichsbericht 185, Fachbereich
Informatik, Universität Hamburg (1996)

6. Valk, R.: Petri nets as token objects - an introduction to elementary object nets. In
Desel, J., Silva, M., eds.: Application and Theory of Petri Nets 1998, Proceedings
15th International Conference, Lisbon, Portugal. Volume 1420 of Lecture Notes in
Computer Science., Springer-Verlag (1998) 1–25

7. Valk, R.: Concurrency in communicating object Petri nets. [73] 164–195
8. Valk, R.: Reference and value semantics for object Petri nets. In: Proceedings

of Colloquium on Petri Net Technologies for Modelling Communication Based
Systems, October 21-22, 1999, Fraunhofer Gesellschaft, ISST (1999) 169–187

9. Valk, R.: Relating different semantics for object Petri nets, formal proofs and
examples. Technical Report FBI-HH-B-226, University of Hamburg, Department
for Computer Science Report/00 (2000)

10. Valk, R.: Mobile and distributed object versus central referencing. In Grabowski,
Jens, Heymer, Stefan, eds.: Proceedings of 10. GI-ITG-Fachgespräch FBT 2000:
Formale Beschreibungstechniken für verteilte Systeme, Lübeck, June 2000, Aachen,
Shaker Verlag (2000) 7–27

11. Kummer, O.: Referenznetze. Logos Verlag (2002)
12. Wienberg, F.: Informations- und prozesorientierte Modellierung verteilter Systeme

auf der Basis von Feature-Structure-Netzen. Dissertation, Universität Hamburg,
Fachbereich Informatik (2001)

13. Kummer, O., Wienberg, F., Duvigneau, M.: Renew – The Reference Net Workshop.
http://renew.de/ (2004)

14. Farwer, B.: Linear Logic Based Calculi for Object Petri Nets. Logos Verlag, ISBN
3-89722-539-5, Berlin (2000)

15. Farwer, B.: Modelling protocols by object-based Petri nets. In Czaja, L., ed.:
Concurrency Specification and Programming (CSP’01), Proceedings, University
of Warsaw (2001) 87–96 published in Fundamenta Informaticae, 2002.

16. Farwer, B.: Comparing concepts of object Petri net formalisms. Fundamenta In-
formaticae 47 (2001) 247–258

17. Farwer, B., Lomazova, I.: A systematic approach towards object-based Petri net
formalisms. In Bjorner, D., Zamulin, A., eds.: Perspectives of System Informatics,
Proceedings of the 4th International Andrei Ershov Memorial Conference, PSI
2001, Akademgorodok, Novosibirsk, LNCS 2244. Springer-Verlag (2001) 255–267

18. Farwer, B.: A multi-region linear logic based calculus for dynamic Petri net struc-
tures. Fundamenta Informaticae 43 (2000) 61–79

Object Petri Nets 845

19. Farwer, B.: A linear logic view of object Petri nets. Fundamenta Informaticae 37
(1999) 225–246

20. Köhler, M.: Mobile object net systems: Petri nets as active tokens. Technical Re-
port 320, Universität Hamburg, Fachbereich Informatik, Vogt-Kölln Str. 30, 22527
Hamburg, Germany (2002)

21. Köhler, M., Rölke, H.: Concurrency for mobile object net systems. Fundamenta
Informaticae 54 (2003)

22. v. Lüde, R., Moldt, D., Valk, R.: Sozionik: Modellierung soziologischer Theorie.
Lit-Verlag (2003)

23. Cabac, L., Moldt, D., Rölke, H.: A proposal for structuring Petri net-based agent
interaction protocols. In van der Aalst, W., Best, E., eds.: Proc. of 24nd Interna-
tional Conference on Application and Theory of Petri Nets 2003 (ICATPN 2003),
Eindhoven, NL. Volume 2679 of Lecture Notes in Computer Science., Springer-
Verlag (2003) 102–120

24. Köhler, M., Moldt, D., Rölke, H.: Modelling mobility and mobile agents using nets
within nets. In van der Aalst, W., Best, E., eds.: Proc. of 24nd International Con-
ference on Application and Theory of Petri Nets 2003 (ICATPN 2003), Eindhoven,
NL, Berlin Heidelberg New York, to be published in Lecture Notes in Computer
Science, Springer-Verlag (2003)

25. Battiston, E., De Cindio, F., Mauri, G.: Objsa nets: A class of high-level nets
having objects as domains. In Rozenberg, G., ed.: Advances in Petri Nets 1988.
Volume 340 of Lecture Notes in Computer Science., Springer-Verlag (1988) 20–43

26. Battiston, E., Chizzoni, A., Cindio, F.D.: Clown as a testbed for concurrent object-
oriented concepts. [73] 131–163

27. Buchs, D., Guelfi, N.: Co-opn: A concurrent object oriented Petri net approach.
In: Application and Theory of Petri Nets, 12th International Conference, IBM
Deutschland (1991) 432–454

28. Christensen, S., Damgaard Hansen, N.: Coloured Petri nets extended with chan-
nels for synchronous communication. Technical Report DAIMI PB–390, Aarhus
University (1992)

29. Biberstein, O.: CO-OPN/2: An Object-Oriented Formalism for the Specification
of Concurrent Systems. Ph.d. thesis, University of Geneva (1997)

30. Biberstein, O., Buchs, D., Guelfi, N.: Object-oriented nets with algebraic specifi-
cations: The co-opn/2 formalism. [73] 73–130

31. Lakos, C.A.: Object Petri nets – definition and relationship to coloured Petri nets.
Technical Report 94–3, Computer Science Department, University of Tasmania
(1993)

32. Lakos, C.A.: From coloured Petri nets to object Petri nets. In: Proceedings of the
16th International Conference on the Application and Theory of Petri Nets, Turin,
Italien. Volume 935 of Lecture Notes in Computer Science., Springer-Verlag (1995)
278–297 http://www.cs.adelaide.edu.au/users/charles/.

33. Lakos, C.A.: The role of substitution places in hierarchical coloured Petri nets.
Technical Report 93–7, Computer Science Department, University of Tasmania
(1993)

34. Lakos, C.A.: Pragmatic inheritance issues for object Petri nets. In: Proceedings of
TOOLS Pacific 1995, Melbourne, Australien, Prentice-Hall (1995) 309–321 http:

//www.cs.adelaide.edu.au/users/charles/.
35. Sibertin-Blanc, C.: Cooperative nets. In Valette, R., ed.: Application and Theory

of Petri Nets 1994, Proceedings 15th International Conference, Zaragoza, Spain.
Volume 815 of Lecture Notes in Computer Science., Springer-Verlag (1994) 471–490

846 Rüdiger Valk

36. Sibertin-Blanc, C.: Cooperative objects: Principles, use and implementation. [73]
216–246

37. Sibertin-Blanc, C.: Syroco: A c++ implementation of cooperative objects.
Workshop on Petri Nets and Object-Oriented Models of Concurrency (1995)
Überarbeitete Version.

38. Project, T.M.: Project homepage. http://www.tik.ee.ethz.ch/~moses/ (2002)
39. Češka, M., Janoušek, V., Vojnar, T.: Pntalk – a computerized tool for object ori-

ented Petri nets modelling. In Pichler, F., Moreno-Diaz, R., eds.: 6th International
Workshop on Computer Aided Systems Theory (EUROCAST’97), Las Palmas
de Gran Canaria. Volume 1333 of Lecture Notes in Computer Science., Springer-
Verlag (1997) 591–610

40. Goldberg, A., Robinson, D.: Smalltalk-80: The Language. Addison-Wesley (1989)
41. PNtalk: Project homepage. http://www.fee.vutbr.cz/UIVT/homes/janousek/

pntalk/ (2002)
42. Janoušek, V.: Synchronous interactions of objects in object oriented Petri nets. In:

Proceedings of MOSIS’99. (1999) 73–80 http://www.fee.vutbr.cz/~janousek/.
43. Philippi, S.: OOPr/T-modelle – ein Pr/T-netz basierter Ansatz zur objektorien-

tierten Modellierung. In Desel, J., Oberweis, A., eds.: 6. Workshop Algorithmen
und Werkzeuge für Petrinetze, J.W. Goethe-Universität, Institut für Wirtschaft-
informatik, Frankfurt am Main (1999) 36–41

44. Philippi, S.: Seamless object-oriented software development on a formal base.
In: Workshop on Software Engineering and Petri-Nets, 21st International Con-
ference on Application and Theory of Petri-Nets, Aarhus. (2000) http://www.

uni-koblenz.de/~philippi/.
45. Giese, H., Graf, J., Wirtz, G.: Closing the gap between object-oriented modeling of

structure and behavior. In France, R., Rumpe, B., eds.: The Second International
Conference on The Unified Modeling Language (UML’99). Volume 1723 of Lecture
Notes in Computer Science., Springer-Verlag (1999) 534–549

46. OCoN: Project homepage. http://wwwmath.uni-muenster.de/cs/u/versys/

research/ocon/ (2002)
47. Basten, T., van der Aalst, W.M.: Inheritance of behavior. Journal of Logic and

Algebraic Programming 47 (2001) 47–145
48. Schöf, S., Sonnenschein, M., Wieting, R.: Efficient simulation of Thor nets. In

De Michealis, G., Diaz, M., eds.: Proceeding of the 16th International Conference
on Application and Theory of Petri Nets, Turin. Volume 935 of Lecture Notes in
Computer Science., Springer-Verlag (1995) 412–431

49. Köster, F., Schöf, S., Sonnenschein, M., Wieting, R.: Modelling of a library with
thorns. [73] 375–390

50. Han, Y.: Software Infrastructure for Configurable Workflow Systems; A Model-
Driven Approach Based on Higher-Order Object Nets and Corba. Wissenschaft
und Technik Verlag, Berlin (1997) Dissertation an der TU Berlin.

51. Lilius, J.: Ob(pn)2: An object based Petri net programming notation. [73] 247–275
52. Agarwal, R., Bruno, G., Pescarmona, M.: Object-oriented extensions for Petri nets.

Petri Net Newsletter 60 (2001) 26–41
53. Petri, C.: Introduction to general net theory. In Brauer, W., ed.: Net Theory and

Applications: Proceedings of the Advanced Course on General Net Theory of Pro-
cesses and Systems, Hamburg, 1979. Volume 84 of Lecture Notes in Computer
Science., Springer-Verlag (1979) 1–19

54. Best, E., Fernández, C.: Nonsequential Processes. A Petri Net View. Volume 13.
Springer Verlag EATCS Monographs on Theoretical Computer Science (1988)

55. Cohen, M., March, J., Olsen, J.: A garbage can model of organizational choice.
Administrative Science Quarterly 17 (1972) 1–25

Object Petri Nets 847

56. Masuch, M., LaPotin, P.: Beyond Garbage Cans: An AI Model of Organizational
Choice. Administrtive Science Quarterly 36 (1989) 38–67

57. Köhler, M., Farwer, B.: Mobile object-net systems and their processes. In: Pro-
ceedings of the International Workshop on Concurrency, Specification, and Pro-
gramming, CS&P 2003. (2003) 134–149

58. Köhler, M.: Mobile object net systems. In: 10. Workshop Algorithmen und
Werkzeuge für Petrinetze, Universität Eichstätt (2003) 51–60

59. Köhler, M.: Object Petri nets: Definitions, properties and related models. Technical
Report 329, Universität Hamburg, Fachbereich Informatik, Vogt-Kölln Str. 30,
22527 Hamburg, Germany (2003)

60. Köhler, M.: Decidability problems for object Petri nets. In Gesellschaft für Infor-
matik, ed.: Informatiktage 2003. Fachwissenschaftlicher Informatik-Kongreß, Kon-
radin Verlag (2003)

61. Köhler, M., Rölke, H.: Modelling sandboxes for mobile agents using nets within
nets. In Busi, N., Martinelli, F., eds.: Workshop on Issues in Security and Petri
Nets (WISP’03) at the International Conference on Application and Theory of
Petri Nets 2003, University of Eindhoven (2003)

62. Köhler, M., Moldt, D., Rölke, H.: Modelling mobility and mobile agents using nets
within nets. In v. d. Aalst, W., Best, E., eds.: Proceedings of the International
Conference on Application and Theory of Petri Nets 2003. Volume 2679 of Lecture
Notes in Computer Science., Springer-Verlag (2003) 121–140

63. Köhler, M., Rölke, H.: Formal analysis of multi-agent systems: The bucket-chain
example. Technical Report to appear, University of Hamburg, Department for
Computer Science Report/04 (2004)

64. Moldt, D., Rölke, H.: Pattern based workflow design using reference nets. In van der
Aalst, W., ter Hofstede, A., Weske, M., eds.: Proc. of International Conference
on BUSINESS PROCESS MANAGEMENT, Eindhoven, NL, Berlin Heidelberg
New York, to be published in Lecture Notes in Computer Science, Springer-Verlag
(2003)

65. Cabac, L., Moldt, D., Rölke, H.: A proposal for structuring petri net-based agent
interaction protocols. In: Lecture Notes in Computer Science: 24th International
Conference on Application and Theory of Petri Nets, Eindhoven, Netherlands, June
2003. (2003)

66. Farwer, B., Leuschel, M.: Model checking object Petri nets in Prolog. Technical
Report DSSE-TR-2003-4, Declarative Systems and Software Engineering Group,
School of Electronics and Computer Science, University of Southampton, SO17
1BJ, UK (2003)

67. Farwer, B., Misra, K.: Dynamic modification of system structures using LLPNs. In:
Perspectives Of System Informatics, Proceedings of the 5th International Andrei
Ershov Memorial Conference, PSI 2003, Akademgorodok, Novosibirsk, LNCS 2890.
Springer-Verlag (2003) 274–293

68. Fehling, R.: A concept of hierarchical Petri nets with building blocks. In Rozenberg,
G., ed.: Advances in Petri Nets 1993. LNCS 674, Springer-Verlag (1993) 148–168

69. Farwer, B., Misra, K.: Modelling with hierarchical object Petri nets. Fundamenta
Informaticae 55 (2003) 129–147

70. Köhler, M., Moldt, D., Rölke, H., Valk, R.: Structuring of complex socionic systems
using reference nets. Technical Report FBI-HH-B-248, University of Hamburg, De-
partment for Computer Science Report/03 (2003)

848 Rüdiger Valk

71. Ezpeleta, J., Moldt, D.: A proposal for flexible testing of deadlock control strategies
in resource allocation systems. In Pahlavani, Z., ed.: Proceedings of International
Conference on Computational Intelligence for Modelling Control and Automation,
in Vienna, Austria, 12-14 February. (2003)

72. Ezpeleta, J., Valk, R.: Modelling assembly systems using object Petri nets and
deadlock avoidance. Technical Report to appear, University of Hamburg, Depart-
ment for Computer Science Report/04 (2004)

73. Agha, G., De Cindio, F., Rozenberg, G., eds.: Advances in Petri Nets: Concurrent
Object-Oriented Programming and Petri Nets. Volume 2001 of Lecture Notes in
Computer Science. Springer-Verlag (2001)

	Eichstätt, Layout 1
	valk_2004_Eich
	1 Nets within Nets
	2 Elementary Object Systems
	3 Reference Semantics of Object Systems
	4 Object Interaction, Object Creation and Renew
	4.1 Object Interaction
	4.2 Object Creation and the Renew Tool

	5 Value Semantics of Object Nets
	5.1 Value Semantics of Object Nets: General Definition
	5.2 Distributed Tokens Semantics
	5.3 History Process Semantics

	6 Agency under Reference and Value Semantics
	7 The Garbage Can Example
	8 Conclusion and Current Research
	Appendix: Basic Concepts
	References

