Properties of Multiset Language Classes Defined by Multiset Storage Automata

Manfred Kudlek, Patrick Totzke, and Georg Zetzsche
{kudlek,3totzke,3zetzsche}@informatik.uni-hamburg.de
Department Informatik, M11 Fakultät, Universität Hamburg
http://www.informatik.uni-hamburg.de/TGI

Abstract. The previously introduced multiset language classes defined by multiset storage automata are being explored with respect to their closure properties and alternative characterizations.

1 Introduction

Multiset languages and their characterizations play an important role in various areas of Theoretical Computer Science, as in Concurrency Theory or Membrane Computing. Generative models have been investigated in [5]. For word languages it is well known that they can be characterized by grammars as well as by automata. Analogous automata can be introduced for multiset languages.

In addition to multiset finite automata (MFA) [1, 6], multiset storage automata (MSA), the commutative counterparts of pushdown automata have been introduced recently [7]. In this paper we continue our work on MSA especially considering closure properties of the corresponding multiset language classes and alternative characterizations.

After a short review of the necessary definitions in section 2 we will give an overview of the closure properties that are known at present. An algebraic characterization of the stated classes will be given in the following chapter.

2 Definitions

We will recapitulate the definitions of multisets together with some elementary operations as well as multiset storage automata in two variants: one with, one without the ability for 0-testing. We define the language classes that should form our primary concern in this paper and recall from [7] how they relate to each other and some other classes.

Definition 1. (Multisets) If M is a set then $\alpha : M \rightarrow \mathbb{N}$ is a multiset over M, where \mathbb{N} denotes the set of natural numbers including 0. The set of all multisets over M is denoted by M^{\oplus}. If $|M| < \infty$ then M^{\oplus} can be identified with $\mathbb{N}^{(|M|)}$. M^{\oplus} is a commutative monoid with operation \oplus and neutral element 0_{M}, defined by $\forall x \in M : (\alpha \oplus \beta)(x) = \alpha(x) + \beta(x)$ and $\forall x \in M : 0_{M}(x) = 0$.
The operation \oplus is defined by $\forall x \in M : (\alpha \oplus \beta)(x) = \max(0, \alpha(x) - \beta(x))$. The operations \ominus and \sqcup are defined as $(\alpha \ominus \beta)(x) = \max(\alpha(x), \beta(x))$ and $(\alpha \sqcup \beta)(x) = \min(\alpha(x), \beta(x))$ for all $x \in M$, where $\alpha, \beta \in M^\oplus$. These operations are carried over to subsets of M^\oplus. For $A, B \subseteq M^\oplus$, let

$$A \sqcup B = \{\alpha \sqcup \beta | \alpha \in A, \beta \in B\}, \quad A \ominus B = \{\alpha \ominus \beta | \alpha \in A, \beta \in B\}.$$

A partial order \sqsubseteq is given by $\alpha \sqsubseteq \beta \iff \forall x \in M : \alpha(x) \leq \beta(x)$. Furthermore, $\alpha \sqsubseteq \beta \iff \alpha \sqsubseteq \beta \land \alpha \neq \beta$.

For $A, B \subseteq M^\oplus$, let

$$A \oplus B = \{\alpha \oplus \beta | \alpha \in A, \beta \in B\}$$

and $A^\oplus = \bigcup_{i=0}^{\infty} A^i$ with $A^0 = \{0_M\}$ and $A^{i+1} = A^i \oplus A$ for $i \in \mathbb{N}$. A^\oplus is also the smallest submonoid of M^\oplus that contains A.

If Σ is an alphabet, and $u \in \Sigma^*$ then $\Psi(u) \in \Sigma^\oplus$ denotes the Parikh vector of u given by $|u|_x$ for $x \in \Sigma$. If $L \subseteq \Sigma^*$ then

$$\Psi(L) = \{\Psi(u) | u \in L\} \subseteq \Sigma^\oplus$$

denotes the set of all Parikh vectors of L.

We also use the notation $\langle y \rangle$ for singleton multisets i.e. $\langle y \rangle(x) = 0$ for $y \neq x$ and $\langle y \rangle(y) = 1$. For any set B let $\overline{B} = \{|b| | b \in B\}$.

Definition 2. (multiset storage automaton with 0-test) A (nondeterministic) multiset storage automaton with 0-test (MSA0) is a structure of the form $A = (Q, \Sigma, \Gamma, K, Q_F, Q_0, \bot)$, where

- Q is a finite set of states,
- Σ a finite set of input symbols,
- Γ a finite set of stack symbols,
- $K_1 \subseteq Q \times \Sigma^\oplus \times \Gamma^\ominus \times \Gamma^\oplus \times Q$,
- $K_2 \subseteq Q \times \Sigma^\oplus \times \{\bot\} \times ((\Gamma^\ominus \oplus \{\bot\}) \cup \{0_{\Gamma \cup \{\bot\}}\}) \times Q$,
- $K = K_1 \cup K_2$,
- $Q_F \subseteq Q$ the set of final states,
- $Q_0 \subseteq Q$ the set of initial states,
- $\bot \not\in \Gamma$ the bottom symbol.

A transition is a quintuple $t = (q, \alpha, \gamma, \delta, q') \in K$.

A configuration is a triple $c = (q, \mu, \sigma)$ where $q \in Q, \mu \in \Sigma^\oplus$, and $\sigma \in (\Gamma^\ominus \oplus \{\bot\}) \cup \{0_{\Gamma \cup \{\bot\}}\}$. Here σ represents the current content of the memory in which the symbol \bot occurs at most once.

An initial configuration has the form $c_0 = (q_0, \mu_0, (\bot))$ with $q_0 \in Q_0$ and $\mu_0 \in \Sigma^\ominus$. A terminal configuration with final state has the form $c_f = (q_f, \sigma, \delta)$ with $q_f \in Q_F$ and $\sigma \in (\Gamma^\ominus \oplus \{\bot\}) \cup \{0_{\Gamma \cup \{\bot\}}\}$.

A configuration of the form $c_f = (q, 0_\Sigma, 0_{\Gamma \cup \{\bot\}})$ with $q \in Q$ is called a terminal configuration with empty stack.

A step t_0 is a relation defined by $c \vdash t_0 c'$ iff $c = (q, \mu, \sigma)$, $c' = (q', \mu', \sigma')$, where $t = (q, \alpha, \gamma, \delta, q') \in K$, $\alpha \subseteq \mu$, $\sigma' = \sigma \oplus \gamma \oplus \delta$ and $\mu' = \mu \ominus \alpha$.

Additionally, if $t \in K_1$ we require $\gamma \subseteq \sigma$ and if $t \in K_2$, $\gamma = \{\bot\} = \sigma$ must hold.

Note that the bottom symbol \bot can only be read if there are no other symbols in the stack thus being a test for 0. Let t_0 denote the reflexive and transitive closure of t_0.

The multiset language accepted by a MSA A with final state is defined by

$$M_0^f(\Sigma) = \{ \mu \in \Sigma^\oplus \mid (q_0, \mu, (\bot)) \vdash_0^* (q_f, 0_\Sigma, \sigma), \quad q_0 \in Q_0, \ q_f \in Q_F, \ \sigma \in (\Gamma^\oplus \cup \{\bot\}) \}$$

The multiset language accepted by a MSA A with empty stack is defined by

$$M_0^e(\Sigma) = \{ \mu \in \Sigma^\oplus \mid (q_0, \mu, (\bot)) \vdash_0^* (q_f, 0_\Sigma, 0_{\Gamma \cup \{\bot\}}), \ q_0 \in Q_0 \}$$

Let mSA_f^0 and mSA_e^0 denote the class of multiset languages accepted by an MSA with final state (empty stack), respectively.

Definition 3. (multiset storage automaton)

A (nondeterministic) multiset storage automaton (MFA) is defined similarly to mSA^0 except for the parts where the bottom symbol \bot is used. Therefore K, the set of edge labels in an MSA is reduced to the set K_1 and the notion of the current memory state in a configuration is $\sigma \in \Gamma^\oplus$.

In order to allow filling the memory at the beginning of a computation with an arbitrary but fixed content we additionally specify the special symbol $\triangle \in \Gamma$ that is the only initial content of a MSA’s memory. Note that contrary to \bot in a mSA^0, a MSA can not test for the presence of \triangle. So an MSA is a tuple $A = (Q, \Sigma, \Gamma, K, Q_F, Q_0, \triangle)$, where Q is a set of states, Σ, Γ are disjoint alphabets, $K \subseteq Q \times \Sigma^\oplus \times \Gamma^\oplus \times \Gamma^\oplus \times Q$ is the set of edges, Q_F and Q_0 are the final and the initial states, respectively, and $\triangle \in \Gamma$ is a special symbol that is present in the initial configuration. This leaves us at:

The multiset language accepted by a MSA A with final state is defined by

$$M_f(\Sigma) = \{ \mu \in \Sigma^\oplus \mid (q_0, \mu, (\triangle)) \vdash^* (q_f, 0_\Sigma, \sigma), \ q_0 \in Q_0, \ q_f \in Q_F, \ \sigma \in \Gamma^\oplus \}$$

The multiset language accepted by a MSA A with empty stack is defined by

$$M_e(\Sigma) = \{ \mu \in \Sigma^\oplus \mid (q_0, \mu, (\triangle)) \vdash^* (q_f, 0_\Sigma, 0_\Gamma), \ q_0 \in Q_0 \}$$

Let mSA_f and mSA_e^0 denote the classes of multiset languages accepted by MSA with final state and empty stack, respectively.

As already shown in [7], the following relations hold. Please refer to [2], [4] or [7] for notations of Petri net languages.

Theorem 1. $\Psi(\mathcal{L}^\lambda) \subseteq \text{mSA}_f \subseteq \text{mARB} = \Psi(\mathcal{L}_\lambda^0) = \text{mSA}_e^0 \subseteq \text{mSA}_f^0 \subseteq \text{PsRE}. \quad \square$
3 Closure Properties

Lemma 1. mSAₐ and mSA₀ are closed under multiset addition ⊕.

Proof. In order to combine two automata into one that accepts the sum (⊕) of the accepted languages, one can simply run them in sequence after making sure that their memory alphabets Γ are disjoint. In the case of mSAₐ, one has to add silent transitions from the final states of the first to the starting state of the second automaton. In the case of mSA₀, one needs to add silent transitions that read ⊥ to make sure that the storage is empty, from every state of the first automaton to the starting state of the second. □

mSA₀ = mARB has been known to be closed under ⊕ as shown in [6].

Lemma 2. mSAₐ and mSA₀ are closed under union ∪.

Proof. As for DFA any two MSA₀A = (Qₐ, Σₐ, Γₐ, Kₐ, QₐF, q₀ₐ, ⊥) and B = (QₐB, ΣₐB, ΓₐB, KₐB, QₐFB, q₀ₐB) accepting Lₐ and LₐB respectively, can be combined to an automaton C of the same type accepting Lₐ ∪ LₐB by introducing two silent transitions, one for each original automaton, from a newly added starting state (q₀C):

C = (Qₐ ⊎ QₐB, Σₐ ∪ ΣₐB, Γₐ ∪ ΓₐB, Kₐ ∪ KₐB, QₐFC ∪ QₐFB, q₀C, ⊥)

Kₐ ∪ KₐB ⊂ {((q₀C, 0ₐ, 0ₐF, q₀ₐ), (q₀C, 0ₐ, 0ₐF, q₀ₐB))}. Since this construction does not use the 0-test it also works for MSA. □

Again, for mSA₀ the corresponding result has been known as shown in [6].

Lemma 3. mSAₐ, mSA₀ and mSA₀ are closed under finite substitution σ.

Proof. In a quasi Σ lettering MSA₀ (MSA) that accepts L, replace every transition (q, α, r, w, q') by the set of transitions \{(q, α, r, w, q') | a ∈ σ(α)\}. The resulting automaton accepts σ(L). □

Lemma 4. mSA₀ is closed under iteration ⊕.

Proof. Let A = (Q, Σ, Γ, K, QF, q₀, ⊥) be a MSA₀ with M₀(A) = M. A accepts only by a final transition t = (q, α, ⟨⊥⟩, 0ₐ∪⊥, q') because ⊥ must be the last remaining symbol in the memory. For every such transition and every q₀ ∈ Q₀, add to K a transition (q, α, ⟨⊥⟩, ⟨⊥⟩, q₀) and let A' be the resulting MSA₀. Then M₀(A') = M⊕. □

Lemma 5. Let C be a class of multiset languages closed under homomorphisms, sum and finite substitution. Let C further contain the semilinear sets. Then the following conditions are equivalent:

a) C is closed under intersection with sets of the form \{µ ∈ Σ₀ | |µ|ₐ = |µ|ᵦ\}.

b) C is closed under intersection with semilinear sets.

c) C is closed under intersection of any of its members.

d) C is closed under inverse homomorphisms.
Proof. We will show the implications d)⇒a)⇒c)⇒b)⇒d) and thereby prove the equivalence of all four conditions.

“d)⇒a)”. Let $L \subseteq \Sigma^\oplus$ be a member of \mathcal{C} and $E = \{ (a) \oplus (b) \}^{\oplus}$, where $a, b \in \Sigma$. Let $\Gamma := \Sigma \setminus \{ b \}$ and $h : \Gamma^\oplus \to \Sigma^\oplus$ be the homomorphism defined by $h(a) = (a) \oplus (b)$, $h(x) = x$ for $x \in \Gamma$, $x \neq a$. Then

$$L \cap E = h(h^{-1}(L)).$$

Therefore, the implication d)⇒a) holds.

“a)⇒c)”. Let $L, K \subseteq \Sigma^\oplus$, where $L, K \in \mathcal{C}$. Let $\hat{\Sigma} := \{ \hat{x} \mid x \in \Sigma \}$ be a set of fresh symbols. Let $h : (\Sigma \cup \hat{\Sigma})^\oplus \to \hat{\Sigma}^\oplus$ and $g : \hat{\Sigma}^\oplus \to \Sigma^\oplus$ be the homomorphisms defined by $h(x) = x$, $h(\hat{x}) = 0_\Sigma$, $g(x) = \hat{x}$ for $x \in \Sigma$. Furthermore, for $x \in \Sigma$, let $E_x = \{ \mu \in (\Sigma \cup \hat{\Sigma})^\oplus \mid |\mu|_x = |\mu|_\hat{x} \}$. Then obviously,

$$L \cap K = h \left((L \oplus g(K)) \cap \bigcap_{x \in \Sigma} E_x \right).$$

This proves a)⇒c).

“c)⇒b)”. Since \mathcal{C} contains the semilinear sets, the implication c)⇒b) is clear.

“b)⇒d)”. Let $h : \Sigma^\oplus \to \Gamma^\oplus$ be a homomorphism and $L \subseteq \Gamma^\oplus$ be a member of \mathcal{C}. Let $\Lambda := \{ x \in \Sigma \mid h(x) = 0_\Gamma \}$, and $\Delta := \Sigma \setminus \Lambda$. Write $\Delta = \{ x_1, \ldots, x_n \}$. Furthermore, let $h(x_i) = y_i \oplus z_i$ be an arbitrary decomposition such that $y_i \in \Gamma$ and $z_i \in \Gamma^\oplus$, $i = 1, \ldots, n$. Let $\Theta = \{ \xi_1, \ldots, \xi_n \}$ be a set of fresh symbols, $\hat{\Gamma} := \Gamma \cup \Theta$, $S := \{ (\xi_i \oplus z_i) \mid 1 \leq i \leq n \}^\oplus$.

Let $\sigma : \Gamma^\oplus \to 2^{\hat{\Gamma}^\oplus}$ be the substitution defined by

$$\sigma(x) = \{ x \} \cup \{ \xi_i \in \Theta \mid x = y_i, 1 \leq i \leq n \}.$$

To complete the construction, let $g : \hat{\Gamma}^\oplus \to \Delta^\oplus$ the homomorphism defined by $g(\xi_i) = x_i$ for $1 \leq i \leq n$ and $g(x) = 0_\Delta$ for every $x \in \Gamma$. Now we have

$$h^{-1}(L) = g(\sigma(L) \cap S) \oplus A^\oplus.$$

Since S is semilinear and A^\oplus is semilinear and therefore contained in \mathcal{C}, this proves b)⇒d). \qed

Table 1 gives an overview over the closure properties. Since all three classes are closed under homomorphisms and sum, lemma 5 yields the equivalence of closure under arbitrary intersection and closure under semilinear intersection. We therefore omit the entry for semilinear intersection. The abbreviations $h(L)$, $\sigma(L)$ stand for arbitrary homomorphisms and finite substitution, respectively. + means that the class is closed under the respective operator. An empty entry means that we don’t know yet whether the closure holds or not. The results for mSA_0, except for iteration $^\oplus$ were obtained in [6].
4 Algebraic characterizations

In [7], we proved the inclusion $\Psi(L^\lambda) \subset \text{mSA}_f \subseteq \text{mSA}_0 \subseteq \text{mSA}_0^0$. In this paper, we will give descriptions of mSA_0 and mSA_0^0 in terms of mSA_f and mSA_0, respectively. This way, we obtain conditions that are equivalent to the strictness of the inclusions.

The classes mSA_f and mSA_0 can be compared using the following theorem.

Theorem 2. For every $L \in \text{mSA}_0$, $L \subseteq \Sigma^\oplus$, there is a $K \in \Psi(L^\lambda)$, $K \subseteq \Gamma^\oplus$, a semilinear set $S \subseteq \Gamma^\oplus$ and a homomorphism $h : \Gamma^\oplus \to \Sigma^\oplus$ such that $L = h(K \cap S)$.

Proof. Let $L \subseteq \Sigma^\oplus$ be a member of $\text{mSA}_0 = \Psi(L^\lambda)$ and $N = (P, T, \tau, \Sigma, \rho, \mu_0, R_f)$ be a Petri net such that $\Psi(L_f(N)) = L$. Write $T = \{t_1, \ldots, t_n\}$, let $\Gamma = \{\xi_1, \ldots, \xi_n\}$ be a set of fresh symbols and $\tilde{\rho} : T \to \Gamma$ the mapping with $\tilde{\rho}(t_i) = \xi_i$ for $1 \leq i \leq n$. Furthermore, let $h : \Gamma^\oplus \to \Sigma^\oplus$ the homomorphism satisfying $h(\xi_i) = \rho(t_i)$ for $1 \leq i \leq n$. Let N' be the Petri net $(P, T, \tau, \tilde{\rho}, \mu_0, R_f)$ and $K := \Psi(L(N'))$.

Analogous to the free commutative monoid, we will need the free abelian group generated by a certain set. For a set A, let A^\oplus denote the set of mappings $A \to \mathbb{Z}$. Equipped with the operation $+, (\mu + \nu)(a) = \mu(a) + \nu(a)$, A^\oplus is an abelian group satisfying $A^\oplus \subseteq A^\otimes$.

Now we can define the homomorphism $\delta : T^\oplus \to P^\oplus$. For every $t \in T$, we set $\delta(t) := \mu_1 - \mu_0$, where $\tau(t) = (\mu_0, \mu_1)$.

Furthermore, let $S := \{\nu \in \Gamma^\oplus \mid \mu_0 + \delta(\tilde{\rho}^{-1}(\nu)) \in R_f\}$.

Since $\delta \circ \tilde{\rho}^{-1}$ is a homomorphism $\Gamma^\oplus \to P^\oplus$ and R_f is finite, Corollary 3 implies that S is a semilinear set.

To complete the proof, we show that $L = h(K \cap S)$, so let $\nu \in L$. Then there is a firing sequence $\sigma \in T^*$ in the net N, such that $\mu_0 \to_\sigma \mu$ for some $\mu \in R_f$ and $\rho(\Psi(\sigma)) = \nu$. $\mu_0 \to_\sigma \mu$ implies that $\tilde{\rho}(\sigma) \in L(N')$ and therefore

<table>
<thead>
<tr>
<th>$L_1 \oplus L_2$</th>
<th>$L_1 \odot L_2$</th>
<th>$L_1 \cup L_2$</th>
<th>$L_1 \cap L_2$</th>
<th>$\sigma(L)$</th>
<th>L^\oplus</th>
<th>$h(L)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
</tbody>
</table>

Table 1. Closure properties
ν′ := Ψ(˜ρ(σ)) ∈ K. On the other hand, μ0 →σ μ implies μ0 + δ(Ψ(σ)) = μ ∈ Rf, so

μ0 + δ(˜ρ⁻¹(ν′)) = μ0 + δ(Ψ(σ)) = μ ∈ Rf

and therefore ν′ ∈ S. Since Ψ ◦ ρ = h ◦ Ψ ◦ ˜ρ, we have

ν = Ψ(ρ(σ)) = h(Ψ(˜ρ(σ))) = h(ν′),

so ν ∈ h(K ∩ S).

Now let ν ∈ h(K ∩ S), say ν = h(ν′) where ν′ ∈ K ∩ S. The condition ν′ ∈ K = Ψ(L(N′)) yields a firing sequence σ ∈ T* such that ν′ = Ψ(˜ρ(σ)) and μ0 →σ μ for some μ ∈ Pβ. Since ν′ ∈ S, we have

μ = μ0 + δ(Ψ(σ)) = μ0 + δ(˜ρ⁻¹(ν′)) ∈ Rf

and therefore ρ(σ)) ∈ Lf(N). This however, implies

ν = h(ν′) = h(Ψ(˜ρ(σ))) = Ψ(ρ(σ)) ∈ Ψ(Lf(N)) = L.

\[\square\]

This can be used to describe the relation between the classes mSA_f and mSA_0. Since mSA_f is closed under homomorphisms and Ψ(Lλ) ⊆ mSA_f, it is clear that mSA_f = mSA_0 if mSA_f is closed under intersection with semilinear sets. Furthermore, mSA_0 is closed under intersection with semilinear sets, this is Lemma 7 in [6]. Therefore, the next theorem follows immediately.

Theorem 3. mSA_f = mSA_0 iff mSA_f is closed under intersection with semilinear sets.

For the classes mSA_0 and mSA_0, an analogous theorem can be established. In order to do that, we will prove the following.

Theorem 4. For every L ∈ mSA_0, there exist L_i, K_i ∈ mSA_0, i = 1, ..., n, such that L = \(\bigcup_{i=1}^{n} L_i \oplus K_i^\oplus\).

The proof however, requires some preparation.

Definition 4. Let A = (Q, Σ, Γ, K, Q_F, Q_0, ⊥) be an MSA^0. Then the relation \(\Rightarrow_A\) on the configurations is defined as follows. \((q, μ, σ) \Rightarrow_A (q', μ', σ')\) if and only if there is an \((q, α, γ, δ, q') \in K\) such that \(γ, δ \in Γ^\oplus\), \(γ ⊆ σ\), \(μ = μ' \oplus α\) and \(σ' = σ ⊕ γ \oplus δ\). In other words, \(\Rightarrow_A\) describes exactly the steps not involving ⊥-edges. Now for \(q, q' \in Q\) and \(σ ∈ Γ^\oplus\), let

\(N_A(q, σ, q') := \{μ ∈ Γ^\oplus \mid (q, μ, σ) \Rightarrow_A (q', 0_Σ, 0_Γ)\}\).

Lemma 6. Let A = (Q, Σ, Γ, K, Q_F, Q_0, ⊥) be an MSA^0 and \(q, q' \in Q\), \(σ ∈ Γ^\oplus\). Then \(N_A(q, σ, q') \in mSA_0\).

Proof. Construct an MSA B = (Q, Σ, Γ, K', {q'\}, {q\}, \triangle), where

\(K' := \{(q_1, α, γ, δ, q_2) ∈ K \mid γ \in Γ^\oplus\} \cup \{(q, 0_Σ, (\triangle), 0_Γ, q)\}\).

Then obviously, \(N_A(q, σ, q') = M_0(B)\). \[\square\]
Lemma 7. For every \(L \in \text{mSA}_0^0 \), there is an \(R \in \text{mREG} \) and a \(\text{mSA}_0 \)-substitution\(^1\) \(\sigma \) such that \(L = \sigma(R) \).

Proof. Let \(L = M_0^0(A) \) with \(A = (Q, \Sigma, \Gamma, K, Q_F, Q_0, \bot) \). Every calculation of \(A \) can be decomposed into phases, separated by \(\bot \)-steps. A \(\bot \)-step is a step involving a \(\bot \)-edge and a phase is a sequence of non-\(\bot \)-steps. In the MFA \(B = (Q', \Sigma', Q_F', q_0, K') \), every state-transition either represents a phase or a \(\bot \)-step. Therefore, it contains two kinds of states and two kinds of edges.

The set of states is constructed as follows. Every state in \(Q'_1 \) either corresponds to the initial configuration of \(A \) or to a configuration reached after a \(\bot \)-step:

\[
Q'_1 := \{ (q', \delta) \mid \exists q \in Q, \mu \in \Sigma^{\oplus} : (q, \mu, (\bot), \delta, q') \in K \}
\]

The states in \(Q'_2 \) correspond to configurations obtained by executing a phase and having stack content \((\bot) \) or \(0_r \). Thus, the states in \(Q'_2 \) correspond to those configurations entered by \(\bot \)-edges:

\[
Q'_2 := \{ (q, 0_r), (q, (\bot)) \mid q \in Q \}.
\]

Now \(Q' := Q'_1 \cup Q'_2 \) and \(Q_F' := \{ (q, 0_F) \mid q \in Q_F \} \).

To account for the different types of actions simulated by the edges, the input alphabet of the MFA is also split into two parts. \(\Sigma_1 \) contains the symbols written on phase-edges:

\[
\Sigma_1 := \{ (q, \delta, q') \mid (q, \delta) \in Q'_1, q' \in Q \}.
\]

The edges that simulate \(\bot \)-steps are labeled with symbols from \(\Sigma \). Therefore \(\Sigma' := \Sigma_1 \cup \Sigma \).

The set \(K' \) of edges is \(K' = K'_1 \cup K'_2 \). Therefore, \(K'_1 \) contains the edges simulating the phases, while those in \(K'_2 \) simulate the \(\bot \)-steps:

\[
K'_1 := \{ ((q, \bot) \oplus \delta), (q, \delta, q'), (q', \bot)) \mid (q, \delta) \in Q'_1, q' \in Q \},
\]

\[
K'_2 := \{ ((q, \bot)) \mu, (q', \delta) \mid (q, \mu, (\bot), \delta, q') \in K \}.
\]

To complete the construction, the substitution \(\sigma \) is defined. The symbols in \(\Sigma_1 \) are mapped to sets of multisets that can be read while executing a phase (i.e. languages of the form \(N_A(q, \delta, q') \)): \(\sigma((q, \delta, q')) := N_A(q, \delta, q') \) for all \((q, \delta, q') \in \Sigma_1 \). Since the edges simulating \(\bot \)-steps are labeled with the symbols read by the corresponding edge in \(A \), this can be carried over to the substitution:

\(\sigma(a) = \{a\} \) for all \(a \in \Sigma \). Now for every \(x \in \Sigma' \), it is \(\sigma(x) \in \text{mSA}_0 \), so \(\sigma \) is a \(\text{mSA}_0 \)-substitution. Furthermore, it is obvious that \(\sigma(R) = L \).

\(\square \)

Now we are ready to prove Theorem 4.

\(^1\) a substitution \(\sigma : \Sigma^{\oplus} \to 2^{\Sigma^{\oplus}} \) with \(\sigma(x) \in \text{mSA}_0 \) for all \(x \in \Sigma' \), if \(L \subseteq \Sigma^{\oplus} \) and \(R \subseteq \Sigma^{\oplus} \).
Proof (Theorem 4). Apply Lemma 7 and write $L = \sigma(R)$ where $R \in \text{mREG}$, $R \subseteq \Gamma^\oplus$, and σ is an mSA_0-substitution. Since R is semilinear, it is

$$R = \bigcup_{i=1}^{n} \{x_i\} \oplus \{y_{i,1}, \ldots, y_{i,k_i}\}$$

for certain $x_i, y_{i,j} \in \Gamma^\oplus$, $1 \leq i \leq n$, $1 \leq j \leq k_i$. The closure of mSA_0 against addition and union implies that there are $K_i, L_i \in \text{mSA}_0$, $1 \leq i \leq n$, such that $\sigma(x_i) = K_i$ and $\sigma(\{y_{i,1}, \ldots, y_{i,k_i}\}) = L_i$. With these, it follows

$$L = \sigma(R) = \bigcup_{i=1}^{n} K_i \oplus L_i^\oplus.$$

Since mSA_0 is closed under sum and union, it is clear that $\text{mSA}_0 = \text{mSA}_0^0$ if mSA_0 is closed under iteration. Furthermore, mSA_0^0 is closed under iteration and therefore the converse also holds.

Corollary 1. $\text{mSA}_0 = \text{mSA}_0^0$ iff mSA_0 is closed under iteration.

Theorem 4 also yields a useful property of mSA_0^0. Since every language over one symbol in $\text{mSA}_0 = \Psi(L_0^\oplus)$ is regular, as shown in [3], and the class of regular languages is closed under iteration, sum and union, we obtain the following corollary.

Corollary 2. Every language in mSA_0^0 over one symbol is regular.

5 Conclusion

So far we did not consider the deterministic versions of multiset automata. Several different variants of such are possible. The investigation of such deterministic multiset finite and storage automata will be given in another paper.

References

A Commutative Monoids

This section contains some information about commutative monoids needed in section 4. For a commutative monoid M, we use $+$ as the symbol for its operation, if there is no danger of confusion. Furthermore, for a subset $T \subseteq M$, by T^\oplus we denote the submonoid of M generated by T (i.e. the smallest submonoid of M containing T). The relation \sqsubseteq is also generalized to commutative monoids: If M is a commutative monoid and $m, m' \in M$, we write $m \sqsubseteq m'$ iff there is an $n \in M$ such that $m' = m + n$.

Definition 5. Let M be a commutative monoid. A set $S \subseteq M$ is called lower bound for $T \subseteq M$, iff $S \subseteq T \setminus \{0\}$ and for every $t \in T \setminus \{0\}$ there is an $s \in S$ with $s \sqsubseteq t$.

Lemma 8. Every set $S \subseteq N^k$ has a finite lower bound with respect to \sqsubseteq.

Proof. We construct the finite lower bound by an induction on k. The case $k = 1$ is trivial, so let $k > 1$. Choose an element $x = (x_1, \ldots, x_k) \in S \setminus \{0\}$. We will need the index set

$$I := \{(i, j) \in \mathbb{N}^2 \mid 1 \leq i \leq k, \ 0 \leq j < x_i\}.$$

Now let

$$S_{i,j} := \{t \in S \mid t_i = j\}, \ (i,j) \in I.$$

and consider the mapping

$$\varphi_{i,j} : S_{i,j} \longrightarrow \mathbb{N}^{k-1}, \ (i,j) \in I$$

$$\varphi_{i,j}(t_1, \ldots, t_k) = (t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_k).$$

Obviously, $\varphi_{i,j}$ is an injective homomorphism that satisfies

$$t \sqsubseteq t' \iff \varphi_{i,j}(t) \sqsubseteq \varphi_{i,j}(t')$$

for all $t, t' \in S_{i,j}$. By induction hypothesis, for every set

$$T_{i,j} := \varphi_{i,j}(S_{i,j}) \subseteq \mathbb{N}^{k-1}$$

we can find a finite lower bound $T'_{i,j}$. We will show that the finite set

$$S' := \{x\} \cup \bigcup_{(i,j) \in I} \varphi_{i,j}^{-1}(T'_{i,j})$$

is a lower bound of S. Therefore, $s \in S$ is arbitrarily chosen with $x \not\sqsubseteq s$. Then, there is an index i with $j := s_i < x_i$, i.e. $s \in S_{i,j}$. $T'_{i,j}$ now contains an element s' with $s' \sqsubseteq \varphi_{i,j}(s)$, hence we have $s \sqsubseteq \varphi_{i,j}^{-1}(s') \in \varphi_{i,j}^{-1}(T'_{i,j}) \subseteq S'$. \hspace{1cm} \Box

Definition 6. Let M be a commutative monoid. A subset $S \subseteq M$ is called quasi-invertible iff $b \in S$ holds whenever $a, b \in M$ satisfy $a \in S$ and $a + b \in S$.
For example, every kernel of a homomorphism is a quasi-invertible submonoid. Or, slightly more general, if \(h : M \to M' \) is a homomorphism of commutative monoids and \(S \subseteq M' \) is quasi-invertible, then \(h^{-1}(S) \subseteq M \) is quasi-invertible as well.

Lemma 9. Let \(M \) be a finitely generated commutative monoid and \(S \subseteq M \) a quasi-invertible submonoid. Then \(S \) is finitely generated.

Proof. Since \(M \) is finitely generated, there exists a surjective homomorphism \(h : \mathbb{N}^k \to M \) for some \(k \). Therefore, it suffices to show that \(T := h^{-1}(S) \) is finitely generated.

It is easily seen that \(T \) is quasi-invertible. Furthermore, with Lemma 8 we can find a finite lower bound \(T' \) for \(T \). Hence, the induction hypothesis implies \(t'' \in T'' \), and therefore \(t = t' + t'' \). Thus \(T = T'' \).

Theorem 5. Let \(M \) be a finitely generated commutative monoid, \(G \) an abelian group and \(\varphi : M \to G \) a homomorphism. Then for every \(g \in G \), the set \(S = \varphi^{-1}(g) \) is semilinear.

Proof. Let \(S' \) be a finite lower bound for \(S \). Since the kernel of \(\varphi \) is a quasi-invertible submonoid of \(M \), it is finitely generated: \(\ker \varphi = F^\oplus \) for some finite set \(F \subseteq \ker \varphi \). We claim that

\[
S = \bigcup_{x \in S'} \{ x \} + F^\oplus.
\]

Let \(s \in S \) be arbitrary. Since \(S' \) is lower bound, there is an \(x \in S' \) such that \(x \subseteq s \), so there is a \(y \in M \) such that \(s = x + y \). Since \(x \in S \), we have \(\varphi(x) = b \) which implies

\[
b + \varphi(y) = \varphi(x + y) = \varphi(s) = b,
\]

so \(\varphi(y) = 0 \) and \(y \in F^\oplus \).

For \(x \in S' \) and \(y \in F^\oplus \), we have

\[
\varphi(x + y) = \varphi(x) + \varphi(y) = b,
\]

so \(x + y \in S \). Therefore equation (1) holds and \(S \) is semilinear.

Corollary 3. Let \(M \) be a finitely generated commutative monoid, \(G \) an abelian group and \(\varphi : M \to G \) a homomorphism. Then for every \(g_0 \in G \) and every finite subset \(H \subseteq G \), the set \(S = \{ m \in M \mid g_0 + \varphi(m) \in H \} \) is semilinear.

Proof. Let \(H' \) be the finite set \(\{ g - g_0 \mid g \in H \} \). Then \(\varphi^{-1}(h) \) is semilinear for every \(h \in H' \) and therefore \(S = \bigcup_{h \in H'} \varphi^{-1}(h) \) is semilinear as a finite union of semilinear sets.