Renew — XML Format Guide

Olaf Kummer
Frank Wienberg

Michael Duvigneau

University of Hamburg
Department for Informatics
Theoretical Foundations Group

Distributed Systems Group

Release 1.5.2
July 3, 2001

This manual is @2000 by Olaf Kummer, Frank Wienberg, Michael Duvigneau.

Arbeitsbereich TGI

— Renew —
Fachbereich Informatik
Universitdt Hamburg
Vogt-Kdlln-Strafle 30
D-22527 Hamburg
Germany

Apple is a registered trademark of Apple Computer, Inc.
Alphaworks is a registered trademark of IBM Corporation.
IBM is a registered trademark of IBM Corporation.

Java is a registered trademark of Sun Microsystems, Inc.
JavaCC is a trademark of Sun Microsystems, Inc.

IATEX is a trademark of Addison-Wesley Publishing Company.
Macintosh is a registered trademark of Apple Computer, Inc.
Microsoft Word is a registered trademark of Microsoft Corporation.
OS/2 Warp is a registered trademark of IBM Corporation.
PostScript is a registered trademark of Adobe Systems Inc.
Solaris is a registered trademark of Sun Microsystems, Inc.
StarOffice is a trademark of Star Divison, GmbH.

Stufflt is a trademark of Aladdin Systems, Inc.

Sun is a registered trademark of Sun Microsystems, Inc.

TEX is a trademark of the American Mathematical Society.
UML is a trademark of the Object Management Group.
Unicode is a registered trademark of Unicode, Inc.

UNIX is a registered trademark of AT&T.

Windows is a registered trademark of Microsoft Corporation.
X Windows System is a trademark of X Consortium, Inc.

Other trademarks are trademarks of their respective owners.
The use of such trademarks does not indicate that they can be freely used.

Please refer to the license section of the Renew user guide for more information about copyright and liability issues.

This document was prepared using the IATEX typesetting system.
This document is contained in the files doc/xmlformat.dvi, doc/xmlformat.ps, and doc/xmlformat.pdf as distributed together with Renew 1.5.2.

Chapter 1

The XML File Format of Renew

This document describes the file format that Renew uses for exports and imports in XML (ex-
tensible mark-up language). It is based on a paper presented at the Meeting on XML/SGML
based Interchange Formats for Petri Nets [1].

The main section consists of a commented DTD (document type definition). Due to the
format’s simplicity it was possible to complete the implementation in one week’s amount of
work by a single person.

Renew itself uses an intermediate layer called shadow nets for the representation of net
data. This layer formed the basis for the file format, which was then adapted to include
graphical information. It is expected that with certain modifications this format can be used
for different tools, too.

1.1 The File Format

The DTD is given in plain ASCII text, no special characters are used. Most keywords of
the Petri net file format are given in lower case. Tags and attribute names in XML are case
sensitive. In order to be consistent, it was decided to extend case-sensitivity even to those
keywords that appear within attribute values.

<?xml encoding="US-ASCII"?>

The top-level element of every file is the net. It is conceivable to store multiple nets in
one file, which would lead to an additional element netsystem. Currently, this is not needed.

Within the single element net the net elements are positioned in such an order that no
forward references occur in the common cases. This simplifies parsing, which is difficult
enough, and puts only a small burden on the XML generation code.

<!ELEMENT net (place*, transition*, arc*, annotation*)>

Nets are characterized by an ID, and a type. The ID is suggested for future extensions
and for consistency, because all other net elements will contain an ID, too. Currently, the ID
is simply N. If explicit IDs are given, it is supposed to consist of the letter N and a decimal
integer in the range 1 to 23! — 1.

The type attribute is supposed to differentiate between different net formalisms. Possi-
ble values might be ptnet for P/T-nets or hlnet for high-level nets. A more fine-grained
distinction might be required.

<!ATTLIST net
id ID #REQUIRED
type CDATA #IMPLIED>

Places possess an ID that may be referenced by arcs or other net constituents that require
topological information. A place ID consists of the letter I followed by a decimal integer in
the range 1 to 23! — 1. Tt is required to start the ID with a letter, because this is enforced
for every attribute of the type ID by the XML standard. Because Renew uses numbers for
IDs internally, only numeric characters may follow.

A place type might be given. Currently, only the type ordinary is used, but other types
like fifo for FIFO-places might be added easily. Within the place element an optional
graphics specification might be nested and an arbitrary number of annotations might be
given.

<!ELEMENT place (graphics?, annotationx)>
<!ATTLIST place

id ID #REQUIRED

type CDATA #IMPLIED>

Transitions are handled exactly like places. The type of a transition is also ordinary in
all cases.

<!ELEMENT transition (graphics?, annotationx)>
<!ATTLIST transition

id ID #REQUIRED

type CDATA #IMPLIED>

The IDs are assembled in the same way as place IDs. Transition IDs and place IDs and
in fact all IDs that will be subsequently described share the same number space, i.e., no ID
may be used more than once.

Only after all net nodes have been read in, arcs are listed in the file. Besides their own ID,
arcs reference the IDs of their source and target nodes. Exactly one of source and target
must reference a place, the other attribute must reference a transition.

Arc can belong to several types. The type attribute may have one of the values ordinary,
double (an arc that reserves a token during the transition’s firings), test (an arc that checks
for the presence of a token without removing it), multi-ordinary (an ordinary arc that can
carry a multiset of tokens), inhibitor (an arc that verifies the absence of a certain token),
and clear (an arc that removes all tokens in a place).

<!ELEMENT arc (graphics?, annotationx)>
<!ATTLIST arc

id ID #REQUIRED

source IDREF #REQUIRED

target IDREF #REQUIRED

type CDATA #IMPLIED>

Nets, places, arcs, and transitions may be complemented with annotations. Annotations
consist of textual information that specifies the precise behaviour of a net or a net element.
Annotations may carry information on their graphical representation. It is required that they
give their actual text in a separate <text> element. This element was introduced to avoid
elements with mixed content, i.e. elements that contain text and subelements at the same
time. Because the annotation text is potentially very long, is was not appropriate to use an
attribute either.

<!ELEMENT annotation (text, graphics?)>
<!ATTLIST annotation

id ID #REQUIRED

type CDATA #IMPLIED>
<!ELEMENT text (#PCDATA)>

The possible types of an annotation depend of the enclosing element of the annotation.
Currently, nets may be annotated with the types comment, name and declaration, where
the last type is used for variable declarations and import statements.

Places may be annotated by the types comment, name (the place’s name), initialmarking
(a number of expressions that are used to get the place’s initial marking), currentmarking
(the same for a current marking, currently not implemented), capacity (the maximum
amount of tokens that may reside in a place), and type (a type that restricts the tokens
that are valid for this place). At the moment, capacities and current marking annotations
are not supported by the tool.

Valid transition annotation types include comment, name (the transition’s name), guard
(an expression that must evaluate to true before the transition is enabled), expression
(a formula that must hold before a transition is activated), action (a code segment that
is evaluated during the transitions firing), uplink and downlink (for the specification of
synchronous channels, specific to reference nets).

Besides comment, arcs allow the annotation type expression to specify an expression that
is evaluated to obtain the token moved by this arcs. In the case of P/T-nets, the expression
must be an integer constant that denotes the number of tokens moved.

If the annotation type is omitted, it has to be inferred from the annotation text. Types
that are not recognized by the parser should be reported to the user, but also inferred if
possible.

This completes the description of the semantic elements. All graphical information is
bundled in a single element. The rationale for an individual graphics element is that non-
graphical applications can easily ignore any graphics-related information this way. It would
be more difficult, if all attributes were listed directly within the net elements.

All coordinates and sizes are expected in pixel units. All numeric values are given in the
form of Java number literals. All sizes default to application dependent values. An offset
describes the offset of the enclosing net element’s center to the net element’s center. If an
element occurs directly inside the net like places or transitions, the offset is relative to the
index origin of the net, which lies at the upper left corner. Positive z-coordinates run right,
positive y-coordinates run down.

<!ELEMENT graphics (size?, textsize?, offset?,
fillcolor?, pencolor?, textcolor?, point*, data*)>

A graphics element can contain many individual elements for various units of information.

<!ELEMENT size EMPTY>
<!ATTLIST size

w CDATA #REQUIRED

h CDATA #REQUIRED>
<!ELEMENT textsize EMPTY>
<!ATTLIST textsize

size CDATA #REQUIRED>
<!ELEMENT offset EMPTY>
<!ATTLIST offset

x CDATA #REQUIRED

y CDATA #REQUIRED>

In the case of colors, each color elements contains exactly one subelement. Usually this
is a subelement that lists the read, green, and blue component separately, but it can also
be one of two special cases transparent and background. These elements request that the
element should be drawn not at all or in the background color, thereby making it invisible, but
possibly obscuring other elements. The possibility of completely unrelated values for these
attributes was the reason why the red, green, and blue values were not directly included in
the color elements.

<!ELEMENT fillcolor (RGBcolor | transparent | background)>
<!ELEMENT pencolor (RGBcolor | transparent | background)>
<!ELEMENT textcolor (RGBcolor | transparent | background)>
<!ELEMENT RGBcolor EMPTY>
<!ATTLIST RGBcolor

r CDATA #REQUIRED

g CDATA #REQUIRED

b CDATA #REQUIRED>
<!ELEMENT transparent EMPTY>
<!ELEMENT background EMPTY>

A graphics element may contain an arbitrary number of points that specify the exact
geometry. The interpretation of the points depends on the enclosing object. Points are given
in coordinates relative to the net. Currently, points are used to denote intermediate points
of arcs.

<!ELEMENT point (x,y)>
<!ATTLIST point

x CDATA #REQUIRED

y CDATA #REQUIRED>

Some additional data may be provided in the case that the well-known subelements of
graphics are not sufficient. The data element is meant as a preliminary means of data
representation. All types of data should ultimately be converted to well-known elements.
Currently this element is unused.

<!ELEMENT data (#PCDATA)>
<!'ATTLIST data
type CDATA #REQUIRED>

1.2 An example net

In this section we display an example net file as generated by the tool. The example is
shortened, so that the main characteristics become more visible. In Figure 1.1, the net that
is represented in this file is shown.

The DOCTYPE might be left out in future versions, because nets in XML-format can be
parsed without a DTD.

1.3 Closing Remarks

The file format can represent both graphical information and topological information. Textual
inscriptions are represented in textual form. No effort is made to represent the net entirely on
a semantic level, but by using element types a tool may give certain hints what an inscription is
supposed to denote. By allowing to omit the graphics part, non-graphical tools like analysers
or net generators may read and write such files, too.

<?xml version="1.0"7>
<!DOCTYPE net SYSTEM "http://www.renew.de/xrnl.dtd">
<net id="N" type="hlnet">
<place id="I3">
<graphics>
<size w="20" h="20"/>
<offset x="48" y="36"/>
<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>
<pencolor><RGBcolor r="Q0" g="0" b="0"/></pencolor>
<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>
</graphics>
<annotation id="I6" type="initialmarking">
<text>1</text>
<graphics>
<size w="7" h="15"/>
<textsize size="12"/>
<offset x="0" y="0"/>
<fillcolor><transparent/></fillcolor>
<pencolor><transparent/></pencolor>
<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>
</graphics>
</annotation>
</place>
<transition id="I1">
<graphics>

</graphics>
</transition>
<arc id="I2" source="I3" target="I1" type="ordinary">
<graphics>
<fillcolor><RGBcolor r="112" g="219" b="147"/></fillcolor>
<pencolor><RGBcolor r="0" g="0" b="0"/></pencolor>
<textcolor><RGBcolor r="0" g="0" b="0"/></textcolor>
<point x="48" y="75"/>
</graphics>
<annotation id="I4" type="expression">
<text>x</text>
<graphics>

</graphics>
</annotation>
</arc>
<annotation id="A1" type='"name'">
<text>demo</text>
</annotation>
<annotation id="Ib" type="declaration'">
<text>int x;</text>
<graphics>

</graphics>
</annotation>
</net>

Figure 1.1: An XML file and the associated net

Bibliography

[1] Proceedings on the meeting on XML/SGML based interchange formats for Petri nets,
2000.

WWW page at http://www.daimi.au.dk/pn2000/Interchange/.

