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Abstract. In the last few years a lot of work has been done to discover why 

GasNets outperform other network types in terms of evolvability. In this work 

GasNets are again compared to CTRNNs on a shape discrimination task. This 

task is used as to solve it, or gain an advantage, a controller does not need 

timers or pattern generators. We show that GasNets are outperformed by 

CTRNNs in terms of evolvability on this task and possible reasons for the 

disadvantages of GasNets are investigated. It is shown that, on a simple task 

where there is no necessity for a timer or pattern generator, there may be other 

issues which are better tackled by CTRNNs. 

1   Introduction 

After GasNets, artificial neural networks inspired by gaseous signalling in biological 

neural systems, were introduced 1998 [4], they were used for evolution of controllers 

in many different tasks - from pattern generator tasks [12] to quadrupedal walking [5]. 

The findings in these experiments were that GasNets evolved faster than the same 

controller type without gas (e.g. [12] or [4]). Other studies also compared GasNet 

controllers to other controller types like continuous time recurrent neural networks 

(CTRNNs) or plastic neural networks (PNNs) [5][6]. In terms of evolvability 

(measured as the length of evolutionary runs till a successful controller was evolved 

or the robustness of evolved controllers), GasNets generally outperformed other 

network types or the GasNets without gas. After this higher performance in 

evolvability became evident, theoretical approaches were made to find the reason for 

this advantage. However, differences in fitness landscape properties between the 

GasNet and No-Gas classes which could explain the advantage for example, could not 

be found [12]. Other investigations focused on other properties of the GasNets, such 

as the coupling between the electrical and chemical signalling systems [7] and 

functional neutrality in evolution [14]. 

While some progress was made, none of these approaches found a definitive 

explanation of the improved evolvability of GasNets compared to other networks. 

This and other work did however lead to the current hypothesis that there are 3 

possible reasons for improved evolvability [9]: 
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− modulatory effects 

− different and separate temporal time scales of gas actions 

− Flexible coupling of two different and interacting signalling systems through 

spatial embeddedness  

 

In many of the tasks where GasNet controllers were analyzed, it turned out that the 

network had at least one sub network which produced a cyclic pattern or timing signal 

[11]. These timers or pattern generators (PG) are easy to realize in GasNets and it was 

suggested that this ability to tune pattern generators to given environments can be an 

advantage of GasNets [12 chapter 7.3.4]. Moreover, in almost all tasks used, the 

ability to tune pattern generators is helpful. Walking is clearly a cyclic process where 

timers/PGs can help. Also in the triangle-square discrimination task [4] the controller 

made use of pattern generators within the network [11]. But what happens if the task 

doesn’t need a PG? If there are solutions which can be found without timers/PGs, are 

GasNets still better to evolve? 

The aim of this work is to answer these questions. To do this, a shape 

discrimination task is introduced, which was previously used with CTRNNs [2]. 

Timer or pattern generator sub networks should not lead to an evolvability advantage 

in this task because no cyclic behaviour is needed. Different GasNet controllers are 

compared to different CTRNN controllers in terms of evolvability which is judged by 

the fitness of evolved solutions and the length of time to evolve them (if the word 

performance is used in this work, then always in terms of evolvability).  

The hypothesis to be proven is that GasNets are good to evolve pattern generators 

and gain advantages in tasks where they are useful, but perform worse on tasks where 

these abilities are almost useless compared to different types of neural networks.  

2   Experimental Setup 

2.1   Shape Discrimination Task 

The shape discrimination task as used in this 

work was introduced by Randall Beer [2]. 

The robot has to discriminate between 

different falling objects and has to catch or 

avoid the objects, depending on the shape. 

The robot is represented by a line with a 

given length (30 Pixel) and is acting in a 2-

dimensional, closed room (The room is 400 

pixels wide and 275 pixels high, starting 

position is always (0,200)).  

The robot has seven sensor rays which are uniformly distributed over a fixed angle 

(Π/6) starting from the centre of the robot and facing straight up. The rays act as 

proximity sensors with a maximum sensing range of 220 Pixel and a maximum output 

value if the object has reached the robot.  



 

Each robot has two motor neurons for horizontal motion. They define the speed and 

direction of the robot. The speed is given by OutputNeuron0-OutputNeuron1. Negative 

speed stands for motion to the left, positive values for motion to the right. The 

maximum speed is 2 Pixel/time step.  

Two shapes are used for the task: Circles (radius = 30) and diamonds (side length = 

30). Reference points are always the centres of the objects or the robot. The robot has 

to catch circles and avoid diamonds. The falling speed for all objects is always one 

Pixel per time step. This leads to a simulation time of 275 discrete time steps. The 

horizontal offset of the object can be +/- 50 Pixel from the robots starting point. 

After the falling object has reached the floor (xObejct = 0) the fitness of the robot is 

evaluated by the following formula: 
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where pi = di for diamonds and pi = 1-di for circular objects. di is the distance between 

centre of robot and objects and is clipped to a maximum distance and normalized to 

[0,1]. The maximum distance is 1.5 * (radiusObject + radiusRobot) and has to be used, 

because it leads to a balance between avoidance distance for diamonds and accuracy 

in catching circles. 24 evaluation trials are performed for each robot with uniformly 

distributed dropping points and alternating object shapes. 

2.2 Genetic Algorithm 

In all experiments and for all network types, the same genetic algorithm is used. The 

competition is tournament based and the algorithm as follows:  

The population is spatially distributed on a square plane and an individual 

randomly chosen. The tournament group consists of this individual and its 8 

neighbours. The two fittest individuals are picked, recombined and the weakest 

individual in the group is then replaced by the mutated offspring.  

As recombination, 1-point crossover is used with a randomly chosen crossing point 

between nodes (only whole nodes are transferred). For the shape discrimination task, 

the population size was always 324 and the genetic algorithm was running over a 

maximum of 200 pseudo generations or stopped if an individual with a fitness > 0.99 

was found. One pseudo generation is equal to 324 selection and recombination 

processes. 

Loci from the produced offspring are chosen for mutation with a fixed probability. 

This mutation rate is adjusted to the number of loci which can be mutated in the 

genotype (for some experiments, specific loci are locked) and therefore, always the 

same number of mutations are performed on average for each network type. If chosen, 

the locus is mutated using a Normal distribution with standard deviation of 1, which is 

scaled up (or down) to the range of the mutated value. The mean of the distribution is 

the original value of the locus. The maximum possible mutation is (upper limit – 

lower limit)/2. For example, the possibility to change a weight in a CTRNN  

(ω∈[-5,5]) by less than 1.0 is 84%. The possibility for a change less than 2.0 is 98%. 



2.3   Network Types and Characteristic Equations 

2.3.1   CTRNN Network Types. All Continuous Time Recurrent Neural Networks 

used in this work have a fixed number of seven neurons. These neurons are divided 

into five inner neurons and two motor neurons. The inner neurons are fully connected. 

Each of them can have one non-weighted sensor input connection and is connected to 

the motor neurons. All connections between neurons have a weight value in each 

direction. The motor neurons are not connected to each other and can not receive 

input from sensors.  

Three different CTRNN variations are used in this work, which are all based on 

this basic topology. Each network has a specific name in brackets for later references. 

 

2.3.1.1 Standard CTRNN (C1). This is a conventional CTRNN [1] with the following 

characteristic equation: 
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Where: 
t

iy  is the activation of neuron i at time t  

∆t   is the time slice (∆t was 1.0 in all shape discrimination trials)  

iτ   is the time constant of neuron i (τ ∈ [1,5])  

jiω  is the weight of the connection from node j to i (ω ∈ [-5,5])  

jθ  is the bias term of neuron j (θ ∈ [-5,5])  

iI  is the sensor input to the i’th neuron (I ∈ [0,10], see experimental setup) 

σ  is the sigmoid function 
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Biases, time constants, connection weights and the input source are under 

evolutionary control, i.e. for the input, the evolution can choose from which sensor 

ray the input is from. 

 

2.3.1.2 CTRNN with no Temporal Dynamics (C2). This network has the same 

characteristic equation and topology as C1, but τ is set to 1.0 for all neurons and is not 

under evolutionary control. This effectively turns the neurons into reactive integrate-

and-fire type neurons with no internal temporal dynamics. 

 

2.3.1.3 CTRNN with Discrete Weights (C3).  Same as C1, but only discrete weights 

are used. Connection weights in this network type can only be -5, 0 or 5.  

 

2.3.2   GasNet Types. GasNets, introduced by Husbands et al. [4], have two different 

signalling mechanisms. They have electrical connections which can be compared to 

other ANN types and a gas signalling mechanism. The gases can be emitted by nodes 



 

and have modulatory effects on the transfer function of nodes in the vicinity of the 

emitting node. These gas connections work on different time scales than the electrical 

connections by build up and decay mechanisms. To model the gas diffusion the 

neurons of a GasNets are spatially distributed points on a square plane (in this work 

with side length 50 pixels). Electrical connections are based on neurons’ positions in 

this plane with connections from a neuron being formed to all others within a 

genetically specified arc.  

Detailed information on the GasNet model can be found in [12], [7]. The following 

chapters only repeat what is relevant for this work.  

2.3.2.1 Standard GasNet (G1). This is a standard GasNet, already used in previous 

work [4-8,11-14] The characteristic equation is as follows: 
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Where: 
t

iy  is the output of neuron i at time t   

t

iK  is the transfer function parameter 

 C   is the set of nodes which have connections to node i 

jiω  is the weight of the electrical connection from node j to node i (ω ∈ [-1|1])  

jθ  is the bias term of neuron j (θ ∈ [-1,1])  

iI  is the sensor input to the i’th neuron (I ∈ [0,1], see experimental setup) 

 

In this work two gas types are used. Gas 1 increases the transfer function parameter K 

and gas 2 decreases it. This is done, dependent on the gas concentration at a given 

node. The gas concentration at a given node j with a distance d to the emitting node i 

at time t, is given by the following equations: 
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where r is the radius of the gas cloud, s is the parameter that controls the build 

up/decay rate of the gas, te is the time node i started emitting and ts the time node i 

stopped emitting. The parameters r and s are genetically determined for each node.  

The parameter 
t

iK  for node i at time step t is then given by equations 8 to 11: 

t

iK = P[
t

iD ] (8) 

P={-4.0,-2.0,-1.0,-0.5,-0.25,-0.125,0.0,0.125,0.25,0.5,1.0,2.0,4.0} (9) 
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2.3.2.2   GasNet without Gas (G2). This network type was also used in previous work 

and is a standard GasNet but using no gas (NoGasNet). This means no neuron can 

emit gas and only electrical connections can be used to connect neurons.  

 

2.3.2.3   GasNet with Weight Table (G3). This is a fully connected GasNet. All 

neurons are connected and evolution can set the weights of these connections. As 

weight values, -1, 0 and 1 are used, as in the original GasNet. This means, that the 

network initially is never totally connected, because on average 1/3rd of the 

connections has weight = 0. However it is much easier for evolution to connect two 

nodes by mutating only one locus than when using the spatial connectivity scheme of 

the standard GasNet.  

 

2.3.2.4 GasNet with Weight Table but Real Weights (G4). Same network type as G3, 

but using real weights. The initial connection ratio is much higher in this net, because 

it is very unlikely to have connections with weight=0.0. 

 

2.3.2.5 GasNet with Weight Table, Real Weights but no Gas (G5). Same network as 

G4 but again no gas is used.  

 

2.3.2.6 GasNet without Spatial Distribution (G7). In this GasNet the G5 type is 

changed a little bit. Because the G5 type does not use gas any more and all 

connections are given by a weight table, the neurons don’t have to be spatially 

distributed any more. So, in the G7 type, the x and y loci are set to 0.0 and locked for 

mutation. 



 

3   Results 

As can be seen in Table 1, the CTRNN controlled robots clearly outperform the 

GasNet controlled robots. The best robots evolved over all runs were controlled by C1 

and C2 networks (standard CTRNN and CTRNN with τ = 1). They had a fitness value 

of 0.990 on the evaluation trials and an average of around 0.995 on 100 random trials. 

The best of the best GasNet controlled robot had an average fitness of .991 and an 

average of 0.959 on 100 random trials. It should be pointed out that the genetic 

algorithm stopped if a best individual was found (with a fitness of 0.990) or if the 

limit of 200 generations was reached. This explains the maximum of 0.990 on the 

CTRNN runs and the average generation number of around 200 on the GasNet runs. 

The C1- and C2-robots only once reached the maximum of 200 generations. The 

best individual in this run already had a fitness value of 0.949. Only one G1 run 

stopped before the maximum number of generations was reached (177 generations). 

Two G2 runs stopped before the maximum was reached (151 and 182 generations) 

Table 1. Results of 20 evolutionary runs. The table shows the average fitness of the best 

individual and the average of the whole population after 20 runs, the average fitness of the best 

individual on 100 random trials and the average number of generations needed to evolve the 

best individual. The values in brackets specify the standard deviation 

Network 

type: 

Average of  

best individual: 

Average fitness 

of population: 

Average fitness 

on random trials: 

Average Nr of 

generations: 

C1 0.990 (0.010) 0.826 (0.030) 0.949 (0.043) 100.000 (42.7) 

C2 0.990 (0.010) 0.798 (0.030) 0.953 (0.031) 108.000 (55.3) 

G1 0.882 (0.099) 0.762 (0.075) 0.825 (0.119) 198.000 (5.1) 

G2 0.775 (0.100) 0.683 (0.062) 0.723 (0.125) 196.000 (11.2) 

 

Notice that the C2 variant, which has no internal temporal dynamics, performed as 

well as C1. This is evidence that different temporal scales are not needed in the nodes 

to complete the task and that the use of different temporal scales in the network does 

not lead to improved performance. Samples did not show evidence that the evolved 

solutions are different between both network types.  

4   Why Are CTRNNs Better? 

There are a lot of differences between CTRNNs and GasNets which could account for 

the CTRNN’s better performance. In the following sections specific differences are 

highlighted and their influence on the advantage of CTRNNs evaluated. 

4.1   Connection Scheme 

The most eye-catching difference is the different connection scheme between both 

network types. CTRNN variants are almost fully connected whereas GasNets are only 



sparsely connected. This means that an evolving CTRNN only has to find a working 

set of weights, but an evolving GasNet also has to find the right sensor to motor 

connection mapping. 

To find out if the connection scheme is accountable for a performance gain, a fully 

connected GasNet version (G3) was evaluated and compared to G1 and G2. For 7 

neurons in a network, the gene length of G3 is the same as for G1. (In G1 seven loci 

are used to specify the connection scheme. In G3 the seven connection weights (-1, 0 

or 1) are stored instead) so different mutation factors are no issue. No performance 

gain occurred by connecting all neurons in a GasNet (Table 2). In fact, the opposite 

occurred and the fully connected GasNet performs worse than the standard GasNet. 

This shows clearly that it is not the connection scheme on its own that leads to a better 

performance. It should be pointed out, however, that even in a G3 network the nets 

are never fully connected and the chance of a connection with weight = 0.0 is much 

higher than in a CTRNN with real weighted connections.  

Table 2. Evolution of GasNet G3 compared to standard GasNet G1 and NoGasNet G2 

Network 

type: 

Average of best 

individual: 

Average fitness 

of population: 

Average fitness 

on random trials: 

Average Nr of 

generations: 

G1 0.882 (0.099) 0.762 (0.075) 0.825 (0.119) 198.000 (5.1) 

G2 0.775 (0.100) 0.683 (0.062) 0.723 (0.125) 196.000 (11.2) 

G3 0.743 (0.048) 0.591 (0.022) 0.699 (0.062) 200.000 (0.0) 

4.2   Real Weights 

Apart from the connection scheme, CTRNNs also use real weights for connections 

while GasNets only use inhibitory (weight = -1) or excitatory (weight = 1) 

connections. To find out if this influences evolution, a CTRNN variant (C3) with 

discrete weights (-5, 0 or 5) and GasNet variants (G4 and G5) with weight tables and 

real weights (with and without gas) were evaluated and compared to the standard 

CTRNN and GasNet versions. 

Table 3. Comparison of evolution results for networks with varying weight type 

Network 

type: 

Average of best 

individual: 

Average fitness 

of population: 

Average fitness 

on random trials 

Average Nr of 

generations: 

C1 0.990 (0.010) 0.826 (0.030) 0.949 (0.043) 100.000 (42.7) 

C2 0.990 (0.010) 0.798 (0.030) 0.953 (0.031) 108.000 (55.3) 

G5 0.973 (0.041) 0.703 (0.035) 0.911 (0.075) 160.000 (36.4) 

G4 0.954 (0.048) 0.766 (0.049) 0.920 (0.063) 185.000 (26.0) 

G1 0.882 (0.099) 0.762 (0.075) 0.825 (0.119) 198.000 (5.1) 

C3 0.874 (0.051) 0.631 (0.019) 0.835 (0.062) 200.000 (0.0) 

G2 0.775 (0.100) 0.683 (0.062) 0.723 (0.125) 196.000 (11.2) 

 

As one can see in Table 3, if the connections in a fully connected GasNet are 

combined with real weights, the results of the best individual almost reach the 

CTRNN results. Real weights for connections seem to be crucial for successfully 



 

evolved controllers in this task. As a crosscheck the network C3 was used which 

performed worse than all network types with real weights. Possible reasons for this 

are that it is easier for evolution to fine tune connections or to use the same neuron 

output as input with different strengths in different neurons.  

As it turned out in the GasNet experiments, a successfully evolved solution doesn’t 

need a lot of connections. It seems reasonable that if there are only a few connections, 

it is crucial to be able to fine tune them. Real weights provide this opportunity. More 

experiments have to be done to prove this and to find the specific reasons for the 

necessity of real weights. However, even with full connection scheme and real 

weights, the GasNets are still outperformed by both CTRNN variants in terms of 

evolution time. Thus, real weights are important, but not the only reason. 

4.3   Neutrality 

After examining many GasNet runs, we noticed that the best individual often does not 

change over long periods. Moreover, the fitness of the best individual plotted over 

generations shows long, flat regions: much longer than CTRNN runs. In [14], Tom 

Smith et al. show that GasNets have high functional neutrality, i.e. “many distinct 

neural network structures will produce the same functional mapping from sensory 

input to motor output” [14]. Perhaps this neutrality causes the long and flat regions? 

To answer this question, a different kind of mutation operator is used. Every time a 

genotype is mutated, the corresponding phenotype is compared to the phenotype 

corresponding to the original genotype. If no change in the phenotype can be detected 

(i.e. phenotype has same electrical and gas connections), then the genotype is mutated 

again. This procedure continues till the mutation affects the phenotype. Although the 

mutation operator prevents neutral mutations, the picture does not change 

significantly. There are still long periods without change which leads to the 

conclusion that evolutionary search got stuck, but not for neutrality reasons. Also the 

overall results do not change (Table 4).   

However, type G7 was also used which suggests that neutrality is not unimportant. 

Types G7 and G5 nn are functionally the same since changes to the coordinates in G5 

are functionally neutral. Thus, in G7 mutation cannot change these coordinates and so 

less neutral mutations are made.  

Table 4. Results from GasNet variants compared to the same variants using the “noNeutrality”-

mutation operator (nn) and the results of the GasNet variant G7 

Network 

type: 

Average of best 

individual: 

Average fitness 

of population: 

Average fitness 

on random trials 

Average Nr. of 

generations: 

G5 nn 0.986 (0.024) 0.702 (0.044) 0.914 (0.048) 143.000 (49.3) 

G7 0.984 (0.037) 0.722 (0.043) 0.913 (0.065) 119.000 (53.1) 

G5 0.973 (0.041) 0.703 (0.035) 0.911 (0.075) 160.000 (36.4) 

G4 0.954 (0.048) 0.766 (0.049) 0.920 (0.063) 185.000 (26.0) 

G4 nn 0.948 (0.064) 0.710 (0.043) 0.894 (0.089) 163.000 (44.1) 

G1 0.882 (0.099) 0.762 (0.075) 0.825 (0.119) 198.000 (5.1) 

G1 nn 0.865 (0.057) 0.738 (0.050) 0.794 (0.093) 197.000 (9.4) 



The time to evolve a successful G7 individual was significantly less than other 

GasNet types and is close to the result of the CTRNN results.  

4.4    Fine Tuning Ability 

The fitness value attained is strongly dependent on the exact position of the robot. If a 

robot is able to distinguish between circles and diamonds but cannot reach the exact 

position of the object at the end, the fitness value can be the same or even worse as 

the fitness of a robot that fails to distinguish shapes a few times, but has reached the 

exact position in all other trials. Exact positioning is rewarded. In 100 random trials 

(50% circles), the fitness of a robot that misses the exact position by one pixel every 

time while catching circles is 0.989 ((0.978 * 50 + 50) / 100). The average fitness of a 

robot that fails to distinguish a shape once, but positions exactly in 99 other trials is 

0.990 (assuming that they all successfully avoid diamonds).  

To find out if GasNets are likely to evolve controllers which can correctly 

distinguish shapes, but fail in finding the exact position (fine tuning), a different 

fitness function is used: 
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Where d is the distance between the centres of robot and object, min = radiusObject and 

max = 1.5 * (radiusObject + radiusRobot). This means that the robot does not have to find 

the exact position but only has to reach the area under the object.  

Table 5. Results with new fitness (nf) compared to standard GasNet (G1) and NoGasNet (G2) 

Network 

type: 

Average of  

best individual: 

Average fitness 

of population: 

Average fitness 

on random trials 

Average Nr. of 

generations: 

G1 0.882 (0.099) 0.762 (0.075) 0.825 (0.119) 198.000 (5.1) 

G1 nf 0.845 (0.096) 0.720 (0.049) 0.741 (0.150) 186.000 (37.5) 

G2 0.775 (0.100) 0.683 (0.062) 0.723 (0.125) 196.000 (11.2) 

 

The results in Table 5 show there is no difference between G1 and G1nf with new 

fitness. Hence, the problem of the GasNet evolution does not seem to be fine tuning 

of parameters governing the robot’s final position.    

  



 

 5   Discussion 

This work set out to give evidence that GasNets are outperformed by other neural 

network types if the solution to a given task does not need timer or pattern generator 

sub networks. To prove this, a task was chosen where the ability to use different time 

scales in the network gives no advantage. Samples over evolved controllers from both 

types showed, that successful solutions used active scanning and no examined GasNet 

had a pattern generator sub net. As shown in section 3, CTRNNs with or without 

evolvable time constants perform the same, which shows that timing is not necessarily 

needed for a successful solution. CTRNNs solve this task easily, while GasNets 

perform much worse. Further evidence that it is timing that is important is that 

GasNets have been shown to outperform other network types on tasks where pattern 

generation is needed [4] [5]. However, in a comparison with CTRNNs on a simple 

pattern generation task, while GasNets were superior to CTRNNs on one pattern, the 

converse was true for a second pattern [16]. It is possible that these differences are 

due to the range of temporal dynamics available to the two types of networks, but 

further work is needed to investigate this fully. 

Different reasons for the disadvantage of GasNet controllers were examined. It was 

shown, that connectivity and fine tuning issues have no big impact on the results of 

the evolutionary runs. A fully connected GasNet with original GasNet weights (-

1,0,1) using a weight table does not lead to a measurable performance gain. The 

crucial issue seems to be to have real weighted connections. As soon as a GasNet has 

real weighted connections, its performance is much better, while a CTRNN with 

discrete weights performs much worse. While the reason for the necessity of real 

value weights in this task is not known it is possible that the difference between the 

standard GasNet and its no-gas counterpart can be explained by the need for evolution 

to use different connection types where real weights are not available to enrich the 

connection scheme. 

It was also shown that the time evolution needs to find a reasonable good 

individual decreases significantly for GasNets if loci with a high possibility of neutral 

mutations are taken out of evolutionary control. This is not surprising but can be still 

be outweighed by other issues for more complex tasks (e.g better robustness) and 

therefore worth accepting.  

The results support the initial hypothesis, that while GasNets are good to evolve 

timers and pattern generators, they have disadvantages if other issues are more 

important. No successfully evolved GasNet controller that was analyzed during this 

work was using a timer/PG sub network or used a technique where timer/PG sub 

networks are useful.  This work therefore provides evidence that for simple tasks 

which do not require timers or pattern generators, other issues which are not suited to 

GasNet type networks become more important. More research on the dynamics of 

GasNets is thus needed to further classify the type of tasks where they outperform 

other network types. 
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