
A Neural Approach for Robot Navigation based on
Cognitive Map Learning

Wenjie Yan
University of Hamburg

Department of Computer Science
Knowledge Technology
Vogt-Kölln-Straße 30

D - 22527 Hamburg, Germany
yan@informatik.uni-hamburg.de

Cornelius Weber
University of Hamburg

Department of Computer Science
Knowledge Technology
Vogt-Kölln-Straße 30

D - 22527 Hamburg, Germany
weber@informatik.uni-hamburg.de

Stefan Wermter
University of Hamburg

Department of Computer Science
Knowledge Technology
Vogt-Kölln-Straße 30

D - 22527 Hamburg, Germany
wermter@informatik.uni-hamburg.de

Abstract—This paper presents a neural network architecture
for a robot learning new navigation behavior by observing a
human’s movement in a room. While indoor robot navigation is
challenging due to the high complexity of real environments and
the possible dynamic changes in a room, a human can explore a
room easily without any collisions. We therefore propose a neural
network that builds up a memory for spatial representations and
path planning using a person’s movements as observed from a
ceiling-mounted camera. Based on the human’s motion, the robot
learns a map that is used for path planning and motor-action
codings. We evaluate our model with a detailed case study and
show that the robot navigates effectively.

I. INTRODUCTION

In recent years, robot navigation based on cognitive map-
ping has become an important research topic. A cognitive
map is a mental model that represents information of an
environment with features and relationships similar to humans
and animals realizing navigation [1]. Unlike geometry-based
models [2], [3], which rely on accurate measurements, a
cognitive model works on a higher abstract level and is
robust against noise. For example, a person can find the
destination by simple instruction like “left to the post office”
without precise position information. He can plan his walking
path easily according to the cognitive map, and when the
environment changes, he can also adjust his path plan quickly
by modifying the spatial relationships in the cognitive map.
Hence, a cognitive map can allow a robot flexible navigation
and adaptation in a real complex environment. This adaptivity
is desired to integrate a robotic agent into an ambient assistant
living (AAL) setup that accommodates the needs of users in
different contexts and environments [4]. A robot and a person
can be localized robustly in an AAL lab for instance with a
ceiling-mounted camera [5]. Based on the topological structure
of the free space in the room, a robot can plan its path and
approach a person. Since the location is represented by the
states in the cognitive map rather than precise coordinate
information, the navigation can work with the raw camera
image without calibration.

To build up a cognitive map, a robot usually has to explore
the unknown environment actively [2], [3]. While such explo-
ration is relative easy to achieve for a person, a robot requires a

longer learning period and may suffer from possible collisions.
Considering that an animal may learn new behavior through
observing others’ actions [6], a robot could accelerate the
spatial learning by observing a person’s navigation behavior.
As a self-protection behavior, a person avoids dangerous areas
or collisions unconsciously while moving [7]. For this reason,
where a person walks, it should be safe also for the robot to
move. However, since a robot and a person may differ from
their behavior, for example a person can sit on a sofa but a
robot cannot, 1) some reflexive behavior is essential and 2)
interactive robotic exploration is needed to protect the robot
and to convert the spatial knowledge from the human to the
robot itself.

Cognitive maps have been researched for a long time
in various areas. Since place cells have been found in the
hippocampus of rats [8], where the activities of these neurons
are related to the location in an environment, it has been shown
that a cognitive map is presented by the place cells in the
hippocampus and grid cells in the entorhinal cortex [9]. Based
on these discoveries, many neurobiological-inspired models
have been proposed for spatial learning and robot navigation.
A cognitive map can be represented in different ways, for
example as a topological map [10], [11], or by a continuous
attractor network [12], [13], [14], etc. Furthermore, by using
a self-growing mechanism [15], Toussaint [16] developed a
model that can represent a map with a dynamic size, which is
flexible for exploring an unknown environment.

To acquire behavior-based robot navigation, Weiller [17]
proposed an unsupervised learning method to learn reflexive
behavior associated with state transitions. Weber [18] and
Witkowski [19] present neural network models that learn
associations between adjoining states and the action that links
them. A neural fields model has been seen as a simple but
effective way to model motion perception [20] and robot
behavior [21], [22], [16], [23]. In addition, closed-loop control
models for other behaviors, e.g. arm reaching, may apply
similar methods of planning [24].

This paper presents a neurocomputational model on the
basis of Cuperlier’s and Toussaint’s frameworks [22], [16] for
behavior-based robot navigation in an indoor home environ-

In: Proc. International Joint Conference on Neural Networks (IJCNN), 2012 IEEE

ieeexplore.ieee.org

ment. Compared with other similar works, our model 1) learns
a cognitive map quickly by observing a person’s location
distribution (method described in [5]) from a ceiling-mounted
camera view and 2) realizes robust robot navigation in a real
complex rather than simulated environment. A humanoid robot
will control its orientation and walk to a person according to
the learned map. During the navigation, an interaction model
provides the robot with a reflex behavior and enables it to
adjust the cognitive map obtained from observing the person,
which provides a safer and faster way for spatial learning than
active exploration by the robot alone.

Our model consists of three layers of networks: 1) a
growing neural gas map (GNG) [15] for spatial learning
and robot path planning, 2) a Sigma-Pi network [25] trained
to represent the inverse control model and 3) a dynamic
neural fields (DNF) model [21] that controls the navigation
behavior. Using a person’s movement as input, the GNG
will learn a topological map of the free space in a room.
The path planning will then be done based on the spatial
representation on the GNG and rewards spreading from the
person’s position to the robot’s position. According to the
current and the desired next state representations in the GNG,
the Sigma-Pi network will produce an action code which
is trained during the room mapping phase. Stimulated by
an action coding from the Sigma-Pi network, the DNF will
update the activities which present the expected pose for the
next step. The robot will thereby navigate with human-like
behavior, approaching the target by adjusting its orientation
continuously instead of changing the direction suddenly. In
addition, a robot-environment interaction method is included
for adjusting the cognitive map on the basis of a reflex-like
behavior for obstacle avoidance. Details about these models
will be described in the following sections. Our model is
implemented and tested on a humanoid robot in an AAL lab
and the results are evaluated.

II. METHODS

The overall architecture of our model is illustrated in
Figure 1. The target person’s and the robot’s location will be
estimated by two sets of particles from the ceiling-camera view
as described in [5], which form the input to our model. Particle
filters [26] are an approximation method that represents a
probability distribution of an agent’s state st by a set of
particles. Each particle consists of a feature vector ξ, in
our case describing position information, and a weight value
w. The feature vector of robot’s particles contains the x,
y coordinate information and the orientation value o, i.e.
ξr = {x, y, o}, because we can predict the orientation based
on the action the robot will execute, while the feature vector
of particles for person localization contains only the x and y
(ξp = {x, y}) since the direction of a person’s motion is hard
to predict.

Our model works in two phases: exploration and navigation.
In the exploration phase, a cognitive map will be learned in the
GNG using a person’s location represented by the particles.
We assign an input activation of the Sigma-Pi network for each

Fig. 1. Architecture

connection in the GNG, which learns the inverse control model
of the robot’s movement. According to the inverse control
model and the robot’s orientation estimation obtained from the
raw camera image, the robot will control itself by adjusting its
walking direction. Since both of them are based on the same
pixel coordinate system, it would not matter if the camera was
rotated before building up the cognitive map.

In the navigation phase, the robot’s and the person’s lo-
cation will first be represented by the neuron activities in the
learned GNG. Based on this representation, path planning will
be done by spreading a reward signal recursively from the
person’s position to the robot’s position with an exponential
decrease. The robot’s next state representation will be selected
by searching for the neighborhood neuron with the highest
reward signal. The Sigma-Pi network will produce appropriate
action coding with respect to the robot’s current and the
next state representation, and the DNF will be stimulated
and control the robot’s motion. During navigation, robot-
environment interaction provides the robot with reflex-like
obstacle avoidance ability and adjusts the GNG model by
adapting a lateral connection weight cij in the GNG. We will
describe the details of each model in the following sections.

A. Spatial Learning

A cognitive map is learned in a GNG [15] using a person’s
position, obtained from its particle distribution, as input. A
GNG consists of a set A of neurons, each associated with a
feature vector v = Rn (in our case the x, y coordinate infor-
mation on an image: v = {x, y}), and a set N of connections
to describe the relations between neurons in A. Each neuron is
assigned an age factor which can increase incrementally. Using

a competitive Hebbian learning rule, neurons and connections
will be allocated or updated dynamically, and will be deleted
when the connection age is over a threshold amax or a neuron
is isolated. The learning algorithm is shown in algorithm 1.

Algorithm 1 Growing Neural Gas [15]
1. Start with two neurons a and b with random weights va and vb
in Rn.
2. Generate an input signal ξ according to P (ξ).
3. Find the nearest unit i∗ and the second-nearest unit i∗∗.
4. Increment the age of all edges emanating from i∗.
5. Add the squared distance between the input signal and the
nearest unit in input space to a local counter variable:

∆errori∗ = ||vi∗ − ξ||2

6. Move i∗ and its direct topological neighbors towards η by
fractions εb and εn with respect to the total distance:

∆vi∗ = εb(ξ − vi∗)

∆vn = εn(ξ − vn) for all direct neighbors n of i∗

7. If i∗ and i∗∗ are connected by an edge, set the age of this edge
to zero. If such an edge does not exit, create it.
8. Remove edges with an age larger than amax. If this results in
points having no emanating edges, remove them as well.
9. If the number of input signals generated so far is an integer
multiple of a parameter λ, insert a new neuron as follows:

• Determine the neuron q with the maximum accumulated error.
• Insert a new neuron r halfway between q and its neighbor f

with the largest error variable:

wr = 0.5(wq + wf)

• Insert edges connecting the new neuron r with neurons q and
f , and remove the original edge between q and f .

• Decrease the error variables of q and f by multiplying them
with a constant α. Initialize the error variable of r with the
new value of the error variable of q.

10. Decrease all error variables by multiplying them with a
constant d.
11. If a stopping criterion (e.g., net size or some performance
measure) is not yet fulfilled go to step 2.

To localize the robot and the person in the GNG and for the
further robot navigation, we assign each neuron {i} in the map
two activities: sri for the robot and spi for the person, which are
stimulated by the person’s and the robot’s particles. During the
spatial learning phase, the person’s activity spi is also used to
adapt the GNG. Each neuron has a Gaussian-form observation
area with variance σ2

x, σ2
y in x, y directions (both are set as 20

pixels on the image), and the activity is computed based on
the position ξpj and weight wpj of the person’s particles {j}:

spi = a
∑
j

wpj e

−

(
vi,0 − ξpj,0

)2
2σ2

x

+

(
vi,1 − ξpj,1

)2
2σ2

y

(1)

where a is a scaling factor, vi,0 and vi,1 are the x and y
position of neuron i in the GNG. Similarly, ξpj,0, ξpj,1 denote
the position of a person’s particle j. The winner neuron with

the highest activities will be selected as follows:

i∗ = arg max
i

(spi) (2)

and the accumulative error of the winner neuron {i∗} will be
updated according to the following equation:

∆errori∗ =
∑
j

wpj ||vi∗ − ξ
p
j ||

2 (3)

These error values are used for the growth of the network (see
Algorithm 1). The feature vectors of the winner neuron {i∗}
and its neighborhood neurons {n}, which are connected to the
winner neuron in the GNG, will then be updated with:

∆vi∗ = εw
∑
j

wpj (ξpj − vi∗)

∆vn = εn
∑
j

wpj (ξpj − vn) (4)

here εw and εn are two fixed learning rates and j is the index
of particle. Since the “original model” takes input stimuli that
are independent in time one after the other, i.e. the distribution
is stationary, an over-learning problem may occur when the
person stays at one position for a long time. We therefore only
update the network when the person’s movement is detected.
As a result of learning with Eq. (4), the GNG units will
topologically represent the entire space where the person has
moved.

Similar to Eq. (1), the robot’s activities sri are computed as:

sri = a
∑
j

wrje

−

(
vi,0 − ξrj,0

)2
2σ2

x

+

(
vi,1 − ξrj,1

)2
2σ2

y

(5)

where wrj is the weight of robot’s particles {j}. Regarding that
a person can move differently than a robot, some connections
learned from a person’s movement might not be suitable for
a robot. A robot-environment interaction is essential in this
case to enable the robot to adapt its navigation strategy. We
therefore define a connection weight cij ∈ [0, 1] for each
connection to indicate whether one link between two neurons
is suitable for the robot to move along. The higher cij is the
easier is the connection for the robot to walk through. When
an obstacle is detected or the robot has difficulties walking
further, cij will be decreased and may reach zero. When a
connection is built, its connection weight cij will be initialized
to 1 and adapted during the robot navigation. Details about this
adaptation will be described in the navigation section.

B. Path Planning
Based on the person’s location, each neuron {j} in the GNG

will receive a reward signal rj spreading from the person’s
state representations iteratively with an exponential decrease.
We give first the winner neuron i∗ (see Eq. (2)) an initial
reward r, i.e. rpi∗(0) = r, and the reward signal will spread to
the neighbor neurons (listed in n) iteratively with a discount
factor λ:

rpj (t+ 1) = λrpi (t), for j ∈ n and rpj (t) = 0 (6)

For each step, the neighborhood list n will be updated for the
next iteration as follows:

n′ ← i if i connects with a neuron in n
and rpi (t+ 1) = 0 (7)

n = n′

After the reward signal has spread over the entire GNG map,
the robot plans its action for the next step by calculating the
next position it should reach. Assume that the robot’s position
is represented by a group of neurons α in the GNG. The next
possible position should be among the neighborhood neurons
that connect with neurons in α directly. We calculate a belief
value belj of these neighborhood neurons j, which connect
with neurons i ∈ α, as follows:

b̃elj =
∑
i∈α

cijs
r
i rj (8)

and normalize the values with a soft-max activation function:

belj =
eb̃elj∑
i e
b̃eli

(9)

where sri is neuron activity of the robot detection and cij is
the connection weight. The higher belj is, the more desirable
it is for the robot to be at this position in the next step.

C. Action Coding in Sigma-Pi Network

According to the current and the desired next state repre-
sentations in the GNG, the robot knows where it is and where
to go. However, to realize navigation, the robot also needs to
know how to reach the next position. A Sigma-Pi network
therefore learns an inverse control model. It receives as input
from the GNG a pair of neural activation representing the
current and the desired next state (hence, the multiplicative
input of the Sigma-Pi units), and returns the suggested action
codes to the DNF. Since only the layer connection weights
connecting to the DNF need to be trained, the action code can
be learned online using a simple updating rule.

As shown in Figure 1, the Sigma-Pi network has two
dimensions of input neurons. The neurons in one dimension
receive the neuron activities of the robot’s current state rep-
resentation sr and those in the other receive the belief value
bel of the robot’s next desired state. Both dimensions have
the same number of neurons as in the GNG. During the robot
navigation, the units in the Sigma-Pi network connecting to
the robot’s current and the next desired state representation
will be stimulated and the inverse control model will produce
appropriate action codes that lead the robot to reach the next
state. The inputs of the Sigma-Pi network in its two input
dimensions are: (qr)

t
i = sri and

(
qd
)t+1

j
= belj .

We index the neurons in the current state layer with i and
in the next desired state layer with j, and the output of the
Sigma-Pi network with k. The input Ik to the k-th neuron in
the DNF can be computed as:

Ik =
∑
i,j

wijk(qr)ti(q
d)t+1
j (10)

where (qr)ti, (qd)t+1
j are the neuron activities in the input

layers and wijk are the Sigma-Pi connection weights, which
are initialized with 0. The size of these layers will be adapted
when adding or removing neurons in the GNG. For example,
when a neuron is inserted in the GNG, two input units (one
for each input layer) will be added and be associated with the
new neuron in the GNG. Suppose that there are N neurons
in the GNG and 36 neurons in the DNF, the total number of
Sigma-Pi connections {wijk} is 36N2.

As we can see, there are two possible orientations for
each link and for each firing combination i, j there are 36
connection weights that can be trained to represent an action
responsible for moving the robot to follow the link in the GNG.
We therefore use the person’s movement to learn the action
codes by updating the GNG. Assume that the neurons {i}, {j}
of connection cij adjust their positions in the GNG, or a new
neuron {j} is insert in the GNG and a new link cij connecting
with the neuron {i} and the new neuron {j} is allocated. Then
the Sigma-Pi weights wijk, wjik of this connection will be
updated as follows:

1) According to the current position (xi, yi) of neuron
{i} and (xj , yj) of neuron {j} based on the image
coordinate, we calculate both possible orientations oij
and oij of connection cij using inverse trigonometric
functions:

oij = arctan

(
yj − yi
xj − xi

)
oij = oij + π if xj − xi < 0

oji = oij + π (11)

2) Two bumps of activation with the size of the DNF will
be created in the shape of a circular normal distribution
around the link orientation:

pijk =
eκ cos(k·10π180 −oij)

2πI0(κ)

pjik =
eκ cos(k·10π180 −oji)

2πI0(κ)
(12)

where pijk is the k-th neuron of the action coding for
orientation oij , κ is a constant and I0(κ) is the modified
Bessel function of order 0 [27]:

I0(κ) =
1

π

∫ π

0

eκ cos(θ)dθ (13)

3) Minimize the reconstruction errors ||pijk−wijk||2 using
gradient descent:

∆wijk = η(pijk − wijk)

∆wjik = η(pjik − wjik) (14)

where η is a fixed learning rate.

This defines the weights wijk that are used to compute the
input Ik to the neural field (see Eq. (10)), which encodes the
desired orientation of the robot.

D. Behavior Control in Dynamic Neural Fields

The DNF is a biologically-inspired model of the neural
dynamics in cortical tissues [28], which is of interest in the
robotic area to generate dynamic behavior [21], [22]. In our
work, a one-dimensional ring-form DNF with 36 neurons is
applied to control the robot’s navigation behavior over time.
Based on the action codes from the Sigma-Pi network, the
DNF will dynamically integrate the activities, which represent
the suggested orientation for the next step. The DNF will
adjust the robot’s motion control producing a smooth and
natural orienting behavior.

In the DNF, each neuron k has a membrane potential uk and
lateral connections nkj with other neighbor neurons j. A bump
of neurons’ activations is generated and moved based on the
stimuli from the Sigma-Pi network. The bump stabilizes itself
by associating with the neighborhood neurons, which leads
to more robustness in the model. The membrane potential is
updated as follows:

τ∆uk = −uk +

36∑
j=1

nkjf(uj) + Ik + h (15)

where h is a rest potential, τ is a temporal decay rate of the
membrane potential, and Ik is the input stimulus of the k-th
neuron received from the Sigma-Pi network that encodes the
desired robot orientation. We use here a Gaussian-function
with negative offset as the function nkj to describe the lateral
interaction of neurons:

nkj = βe
−

(k − j)2

2σ2 − c (16)

where β is a scaling factor, σ2 a variance, k, j the positions
of neurons and c is a positive constant. The function f(u) is
a sigmoid transfer function of a single neuron:

f(uj) =
1

1 + e−uj
(17)

The robot’s desired orientation Od is calculated using vector
averaging:

v̂k =

(∑
vkx∑
vky

)
=

(∑
uk sin(10k

180π)∑
uk cos(10k

180π)

)
(18)

Od =

arctan

(
v̂ky
v̂kx

)
if v̂kx > 0 and v̂ky > 0

arctan

(
v̂ky
v̂kx

)
+ π if v̂kx < 0

arctan

(
v̂ky
v̂kx

)
+ 2π if v̂kx > 0 and v̂ky < 0

(19)

We control the robot’s navigation by giving it a differential
orientation command:

∆O =

 −c if Od −Op > d
c if Od −Op < −d
0 else

(20)

where Op is the robot’s estimated orientation from the particle
filter, c is a rotation speed parameter and d is a constant
threshold.

E. Robot-Environment Interaction

We consider that the GNG map is built using a person’s
actual movement, but some of the positions (table, sofa, for
instance) might not be accessible for the robot. An interaction
mechanism is essential in this case to provide the robot with
some “reflex” behavior to avoid these positions and to adapt
the navigation strategy online. The connection weights cij
in the GNG are used here to indicate how “easy” the robot
can follow that link. The adaptation of cij depends on the
interaction with the environment. Feedback is supplied by two
sonar sensors mounted on the chest of the robot. Both sensors
can detect the distance to obstacles between 30 and 80 cm.
The higher the sensor value, the larger distance is the robot to
the object. The weights adaptation is processed as follows:

∆cij = τ(G(s1, s2)− cij) (21)

where τ is a learning rate and G(s1, s2) is a non-linear
function using two sonar sensor values s1, s2:

G(s1, s2) =
1

1 + e(s1+s2−c)
(22)

here c is a constant offset. When the robot approaches an
obstacle, the connection weight cij will be decreased and even
converge to zero when the obstacle gets too close.

Fig. 2. Experimental setup from the ceiling-mounted camera view.
The pink circles with a short bar are the particles for the robot position
and orientation and the green particles are the particles for the person.
When the person is localized, his location will be estimated by a green
bounding box. The white bounding box shows where the robot is and
the yellow eclipse shows an obstacle on the ground. The cyan and the
yellow filled circles are the first winner and the second winner neuron
in the GNG (see text for details).

III. EXPERIMENTAL RESULTS

This section presents a test case of how our model performs
in the real world. As shown in Figure 2, a ceiling-mounted
camera is used as input for localization and navigation to
test our algorithm in a home laboratory (for details about the
localization model please see [5]). A fish-eye lens is applied
to get a wide field of view of the whole room with a single

Fig. 3. Learning a cognitive map.
The topological map grows when a person explores the room, and the grey-scaled brightness shows the reward information spreading from the person’s
location.

camera, however, at the price of strong image distortion. The
use of position representation in the cognitive map instead of
the coordinate information avoids possible coordinate transfor-
mation errors. A humanoid Nao robot is used for navigation
(labeled with a white bounding box in Figure 2). An obstacle
(labeled with a yellow ellipse) is placed on the floor after the
spatial learning phase to test the interaction model using Nao’s
sonar sensors as input.

Our experiments are split into two parts. We first introduce
how we train the cognitive map by observing a person’s
movement. After that, the robot approaches a person from an
arbitrary location in the room based on this learned map1.
The sonar sensors can detect furniture during the navigation
to avoid collision automatically. Details are described in the
following sections.

A. Learning a Cognitive Map

The GNG is initialized with two neurons linked with each
other with a connection at the beginning of learning (Figure 3
Frame 1). When a person enters the room, she will be detected
by the localization model. The winner (yellow) and the second
winner (cyan) neurons will be selected, which are the closest
to a person’s location (Figure 3 Frame 6). The winner and it’s
neighborhood neurons will be drawn to the person’s position
and new neurons will be inserted (Frame 58). The GNG will
grow automatically when a person explores the room (Frame

1For a demonstration please see the video at:
http://www.informatik.uni-hamburg.de/WTM/material/videos/SN1.avi

85, Frame 214), until all the free space has been visited
(Frame 411 where many neurons are placed). The gray-scaled
brightness of the neurons indicates the reward spreading from
the person’s location. The brighter the color is, the higher
reward this neuron has. The reward information helps the robot
for path planning, which is described in the next section.

B. Spatial Navigation

As we can see, the cognitive map contains the position
information of most of the free space in the room. When
the navigation task starts, the robot will be localized by the
particle filter (see Figure 4 at Frame 502, most particles are at
the robot’s position and the estimated orientation is visualized
with a yellow bar) and the position will be represented by
the neuron activities. Based on this map, the robot can move
to the person from an arbitrary position by finding the next
state with the highest reward signal. Based on the current state
representation of the robot and the learned map, the robot will
find the next state representation by finding the neighborhood
neurons with the highest rewards. The Sigma-Pi network will
then produce the action codes to the DNF with respect to the
current and the next state representations in the GNG. We
visualize the neuron activities of the DNF by a red circle
surrounding the robot’s position with a basic radius of 15
pixels where activation are zero. An activation bump is built up
which helps the robot to estimate the desired orientation and
control the navigation behavior by controlling the orientation.
During the robot’s movement, the state representations are

Fig. 4. Sequence of Navigation
Based on the current location of the robot (pink particles) and the person (green particles and the green bounding box), the robot plans its next position
by searching for the more activated neighborhood neurons (displayed brighter). The DNF is stimulated and produces the desired robot orientation, which is
visualized by a red circle surrounding the robot. The robot controls then its orientation and approaches the person.

Fig. 5. Robot environment interaction
When the robot sensors detect an obstacle, the reflex behavior is triggered and the robot starts walking slowly and turning around to avoid the obstacle. The
current activation bump (see the red circle) weakens (Frame 566) and another bump builds up (Frame 578) to adjust the path planning.

changing and the activation bump will be updated to the new
orientation. The robot updates its action (it starts turning left)
and will walk towards the person. When the robot gets close to
the person, the navigation will be achieved and the robot will
stop walking (Frame 787). Because of the dynamic behavior
of the DNF, the robot will adjust its orientation slowly and
walk in a natural way instead of reacting suddenly to possibly
noisy measurements.

C. Interaction

This section presents a test case of the robot environment
interaction model by a simple obstacle avoidance. As shown
in Figure 5, when an obstacle is detected by the robot’s sonar
sensors (Frame 552), the robot stops. A reflex control model
compares the two sonar sensor values and rotates the robot
slowly. Meanwhile, the connection weights cij of the currently
used connection decreases and the activation bump of the DNF
(see the red circle at Frame 566) shrinks and the robot replans
its navigation policy and changes the desired orientation by
building up a new activation bump (Frame 566 and 578). Since
the robot is close to the obstacle, the robot will change its
orientation slowly, until no obstacle is detected by the sonar
sensors anymore. Then the robot starts walking again in the
new direction.

IV. DISCUSSION

As we have demonstrated in the experiments, a cognitive
map can be generated by observing a person’s movement
and a robot can plan and navigate successfully in a real
environment based on the learned map. We use a GNG to
simulate place cells by clustering the location information
with neuron activities. Compared with a self-organizing map,
a GNG has the advantage of adapting its size as well as its
topology efficiently.

The robot has a mixed navigation behavior using pure
behavior-based and pure path-based navigation: it does not
choose simply the shortest trajectory without considering the
difficulty for the robot to walk through. This enables the robot
to walk smartly in a complex environment and escape for
instance from a U-shape “trap” with a quite natural behavior.
Moreover, because the cognitive map is learned by the person’s
movement and no calibration is needed for the camera, this
system is very easy to install and the robot navigation can be
done with little exploration by the person.

The quality of the cognitive map will influence the navi-
gation performance significantly. When an area in the map is
not explored by the person, the robot will not walk into this
area, since it will not know how to approach the person if

it starts navigating into this area. To avoid this problem, we
consider developing a self-exploration method that allows the
robot to complete its map when no information exists, and to
improve the spatial learning by using different methods for
map building. In addition, although our model works with the
person’s and the robot’s location obtained from the ceiling-
mounted camera, the cognitive map learning could also be
achieved using other sensors. It would be helpful to extend our
model with different sensors for a wider scope of application.
Therefore, we are currently refining the robot’s input module
to use the robot’s internal cameras and the velocity estimation
with the internal gyroscope.

V. CONCLUSION

We have presented a cognitive neural network architecture
that controls a robot to follow a person successfully in a
realistic home-like environment. The architecture combines
localization and mapping with planning and navigation. The
desired behavior is perceptually supported by the use of a
ceiling camera, which also allows using a person’s movements
to learn the room topology quickly. Because the position is
encoded as an abstract state representation, neither explicit
coordinate transformation nor camera calibration is needed.
A behavior-based control system increases the robustness and
allows the robot to navigate naturally and effectively.

ACKNOWLEDGMENT

The research leading to these results is part of the KSERA
project (http://www.ksera-project.eu) funded by the European
Commission under the 7th Framework Programme (FP7) for
Research and Technological Development under grant agree-
ment n◦2010-248085.

REFERENCES

[1] G. Gron, A. Wunderlich, M. Spitzer, R. Tomczak, and M. Riepe, “Brain
activation during human navigation: gender-different neural networks as
substrate of performance,” Nature Neuroscience, vol. 3, pp. 404–408,
2000.

[2] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fastslam: A fac-
tored solution to the simultaneous localization and mapping problem,” in
Proceedings of the 18th National conference on Artificial Intelligencem
AAAI’02, 2002, pp. 593–598.

[3] A. Diosi and L. Kleeman, “Advanced sonar and laser range finder fusion
for simultaneous localization and mapping,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2004, vol. 2, 2004,
pp. 1854–1859.

[4] P. L. Emiliani and C. Stephanidis, “Universal access to ambient in-
telligence environments: Opportunities and challenges for people with
disabilities,” IBM Systems Journal, vol. 44, no. 3, pp. 605–619, 2005.

[5] W. Yan, C. Weber, and S. Wermter, “A hybrid probabilistic neural model
for person tracking based on a ceiling-mounted camera,” Journal of
Ambient Intelligence and Smart Environments, vol. 3, pp. 237–252,
2011.

[6] G. Rizzolatti and L. Craighero, “The mirror-neuron system,” Annu. Rev.
Neurosci., vol. 27, pp. 169–192, 2004.

[7] E. Harmon-Jones, “Neural bases of approach and avoidance,” in Hand-
book of Self-Enhancement and Self-Protection, C. S. Mark D. Alicke,
Ed. New York, NY, USA: The Guilford Press, 2011, pp. 23–48.

[8] J. O’Keefe and D. H. Conway, “Hippocampal place units in the
freely moving rat: Why they fire where they fire,” Experimental Brain
Research, vol. 31, pp. 573–590, 1978.

[9] F. Sargolini, M. Fyhn, T. Hafting, B. L. McNaughton, M. P. Witter,
M.-B. Moser, and E. I. Moser, “Conjunctive representation of position,
direction, and velocity in entorhinal cortex,” Science, vol. 312, no. 5774,
pp. 758–762, 2006.

[10] L.-E. Martinet, D. Sheynikhovich, K. Benchenane, and A. Arleo, “Spa-
tial learning and action planning in a prefrontal cortical network model,”
PLoS Comput Biol, vol. 7, no. 5, p. e1002045, 2011.

[11] N. Cuperlier, M. Quoy, and P. Gaussier, “Neurobiologically inspired
mobile robot navigation and planning,” Frontiers in Neurorobotics,
vol. 1, no. 0, 2007.

[12] A. Samsonovich and B. L. McNaughton, “Path integration and cognitive
mapping in a continuous attractor neural network model,” The Journal
of Neuroscience, vol. 17, no. 15, pp. 5900–5920, 1997.

[13] A. V. Samsonovich and G. A. Ascoli, “A simple neural network model
of the hippocampus suggesting its pathfinding role in episodic memory
retrieval,” Learning & Memory, vol. 12, no. 2, pp. 193–208, 2005.

[14] M. Milford, G. Wyeth, and D. Prasser, “RatSLAM: a hippocampal model
for simultaneous localization and mapping,” in 2004 IEEE International
Conference on Robotics and Automation, ICRA ’04., vol. 1, 2004, pp.
403–408.

[15] B. Fritzke, “A growing neural gas network learns topologies,” in Ad-
vances in Neural Information Processing Systems 7. MIT Press, 1995,
pp. 625–632.

[16] M. Toussaint, “A sensorimotor map: Modulating lateral interactions for
anticipation and planning,” Neural Computation, vol. 18, pp. 1132–1155,
2006.

[17] D. Weiller, L. Läer, A. Engel, and P. König, “Unsupervised learning of
reflexive and action-based affordances to model adaptive navigational
behavior,” Frontiers in Neurorobotics, vol. 4, no. 2, 2010.

[18] C. Weber and J. Triesch, “From exploration to planning,” in Artificial
Neural Networks - ICANN 2008, ser. Lecture Notes in Computer
Science, V. Kurkov, R. Neruda, and J. Koutnk, Eds. Springer Berlin /
Heidelberg, 2008, vol. 5163, pp. 740–749.

[19] M. Witkowski, “An action-selection calculus,” Adaptive Behavior,
vol. 15, no. 1, pp. 73–97, 2007.

[20] J. S. Johnson, J. P. Spencer, S. J. Luck, and G. Schner, “A dynamic
neural field model of visual working memory and change detection,”
Psychological Science, vol. 20, no. 5, pp. 568–577, 2009.

[21] W. Erlhagen and E. Bicho, “The dynamic neural field approach to
cognitive robotics,” Journal of Neural Engineering, vol. 3, no. 3, p.
R36, 2006.

[22] N. Cuperlier, M. Quoy, P. Laroque, and P. Gaussier, “Transition cells and
neural fields for navigation and planning,” in Mechanisms, Symbols, and
Models Underlying Cognition, ser. Lecture Notes in Computer Science,
J. Mira and J. Álvarez, Eds. Springer Berlin / Heidelberg, 2005, vol.
3561, pp. 147–152.

[23] E. Torta, R. H. Cuijpers, and J. F. Juola, “A model of the user’s prox-
imity for Bayesian inference,” in Proceedings of the 6th international
conference on Human-robot interaction, ser. HRI ’11. New York, NY,
USA: ACM, 2011, pp. 273–274.

[24] O. Herbort, M. Butz, and G. Pedersen, “The SURE REACH model for
motor learning and control of a redundant arm: From modeling human
behavior to applications in robotics,” in From Motor Learning to Inter-
action Learning in Robots, ser. Studies in Computational Intelligence,
O. Sigaud and J. Peters, Eds. Springer Berlin / Heidelberg, 2010, vol.
264, pp. 85–106.

[25] C. Weber and S. Wermter, “A self-organizing map of sigma-pi units,”
Neurocomputing, vol. 70, no. 13-15, pp. 2552–2560, 2007.

[26] D. Fox, S. Thrun, W. Burgard, and F. Dellaert, “Particle filters for mobile
robot localization,” in Sequential Monte Carlo Methods in Practice,
A. Doucet, N. de Freitas, and N. Gordon, Eds. Springer-Verlag, 2001,
pp. 499–516.

[27] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. Dover
Publications, 1965, ch. 9.6 Modified Bessel Functions I and K, pp. 374–
377.

[28] S. Amari, “Dynamics of pattern formation in lateral-inhibition type
neural fields,” Biological Cybernetics, vol. 27, pp. 77–87, 1977.

