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Abstract—A frequently reoccurring task of humanoid robots
is the autonomous navigation towards a goal position. Here we
present a simulation of a purely vision-based docking behavior
in a 3-D physical world. The robot learns sensorimotor laws and
visual features simultaneously and exploits both for navigation
towards its virtual target region. The control laws are trained
using a two-layer network consisting of a feature (sensory)
layer that feeds into an action (Q-value) layer. A reinforcement
feedback signal (delta) modulates not only the action but at
the same time the feature weights. Under this influence, the
network learns interpretable visual features and assigns goal-
directed actions successfully. This is a step towards investigating
how reinforcement learning can be linked to visual perception.

I. INTRODUCTION

For a long time philosophers have emphasized the active
nature of perception and the intimate relation between action
and cognition [1], [2]. However, it took almost a century for
the notion of embodied cognition to establish itself in the field
of modern cognitive science and robotics [3]–[8]. Varela et
al. [3] coined the term enactivism - meaning that cognitive
behavior results from interaction of organisms with their
environment, which “appears to be filled with regularities”
resulting from past experiences [9].

On the other hand, our environment is usually filled with
a plethora of stimuli and to discover those “regularities” we
constantly have to discriminate between relevant and irrelevant
features. Especially action selection is generally based on
specific sensory inputs. Therefore, sensory representations
need to reflect a specific task, i.e. sensorimotor relations (laws)
have to be learned.

Evidence for long-term changes of sensorimotor neural
representations has been obtained during habit learning in the
rat striatum [10]. The striatum receives direct cortical input and
is part of the basal ganglia. Doya proposed that unsupervised
learning happens in the cortex and reinforcement learning in
the basal ganglia [11]. Accordingly, the cortex pre-processes
data to yield a representation that is suitable for reinforcement
learning (RL) by the basal ganglia [12].

The seven deep brain nuclei of the basal ganglia are involved
in a variety of crucial brain functions (for a review see

[13]) and are tightly linked to the dopaminergic neuromodu-
latory system, which plays a fundamental role in predicting
future rewards and punishment [14], [15]. More precisely,
the dopamine signal seems to represent the error between
predicted future reward and actually received reward [14]. This
has a direct analogy to the temporal difference error, δ, in
reinforcement learning models [16], where this error is used
to maximize future rewards and avoid punishment. The RL
agent interacts with its environment, initially guided by trial
and error, seeking to find a mapping between states and actions
that will yield the maximal future reward. In other words, it
tries to find an optimal motor strategy which is adequate for
the given scenario.

However, it remains open how the relevant inputs from
the cortex are determined, i.e. which features are read from
the cortical activation pattern that are relevant for selecting
actions and obtaining rewards. Experiments from Shuler and
Bear suggest that RL also occurs in early sensory areas like
the primary visual cortex of the rat [17]. This implies a link
between RL and feature learning.

From a technical point of view it would be straightforward
to first learn the state space, i.e. extract features, with an
unsupervised method and then use RL on top of this to
find the mapping between states and actions. This two-stage
learning is a common approach in the literature. For instance,
Legenstein et al. [18] train a simple neural network based on
rewards on top of features, which before have been extracted
with a hierarchical slow feature analysis network. In contrast,
the attention-gated reinforcement learning (AGREL) model of
Roelfsema et al. [19] represents a link between supervised and
reinforcement learning. The learning rules lead to the same av-
erage weight changes as supervised backpropagation learning.
However, learning is slower due to insufficient feedback when
the network guesses incorrectly and hence the temporal credit
assignment problem is not addressed with this model.

Humanoid robots, like the Nao robot1, are used in a growing
number of ambient caregiver scenarios (e.g. KSERA project2).

1www.aldebaran-robotics.com
2www.ksera-project.eu



One frequently reoccurring task for a robot is autonomous
navigation, which is often solved using a world model [20],
i.e. the robot has a map of the surrounding area which allows it
to do planning. A variant of navigation is docking, in which the
robot navigates towards a goal position, e.g. to perform some
action like grasping, user interaction or recharging. A docking
task usually does not require a map, but is constrained by
the affordances of the goal position, at which the robot often
needs to arrive with a specific pose. This is a hard delayed RL-
problem [21]. In our experiments we only rely on information
that is directly available from the robot’s own camera. The
agent is supposed to learn the relevant visual features and
develop sensorimotor laws based on its interactions with the
environment. Initially, the robot does not know where the
target region is and a reward is only received after the final
movement leads to successful docking.

For this purpose, we apply an innovative algorithm that is
capable of doing both, extracting task-relevant visual features
as well as assigning adequate actions to those, all in a single-
step procedure and within one united architecture. The network
with winner-take-all-like layers considers goal-relevance of
sensory input dimensions, and learns to neglect irrelevant parts
of the input. To achieve this, the prediction error δ of the top
layer (RL) is not only used to modulate learning of action
weights that encode both, value function and action strategy
(Q-values), it is also used to adapt the weights of the feature
neurons of the lower layer, which are responsible for learning
the action-relevant input manifold associated to a specific
action. Previously, this approach has been successfully applied
to learn action-relevant features of artificial stimuli [22], [23].
Now we demonstrate for the first time its applicability to a
realistic robot scenario.

The paper is organized as follows. In section II we present
the neural architecture and describe the scenario. Next, we
report on two experiments in section III, discuss the results in
section IV and conlcude with section V.

II. SCENARIO AND ARCHITECTURE

A. Architecture and Learning

The model is a two-layer feedforward network (schemati-
cally shown in Fig. 1) with full connectivity between adjacent
layers. The input layer (320 neurons) holds a sensory vector
I , representing a 32× 10 pixel grayscale image (Fig. 2 C). A
hidden feature layer (either 4 or 36 neurons) learns visual fea-
tures within its weight matrix W and encodes this information
in a state vector s, which is governed by a softmax activation.
In turn, s is mapped via the action weights Q to the output
layer (4 neurons) representing the currently selected action a.

The learning algorithm, which inherits the top-level struc-
ture of the SARSA algorithm [16], can be summarized as
follows (for details and a derivation of the gradient descent
learning rule see below, section II-B). At the beginning of
each trial, the agent is placed at a random position, with the
constraint that the landmark indicating the docking position
is within its field of view. The agent reads sensor values I to

Fig. 1. Schematic overview of the network architecture. Only one example
connection between any two layers is shown.

obtain the (internal) state activation sj of neuron j via softmax:

hj =
∑
n

WjnIn , (1)

sj =
e
βs
hj∑

k e
βs
hk

(2)

We use a large βs = 100 for a winner-take-all-like behavior.
Next, an action ai for neuron i is chosen stochastically (via
softmax):

hi =
∑
j

Qijsj , (3)

Prob(ai=1) =
eβ

ahi∑
k e

βa
hk

. (4)

During training we use βa = 2 to make the agent explore.
For testing βa = 100 was chosen to exploit the learned skills.
Based on the state activation and on the chosen action the
value v is computed:

v =
∑
k,l

Qklaksl . (5)

The time-discounted (discount factor γ = 0.9) future value v′

and the current value v are used to determine the prediction
error δ. A reward r = 1 is assigned if the goal position has
been reached, otherwise r = 0.

δ = r + γv′ − v . (6)

Using a δ-modulated Hebbian rule with state s and action a
as pre- and post-synaptic values, respectively, the action layer
weights Q can be updated:

∆Qij ∝ δ aisj . (7)



In addition to the normal SARSA-algorithm we use the δ
signal to modulate learning globally and throughout learning
also for the feature layer, even when no reward is given:

∆Wjn ∝ δsjIn(Qij −
∑
k

Qiksk) . (8)

In each phase of the learning algorithm the feature weights W
are rectified to be positive and normalized to length 1, which
ensures that a unit that wins for one data point will not also
win for all others.

Through the softmax function (Eq. 2) the feature layer
performs soft competitive learning. The δ term makes sure that
the feature layer learns only when there is learning progress,
that is, when currently relevant visual stimuli are encountered.
Since unimportant components of the data are not correlated
with the learning progress, on average, they will not contribute
to learning.

B. Gradient Descent Learning

To get a better understanding of the learning rule (Eq. 7 and
8) and to justify its usage we derive it by performing gradient
descent on an energy function.

Let us recall that the action weights Q estimate values v
of actions a in states s. These values approximate a value
function that increases toward the rewarded state, i. e. the
goal of the agent’s actions. The network parameters can be
summarized with θ = (Q,W ). Following Sutton and Barto
[16] (Chapter 8), the values v = v(θ) will be updated to
minimize a mean squared error:

E(θ) =
1

2

∑
s,a

Pπ(s, a)(V π(s, a)− v(s, a))2 . (9)

V π(s, a) is the “true” value given an action policy π and
v(s, a) is the current estimate of the value function. The differ-
ence of both, the prediction error δ (see Eq. 6), can be used to
improve the estimate v. In practice, V π is approximated using
the information of the better estimate v′ obtained in the next
time step:

V π − v = r + γv′ − v = δ . (10)

The probability distribution Pπ(s, a) weighs this prediction
error and represents an on-policy distribution of state-action
pairs that influence the behavior of the agent. In the presented
network the action selection, which in turn alters the visual
sensation, is guided by the softmax function (Eq. 4). Both,
action and sensation, determine the probability distribution
Pπ(s, a). Hence, the on-line update of network parameters
can be expressed as:

∆θ ∝ −∂E
∂θ

= (V π − v)
∂

∂θ
v = δ

∂

∂θ
v . (11)

Using v =
∑
k,lQklaksl, as given in Eq. 5 we obtain the

action weight update:

∆Qij ∝ −
∂E

∂Qij
= δ ai sj . (12)

To compute the derivative of the energy function with respect
to the feature weights we need a differentiable transfer func-
tion on the feature layer. We choose a softmax function (Eq. 2),
which becomes winner-take-all-like with a sufficiently large
parameter β. Considering that Wjn influences not only sj of
feature unit j but the activations sk of all feature layer units,
we have

∆Wjn ∝ − ∂E

∂Wjn
= −

∑
k

∂E

∂sk

∂sk
∂hj

∂hj
∂Wjn

= δ
∑
k

Qik
∂sk
∂hj

In (13)

assuming that action unit i was the activated one. Using the
following identities for the softmax function [24]

∂sj
∂hj

= sj(1− sj) (14)

and
∂sj

∂hk,k 6=j
= −sksj (15)

we obtain:

∆Wjn ∝ δQijsj(1− sj)In − δ
∑
k,k 6=j

Qiksk sjIn

= δQijsjIn − δ
∑
k

Qiksk sjIn

= δsjIn(Qij −
∑
k

Qiksk) . (16)

The first term Qij that arises through backpropagation de-
notes how strong state neuron j contributes to the output. Since
all weights tend to be non-negative when positive rewards are
given, one might interpret this factor as influencing learning
speed but not the final result. The second term represents a
competitive decay term that has a larger suppressive effect if
strong activations sk in the feature layer are paired with large
weights Qik. If a clear winner is found, i.e. exactly one feature
unit is active (sj = 1, and for all others sk,k 6=j = 0), the first
and the second term cancel each other out and learning has
converged.

In contrast to the learning rule for the action weights
(Eq. 7), the update of the feature weights (Eq. 8) represents a
non-local learning rule, because i) the action layer weights
Q are involved and ii) it is summed over all activations
of the feature layer. Note, by omitting the non-local terms
(aggregated in brackets in Eq. 8), we yield a purely local
learning rule. This biologically more realistic approximation
has been successfully applied to the first experimental scenario
presented below. However, for the more difficult task, the
modulatory effect on δsjIn via the non-local terms has been
included, mostly because of the necessity when performing
vanilla gradient descent.

C. Scenario

Docking of a mobile robot is the initial problem that has
to be solved before other applications, e.g. grasping, user



Fig. 2. Nao robot in front of the docking position. (A) Webots simulation
environment representing a domestic situation. (B) Camera view from the
robot. The landmark (red) is located within a white dotted rectangle reflecting
the region that serves as an input to the network. (C) Input image I after pre-
processing.

interaction or recharging can be performed. Therefore, we
modeled a general docking situation in a Webots [25] simula-
tion environment (Fig. 2). As a landmark, signaling the target
region, serves a 3-D geometric shape with several beneficial
attributes. First, depending on the perspective, it generates a
different visual impression. From this, the algorithm needs to
extract location-specific relevant features and assign them to
an adequate action. Next, it can be pre-processed easily. The
raw camera image is simply cropped and color-thresholded.
After downsizing (32× 10 pixels) and a grayscale conversion,
it is then directly used as input to the network (Fig. 2 C).

In the simulation the robot performs four actions – moving
forward, backward, right and left. In one trial a maximum of 25
steps are allowed for reaching the goal. The robot is randomly
initialized in a trapezoidal region in front of the target. Two
scenarios have been simulated. In the first experiment the robot
is only initialized in close proximity to the target, so that
the resolution of the visual input is optimal for the extraction
of the visual features. It is a common practice to start with
easier situations and then gradually move towards more and
more difficult ones. Asada et al. coined the term “Learning
from Easy Missions” (LEM) for this procedure [26]. Hence,
in the second simulation the region is incrementally enlarged
during learning to finally span a distance of up to 1.5 m. At
a larger distance the robot camera is not able to discriminate
the geometrical properties of the stimulus anymore.

III. RESULTS

In the performed Webots simulations the Nao robot is
trained to navigate towards the docking position solely based
on visual input. In the first experiment it is placed in close
proximity to the docking position and encounters visual input
similar to the one shown in the top of Fig. 3. After reaching
its goal position and receiving a reward for about 25 times,
the robot is already able to master the simple task successfully

Fig. 3. Raw visual input (top), receptive fields of action neurons (middle)
and hidden feature neurons (bottom) after 100 steps of training. The
raw camera image (top) shows three exemplary situations the robot might
encounter (corresponding to a robot position left, in front and to the right of
the landmark). The hidden neurons (bottom) code for a specific state, which is
then mapped correctly via the action weights Q (middle) to an adequate action,
e. g. moving left (L), right (R), forward (F) or backward (B). The action
weights for the backward action show no structure, because the backward
action is hardly ever executed in this simple scenario. Correspondingly, one
hidden unit that is not used by any action unit has no structure. Strong weights
are displayed dark.

in 100 % of the trials. The bottom part of Fig. 3 shows the
receptive fields of the hidden neurons after 100 training steps.
The visual features relevant for determining its state and for
performing effective navigation have been extracted and stored
in the weights connecting the input with the hidden state
neurons. In the receptive field depicted in the lower right no
structure has evolved. This is due to the fact that i) the state
space can be covered completely with the three states captured
in the other RFs and ii) the backward action is hardly ever
executed in the simple scenario.

In the second simulation the possible initialization region of
the robot is gradually increased and due to the vastly growing
state space a much harder problem is given. Nevertheless, after
training (2000 trials, ≈ 2 days3) it is able to reach the goal
position in 95 % of the cases (690 out of 725 trials). It is
capable of identifying the relevant visual features, as shown
by the evolved receptive fields (RFs) of the feature and action
layer in Fig. 4 and to generate task-specific sensorimotor
laws needed for navigation. However, these features are not
clearly reflecting the shape of the landmark anymore. Due
to the large variations of the landmark’s position, scale and
perceived shape, the network is not capable of representing
all combinations. Therefore, now not only a single state is
linked to a specific action, but a mixture of different ones
(Fig. 4 top). This “population” coding might be useful for
resolving ambiguities. Note, the predominant visual feature
for a specific action can still be recognised in the receptive
fields (Fig. 4 bottom, RFs framed in red).

In Fig. 5 sample trajectories of the robot are shown. Green
trajectories were successful trials, whereas the red ones rep-
resent failures. Note that an identical initialization point can
result in a completely different trajectory. This is mainly due to
noise in movements that is imposed by the Webots simulator to

3The combination of the Webots simulator with the Aldebaran Nao API
runs in real-time only



Fig. 4. Receptive fields of hidden feature neurons (bottom) and action
neurons (top) after 2000 steps of training. The RFs of the action units
correspond to left (L), right (R), forward (F) and backward (B) movement.
The RFs of the feature neurons that have the strongest contribution on the
action units for L,R & F are framed in red. Strong weights are displayed dark.

reflect real-world robot behaviour. Furthermore, this noise can
lead to a rotation of the robot, which currently is not compen-
sated, because no rotation movements are implemented. This
is actually the reason for most of the unsuccessful trials (red
trajectories, Fig. 5).

After training, a receptive field is linked to a specific action,
jointly composing a sensorimotor law. Now, if the robot is
confronted with a (previously unseen) input, the winning
feature unit is the one where the receptive field is most similar
to the current input. Hence, the properties (e.g. shape) of this
input will trigger the movement embedded in the sensorimotor
law. This perceived shape reflects the robot position in relation
to the goal.

IV. DISCUSSION

We report on a Webots simulation for navigation and
docking towards a virtual target. In the experiments we apply
a previously developed two-layer network [22], integrating
feature and motor learning in a single-step procedure. As a
landmark we use a 3-D geometrical shape (Fig. 2), which
leads to perspective distortions depending on robot position
and locomotion (Fig. 3). The network learns to exploit this
for navigation.

In general, a robot should be aware of the effects of its
own actions on objects in the environment and be able to
consequently use this knowledge in a goal-directed behaviour.
This is achieved by the presented architecture. The network
discovers relevant sensory features and stores this information
in the weights of the hidden layer (see RFs in Fig. 3 and 4).
Simultaneously, sensorimotor laws are learned, which link the
current state (comprising physical properties of the object and
the sensor, as well as the position of the robot) to a goal-
directed action.

Another restriction imposed on an autonomous agent is that
noise (e.g. other red objects within the visual field) should
not affect performance. This criterion is also fulfilled by our
model [22]. The sensorimotor laws acquired during learning
are grounded in perception. The prediction error δ modulates
the learning in a top-down, action-driven way and allows to

Fig. 5. Sample trajectories of the robot. Different shades of green represent
successful trials and red failures. The yellow docking region measures 8 ×
20 cm.

distinguish between relevant and irrelevant sensory features,
despite the fact that the information stemming from the
sensory apparatus of the agent can be ambiguous, incomplete
and noisy. To even improve robustness, a memory layer could
be added to the network [23], which helps to maintain focus
on relevant features in phases where they are masked by noise
or incomplete.

The presented network learns goal-relevant features within
a single united framework. However, if one is willing to
give up on training the network with one energy function,
a self-organizing map [27] could be used to first learn the
visual features, and the resulting map could represent the
state space for RL in a succeeding step. There are further
methods of unsupervised learning (e. g. exploiting sparseness
or a slowness principle) that could also be used to learn the
perceptual features. All these models have in common that
they do not discriminate between action-relevant and irrelevant
features nor do they solve the delayed RL-problem. Therefore,
they would be separate parts that would need to be linked ad
hoc to the reinforcement learning architecture.

Once the sensorimotor laws have been learned and the
visual features needed for navigation have been captured in
the weights the robot is able to navigate to any position, where
a landmark with the same geometrical properties is located.
This is a clear advantage compared to models that rely on a
world model.

The presented results are in agreement with the theory
of sensorimotor contingencies (SMCs) proposed by O’Regan



and Noë [28]. According to this theory, actions are funda-
mental for perception and help to distinguish the qualities
of sensory experiences in different sensory channels (e.g.
“seeing”,“hearing” or “touching”). On this account, it is also
imaginable to use e.g. the sonar sensors of the robot for
navigation. This could be done in addition, i.e. multimodal,
or separately. As a matter of fact, the architecture should also
be capable to learn without any landmark at all, but instead
exploiting the geometrical shape of the surrounding area of
the docking position. However, this is not feasible due to
the narrow field-of-view of the built-in camera. While getting
closer, the target region eventually is too close to be captured
in toto.

Finally, it should be noted, that the proposed model can
cope easily with changes of the object, sensors or actuators of
the robot.

V. CONCLUSION & OUTLOOK

We presented an innovative two-layer network that solves
the hard delayed RL-problem of visual-based robot docking.
The presented architecture is capable of learning sensorimotor
laws and visual features simultaneously. However, the focus of
the presented work is not to compete with technical solutions,
but to present a biologically plausible network model that can
learn sensorimotor laws and decision relevant features based
only on internally available information.

Currently, we are implementing a real-world precision ap-
proach including turning of Nao. Future work aims at allowing
continuous actions. This should result in even more accuracy
and a shorter path due to exact and oriented movements.
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