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Abstract. A vast data repository such as the web contains many broad domains of data which are quite distinct from each other e.g.
medicine, education, sports and politics. Each of these domains constitutes a subspace of the data within which the documents
are similar to each other but quite distinct from the documents in another subspace. The data within these domains is frequently
further divided into many subcategories. In this paper we present a novel hybrid parallel architecture using different types of
classifiers trained on different subspaces to improve text classification within these subspaces. The classifier to be used on a
particular input and the relevant feature subset to be extracted is determined dynamically by using maximum significance values.
We use the conditional significance vector representation which enhances the distinction between classes within the subspace.
We further compare the performance of our hybrid architecture with that of a single classifier – full data space learning system
and show that it outperforms the single classifier system by a large margin when tested with a variety of hybrid combinations on
two different corpora. Our results show that subspace classification accuracy is boosted and learning time reduced significantly
with this new hybrid architecture.
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1. Introduction

The web is an almost infinite data repository. It con-
tains a large number of data domains which are quite
distinct from each other. A few examples of these are
medicine, education, sports and politics. The data with-
in these domains is frequently further subdivided into
many levels of categories. These domains constitute
different subspaces of data which can be processed as
independent entities.

The curse of dimensionality [11] degrades the perfor-
mance of many learning algorithms. Very high dimen-
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sions reduce the effectiveness of distance measures and
blur the cluster boundaries within subspaces. There-
fore, we need ways to discover clusters in different sub-
spaces of datasets which are represented with a high
number of dimensions [19].

Subspace analysis lends itself naturally to the idea of
hybrid classifiers. Since each subspace can be viewed
as an independent dataset, different classifiers can be
used to process different subspaces. Each subspace can
be processed by a classifier best suited to the character-
istics of that particular subspace. Instead of using the
complete set of full space feature dimensions, classifier
performances can be boosted by using only a subset
of the dimensions. The method of choosing an appro-
priate reduced set of dimensions is an active research
area [14].

The use of Random Projections in dimensionality
reduction has also been explored. Random Projections
and PCA were compared on different datasets and ma-
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Fig. 1. A combined classifier.

chine learning algorithms by Fradkin and Madigan [6].
They concluded that the performance of PCA was con-
sistently better than that of Random Projections (RP)
but RP was more efficient computationally and it was
best suited with nearest neighbor methods. In the Ran-
dom Subspace Method (RSM) [32], classifiers were
trained on randomly chosen subspaces of the origi-
nal input space and the outputs of the models were
then combined. However random selection of features
does not guarantee that the selected inputs have nec-
essary distinguishing information. Several variations
of RSM have been proposed by various researchers
such as Relevant random feature subspaces for co-
training (Rel-RASCO) [34], Not-so-Random Subspace
Method (NsRSM) [23] and Local Random Subspace
Method [28].

The performance of different types of classifiers
(Bayesian, Tree based, Neural Networks, etc.) can
be improved by combining them with various types of
combining rules. In one method of classifier combi-
nation, several classifiers of different types operate on
the same data and produce their individual classifica-
tion outputs. A combination rule or combining clas-
sifier is then applied to the outputs of these partici-
pating classifiers to produce the final classification de-
cision. In another method of classifier combination,
many classifiers of the same or different types operate
on different portions of the input data space. The com-
bining classifier decides which part of the input data
has to be applied to which base classifier. Two special
types of classifier combinations are Bagging [15] and
Boosting [25] which use a large number of primitive
classifiers of the same type (e.g. a decision stump) on
weighted versions of the original data. Figure 1 shows
a general combined classifier.

Many experiments were conducted on combining
classifiers by Duin and Tax [26] and it was reported
that best performance is achieved by combining both,
different feature sets and different classifiers. Several
researchers have studied classifier combinations with
respect to text categorization. In one method [13], text
and metadata were considered as separate descriptions
of the same object. These descriptions were classified
by their independent classifiers and the classification
outputs combined to give a final classification decision.
Another text categorization method [20] was based on
a hierarchical array of neural networks. In this case,
the expert networks are specialized in recognizing doc-
uments corresponding to a specific category. The prob-
lem of large class imbalances in text classification tasks
was addressed by using a mixture of experts frame-
work [1]. Here different experts are trained on datasets
sampled at different rates. Both oversampling and un-
der sampling is used in this case.

In the real world, documents can be divided into ma-
jor semantic subspaces with each subspace having its
own unique characteristics. The above research does
not take into account this division of documents into
different semantic subspaces. Therefore we present
here a novel hybrid parallel architecture (Fig. 2) which
takes advantage of the different semantic subspaces ex-
isting in the data. We further show that this new hybrid
parallel architecture improves subspace classification
accuracy as well as significantly reduces training time.
For this architecture, we test various hybrid combina-
tions of classifiers using the conditional significance
vector representation [24] which is a variation of the
semantic significance vector [30,31] to incorporate se-
mantic information in the document vectors. The con-
ditional significance vector enhances the distinction be-
tween subtopics within a given main topic. The re-
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Fig. 2. Hybrid parallel classifier architecture for subspace learning.

gion of the test data is determined by the maximum
significance value [24] which is evaluated in O(k) time
where k is the number of level 1 topics and thus can be
very effective where time is critical for returning search
results.

In Section 2, we present our new hybrid parallel ar-
chitecture and describe the corpora used to test this
architecture. Section 3 details the conversion of text
data into the various vector formats and also the clas-
sification algorithms used in our experiments. In Sec-
tion 4, we compare the performance of this hybrid par-
allel classifier against that of single MLP classifiers us-
ing the significance vector as well as the tf-idf vector
representation. Our experiments are performed on two
different corpora – the Reuters corpus (RCV1) [33]
and the Large Scale Hierarchical Text Classification
(LSHTC) Corpus [2] using the first two levels of the
topic hierarchy in both cases.

2. Methodology overview and overall architecture

The Reuters Corpus is a well-known test bench for
text categorization experiments. It also has a hierarchi-

cal organization with four major groups which is well
suited to test the classification performance of a hybrid
architecture. We used the Reuters Corpus headlines for
our experiments as they provide a concise summary of
each news article. Each Reuters headline consists of
one line of text with about 3–12 words. Some example
Reuters headlines are given below:

“Healthcare Imaging Q2 loss vs profit.”
“Questar signs pact to buy oil, gas reserves.”
“Ugandan rebels abduct 300 civilians,army says.”
“Estonian president faces reelection challenge.”
“Guatemalan sides to sign truce in Norway re-
port.”
“CRICKET-Australia beat Zimbabwe by 125 runs
in one-day match.”
“PRESALE – Akron, Ohio.”

The topic codes in the Reuters Corpus represent
the subject areas of each news story. They are or-
ganized into four hierarchical groups, with four top-
level nodes: Corporate/Industrial (CCAT), Economics
(ECAT), Government/Social (GCAT) and Markets
(MCAT). Under each top-level node there is a hierar-
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chy of codes where the depth of each is represented
by the length of the code. As a representative test, ten
thousand headlines along with their topic codes were
extracted from the Reuters Corpus. These headlines
were chosen so that there was no overlap at the first
level categorization. Each headline belonged to only
one level 1 category. At the second level, since most
headlines had multiple level 2 subtopic categorizations,
the first subtopic was taken as the assigned subtopic.
Thus each headline had two labels associated with it –
the main topic (Level 1) label and the subtopic (Level
2) label. Headlines were then preprocessed to sepa-
rate hyphenated words to avoid such combinations be-
ing interpreted as new words rather than a sequence of
known words. Dictionaries with term frequencies were
generated based on the TMG toolbox [7] and were then
used to generate the Full Significance Vector [24], the
Conditional Significance Vector [24] and the tf-idf [5]
representation for each document. The datasets were
then randomised and divided into a training set of 9000
documents and a test set of 1000 documents.

For comparative analysis, we used the LSHTC [2]
competition data from the LSHTC website as our sec-
ond corpus. The LSHTC data has been constructed
by crawling the web pages that are found in the Open
Directory Project (ODP) located at www.dmoz.org and
translating them into feature vectors. These vectors
are called content vectors. The Open Directory Project
is an open source and extensive directory of web con-
tent. An example web page content accessed from this
directory is given below:

“Ambienti Italia brings you world class Italian
furniture through infinite selections for decorating
your home. Flexibility and design expertise al-
low us to adapt to any kind of space according to
required functions and available dimensions. We
want our customers to go home and find the best
– comfort and style. Ambienti Italia’s collections
reflect the achievements and history of Italian home
furnishings”

The ODP descriptions of the web pages and the cat-
egories are also translated into feature vectors. These
vectors are called web page and category description
vectors. Two datasets were put up for the LSHTC com-
petition – the large lshtc dataset and the smaller dry-
run lshtc dataset. The directory of each dataset con-
sisted of a cat hier.txt file describing the category hi-
erarchy of the dataset and data folders for four tasks
(Task1 – Task4). Task1 contained only crawl data while
the data for task 2, task 3 and task 4 contained crawl
data and RDF data.

We used the data from the dry-run task1 training fold-
er as our LSHTC corpus. The average number of words
in each document in this dataset is 290. This number
takes into account only the stemmed words without the
stop words. The data is in the form of content vectors
which are obtained by directly indexing the web pages.
A text file describing the category hierarchy is also giv-
en with the data. There were 4463 content vectors in
this data file with their associated lowest level labels.
We pre-processed these vectors in order to replace the
lowest level labels with the corresponding labels of the
first two levels of the category hierarchy. These vec-
tors were then used to generate the Full Significance
Vector [24], the Conditional Significance Vector [24]
and the tf-idf [5] representations for each document as
will be described below. The datasets were then ran-
domised and divided into a training set of 4000 vectors
and a test set of 463 vectors.

The WEKA machine learning workbench [21] pro-
vided various learning algorithms which we combined
in various new hybrid architectures in order to test a
variety of learning algorithms. Seven algorithms were
compared for our representations to examine the per-
formance of various classification algorithms. Classifi-
cation Accuracy, which is a comparison of the predict-
ed class to the actual class, and the Training Time were
recorded for each experiment run.

3. Steps for data processing and data generation
for experiments

3.1. Text data preprocessing

For designing and testing our new hybrid architec-
ture, we took text data from two different sources
(Reuters and LSHTC). This text data was pre-processed
to represent a two-level hierarchy and then processed
in a variety of ways to generate data vectors in different
formats.

Reuters Corpus: Ten thousand Reuters headlines
were used in these experiments. The Level 1 catego-
rization of the Reuters Corpus divides the data into four
main topics. These main topics and their distribution
in the data along with the number of subtopics of each
main topic in this data set are given in Table 1.

Level 2 categorization further divides these into
subtopics. Here we took the direct (first level nest-
ing) subtopics of each main topic occurring in the
10,000 headlines. A total of 50 subtopics were includ-
ed in these experiments. Some of these subtopics with
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Table 1
Reuters level 1 topics

No. Main Topic Description Number Present No. of Subtopics

1. CCAT Corporate/ Industrial 4600 18
2. ECAT Economics 900 8
3. GCAT Government/ Social 1900 20
4. MCAT Markets 2600 4

Table 2
Some reuters level 2 subtopics

Main Topic Subtopic Description Number Present

CCAT C17 Funding/ Capital 377
CCAT C32 Advertising/ Promotion 10
ECAT E12 Monetary/ Economic 107
ECAT E21 Government Finance 377
GCAT G15 European Community 38
GCAT GENV Environment 30
MCAT M11 Equity Markets 617
MCAT M14 Commodity Markets 1050

Table 3
LSHTC level 1 (main) topics

No. Main Topic Number Present Number of Subtopics

1. A 802 19
2. B 979 36
3. C 639 17
4. D 269 17
5. E 158 5
6. F 20 3
7. G 578 19
8. H 364 6
9. I 321 14

10. J 333 22

their numbers present are shown in Table 2. Since all
the headlines had multiple subtopic assignments, e.g.
C11/C15/C18, only the first subtopic e.g. C11 was tak-
en as the assigned subtopic. Our assumption here is
that the first subtopic used to tag a particular Reuters
news item is the one which is most relevant to it.

LSHTC Corpus: This dataset consisted of 4463 con-
tent vectors with multilevel categorization. There was
no data with overlapping categorization in this dataset.
There are 10 level 1 and 158 level 2 topics in this cor-
pus. These topics were coded numerically. We re-
placed this numeric code with an alphanumeric code
for ease of analysis. Subsequently the 10 top level cate-
gories were given letter codes A – J. These main topics
and their distribution in the data along with the num-
ber of subtopics of each main topic in this data set are
given in Table 3. The subtopics were coded A01-A19,
B01-B36, etc. with the first character denoting the main
topic to which these subtopics belonged. The number
of data vectors for some of these subtopics is given in
Table 4.

Table 4
Some LSHTC level 2 subtopics

Subtopic Number Present Subtopic Number Present

A09 120 F02 11
A16 8 F03 8
B06 114 G07 47
B26 40 G14 208
C05 2 H02 336
C10 232 H04 2
D02 26 I03 91
D08 62 I10 18
E03 40 J06 44
E05 2 J22 19

3.2. Semantic significance vector generation

We use a vector representation which represents the
significance of the data and weighs different words ac-
cording to their significance for different topics. Sig-
nificance Vectors [30,31] are determined based on the
frequency of a word in different semantic categories.
A modification of the significance vector called the se-
mantic vector uses normalized frequencies where each
word w is represented with a vector (c1, c2,. . . ,cn)
where ci represents a certain semantic category and n

is the total number of categories. A value v(w, ci) is
calculated for each element of the semantic vector as
the normalized frequency of occurrences of word w

in semantic category ci (the normalized category fre-
quency), divided by the normalized frequency of oc-
currences of the word w in the corpus (the normalized
corpus frequency):

v(w, ci) =
Normalised Frequency of w in ci∑

k

Normalised Frequency of w in ck

where k ∈ {1..n}

For each document, the document semantic vector is
obtained by summing the semantic vectors for each
word in the document and dividing by the total num-
ber of words in the document. Henceforth it is simply
referred to as the Significance Vector. The TMG Tool-
box [7] was used to generate the term frequencies for
each word in each headline. The word vector consisted
of 54 columns (for 4 main topics and 50 subtopics) for
the Reuters Corpus and 168 columns (for 10 main topics
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and 158 subtopics) for the LSHTC corpus. While cal-
culating the significance vector entries for each word,
its occurrence in all subtopics of all main topics was
taken into account – hence called the Full Significance
Vector. We also generate the Conditional Significance
Vector [24] where a word’s occurrence in all subtopics
of only a particular main topic is taken into account
while calculating the word significance vector entries.

3.3. Data vector sets generation

As will be described below, three different vector
representations (Full Significance Vector, Conditional
Significance Vector and tf-idf) were generated for our
data. The Conditional Significance Vectors were pro-
cessed further to generate main category-wise data vec-
tor sets (4 different datasets for Reuters and 10 different
data sets for LSHTC).

3.3.1. Full significance vector
Here, the document vectors were generated by sum-

ming the full significance word vectors for each word
occurring in a document and then dividing by the
total number of words in that document. For each
Reuters Full Significance document vector the first four
columns, representing four main topics – CCAT, ECAT,
GCAT & MCAT, were ignored leaving a vector with 50
columns representing 50 subtopics. The order of the
data vectors was then randomised and divided into two
sets – training set of 9000 vectors and a test set of 1000
vectors. Similarly, for each LSHTC Full Significance
document vector the first ten columns, representing ten
main topics (A–J), were ignored leaving a vector with
158 columns representing 158 subtopics. The order of
the data vectors was then randomised and divided into
two sets – training set of 4000 vectors and a test set of
463 vectors.

3.3.2. Category-based conditional significance
vectors

Here, the conditional significance word vectors were
used to generate the document vectors in the same way
as above for the Reuters and LSHTC corpora. These
document vectors were then processed as described
below to produce the CSV RelVectors for each corpus.

Reuters Corpus: The order of the 10,000 Reuters
Conditional Significance document vectors was ran-
domised and divided into two sets – a training set of
9000 vectors and a test set of 1000 vectors. The training
set was then divided into 4 sets according to the main
topic labels. For each of these sets, only the relevant

subtopic vector entries (e.g. C11, C12, etc. for CCAT;
E11, E12, etc. for ECAT) for each main topic were re-
tained. Thus the CCAT category training dataset had
18 columns for 18 subtopics of CCAT. Similarly the
ECAT training dataset had 8 columns, the GCAT train-
ing dataset had 20 columns and the MCAT training
dataset had 4 columns. These 4 training sets were then
used to train the 4 parallel classifiers of the Reuters hy-
brid classifier. The main category of a test data vector
was determined by the maximum significance vector
entry for the first four columns representing the four
main categories. After this, the entries corresponding
to the subtopics of this predicted main topic were ex-
tracted along with the actual subtopic label and given
to the classifier trained for this predicted main category.

LSHTC Corpus: The order of the 4463 LSHTC
Conditional Significance document vectors was ran-
domised and divided into two sets – training set of 4000
vectors and a test set of 463 vectors. The training set
was then divided into 10 sets according to the main
topic labels. For each of these for sets, only the rele-
vant subtopic vector entries (e.g. A01, A02, etc. for A;
B01, B02, etc. for B) for each main topic were retained.
These 10 training sets were then used to train the 10
parallel classifiers of the LSHTC hybrid classifier. The
main category of a test data vector was determined by
the maximum significance vector entry for the first ten
columns representing the ten main categories. After
this, the entries corresponding to the subtopics of this
predicted main topic were extracted along with the ac-
tual subtopic label and given to the classifier trained for
this predicted main category.

Figure 3 shows the classification decisions for some
Reuters input vectors. Figures 3(a)–3(e) each represent
one input test vector. The x-axis of these figures repre-
sents the significance vector components which in turn
represent all the main topics and subtopics present in
our Reuters Corpus data. The y-axis shows the actual
numerical values for these significance vector compo-
nents as calculated in Sections 3.2 and 3.3. The black
data points show the predicted main topic and the pre-
dicted subtopic while the gray data points show the ac-
tual main topic and the actual subtopic (wherever actual
and predicted are distinct). Figures 3(a), 3(b) and 3(c)
show correctly classified vectors while Figures 3(d) and
3(e) show vectors which are classified wrongly. In Fig-
ures 3(a), 3(b) and 3(c), there are no gray data points
as the predicted and actual main topics are the same.
In Fig. 3(d), the main topic predicted was correct and
the vector was presented to the correct classifier but
the subtopic classification was wrong. Hence the fig-
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ure shows black and gray data points for the subtopic.
In Fig. 3(e), the main topic predicted was wrong and
hence the vector was presented to the wrong classifier –
resulting in a wrong classification. This figure shows
black and gray data points for both the main topic as
well as the subtopic. Figure 3(e) presents an inherent
limitation of this system whereby a wrong classifier is
chosen by the classifier selection step of the parallel
classifier.

For the Reuters Corpus, the accuracy of choosing
the correct main topic by selecting the maximum sig-
nificance level 1 entry was measured to be 96.80% for
the 1000 test vectors, i.e. 968 vectors were assigned
the correct trained classifiers whereas 3.20% or 32 vec-
tors were assigned to a wrong classifier – resulting in
a wrong classification decision for all these 32 vec-
tors. Hence the upper limit for classification accuracy is
96.80% for our hybrid parallel classifier for the Reuters
Corpus. Similarly, the accuracy of choosing the cor-
rect main topic by selecting the maximum significance
level 1 entry was measured to be 85.31% for the 463
LSHTC test vectors, i.e. 85.31% or 395 vectors were
assigned the correct trained classifiers whereas 14.69%
or 68 vectors were assigned to a wrong classifier – re-
sulting in a wrong classification decision for all these
68 vectors. Hence the upper limit for classification ac-
curacy is 85.31% for our hybrid parallel classifier for
the LSHTC Corpus. Figures 4(a), 4(b) and 4(c) show
relevant snapshots of the correctly classified LSHTC
vectors while Figs 4(d) and 4(e) show snapshots of the
LSHTC vectors which are classified wrongly.

3.3.3. Category-based full significance vectors
To compare the performance of different vector for-

mats, we also generated the category-based Full Sig-
nificance Vectors. Here, the Full Significance docu-
ment vectors were generated as described in Section
3.3.1 for the Reuters and LSHTC Corpora. After this,
the document vector set for each corpus was divided
into category-based training and test sets as described
in section 3.3.2.

Two variations of the category based Full Signifi-
cance Vectors were generated for our experiments:

i) Category-Wise Separated Vectors with the com-
plete set of subtopic vector dimensions (50 for
Reuters and 158 for LSHTC) designated as
FSV FullVector;

ii) Category-Wise Separated Vectors with only the
relevant subtopic vector dimensions correspond-
ing to the actual main category for training vec-
tors and the predicted main category for test
vectors. These vectors are designated here as
FSV RelVector.

3.3.4. TF-IDF vector generation
The tf-idf weight (Term Frequency–Inverse Docu-

ment Frequency) is often used in text mining and in-
formation retrieval. It is a statistical measure which
evaluates how important a word is to a document in a
data set. This importance increases with the number of
times a word appears in the document but is reduced by
the frequency of the word in the data set. Words which
occur in almost all documents have very little discrim-
inatory power and hence are given very low weight.
The TMG toolbox [7] was used to generate the tf-idf
vectors for our experiments. The tf-idf vector datasets
were then randomized and divided into 9000 training
vectors / 1000 test vectors for the Reuters Corpus and
4000 training vectors / 463 test vectors for the LSHTC
Corpus.

3.4. Classification algorithms

Seven Classification algorithms were tested with our
datasets namely Random Forest, C4.5, the Multilayer
Perceptron, Naı̈ve Bayes, BayesNet, NNge and PART.
Random Forests [16,27] are a combination of tree pre-
dictors such that each tree depends on the values of a
random vector sampled independently. C4.5 [12,29] is
an inductive tree algorithm with two pruning methods:
subtree replacement and subtree raising. The Multi-
layer Perceptron [4,22] is a neural network which uses
backpropagation for training. Naive Bayes [10,17] is
the simplest form of Bayesian network, in which all
attributes are independent given the value of the class
variable. BayesNet [9,18] implements Bayes Network
learning using various search algorithms and quality
measures. NNge [3] is a nearest neighbor - like algo-
rithm using non-nested generalized exemplars which
can be considered as if-then rules. A PART [8] decision
list uses C4.5 decision trees to generate rules. Table 5
shows the different classification algorithms used with
their default parameters in Weka.

4. Results and their analysis

A variety of basic learning algorithms required to
test various hybrid combinations for our new architec-
ture were provided by the WEKA machine learning
workbench [21]. The Multilayer Perceptron (MLP)
along with six other basic algorithms were used in
our experiments. These included two Bayesian algo-
rithms (BayesNet and Naive Bayes), two rule-based al-
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Fig. 3. Classification decisions by a hybrid parallel classifier for some REUTERS input vectors.
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Fig. 4. Classification decisions by a hybrid parallel classifier for some LSHTC input vectors.
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Table 5
Classification algorithms and their default settings in weka

No. Algorithm Default settings

1. BayesNet Estimates probabilities directly from the data; Uses the K2 hill
climbing algorithm;

2. Naı̈ve Bayes Numeric estimator precision values are chosen based on analysis of
the training data;

3. PART Confidence factor for pruning = 0.25; Minimum Number of
instances per rule = 2;

4. NNge Number of Attempts for Generalisation = 5; Number of Folders for
Mutual Information = 5;

5. J48(C4.5) Confidence factor for pruning = 0.25, Minimum Number of
Instances per leaf = 2; Subtree raising used on pruning;

6. Random Forest Number of Trees to be generated = 10; No limit on the depth of a
tree;

7. Multilayer Perceptron Number of hidden layers = (attributes + classes) / 2;
Learning Rate = 0.3; Momentum = 0.2;
Training Time = 500; Validation threshold = 20;

gorithms (PART and NNge) and two tree-based algo-
rithms (J48 and Random Forest).

Our experiments were run using these seven algo-
rithms from Weka on the Reuters and LSHTC Corpora.
The Reuters Corpus was divided into 9000 training vec-
tors and 1000 test vectors while the LSHTC Corpus was
divided into 4000 training and 463 test vectors. For the
hybrid classifier, the 9000 training vectors for Reuters
and the 4000 training vectors for LSHTC were divided
according to the actual main categories and were used
to train the chosen category classifier with the relevant
subtopic vector entries and actual subtopic labels. The
test vectors were divided into main categories based on
the maximum significance value among the main topic
significance vector entries. The relevant subtopic vec-
tor entries of this predicted main topic and the actual
subtopic labels of these vectors were used to test these
classifiers.

In the first step, we used the category-wise separated
data from the training set to select the algorithm with
the highest classification accuracy for each main cate-
gory. In the case of a tie between two algorithms, the
one with the lower training time was chosen. Subse-
quently we applied these selected algorithms to the test
data and measured the performance of the hybrid clas-
sifier. The category-wise separated Conditional Signif-
icance Vectors were used here. We also ran each of the
basic algorithms on the full (not category-wise sepa-
rated) data set to provide a comparison for the hybrid
classifier. Two vector representations were used for the
comparison baseline – the Full Significance Vector and
tf-idf. As the performance of many classifiers for each
main category was quite close to each other, we also ran
some experiments using a predefined set of classifiers.
The combination of MLP with different types of clas-

sifiers (Bayesian, rule-based and tree-based classifiers)
was evaluated and the best combination was identified.
For a two-classifier combination, MLP and the other
classifier were used alternately on the main category
topics while for a four-classifier system four different
classifiers were used on the four main topics of Reuters
Corpus and repeated for each block of four main topics
for the LSHTC Corpus.

The charts in Fig. 5 show a comparison of the per-
formance of hybrid classifiers with that of MLP for
both corpora. The subtopic classification accuracy per-
centage and training time in seconds is shown for the
Hybrid Parallel classifiers along with that of the base-
lines. The baseline is a single MLP classifier using full
data (not category-wise separated data). This baseline
experiment is run with two different vector representa-
tions – Significance Vector and tf-idf. The accuracies
of all the hybrid parallel classifiers are better than that
of the single MLP classifier. This could be due to the
fact that each base classifier present in the hybrid par-
allel classifier has to learn from a subset of the original
data. As such, it is able to distinguish between cate-
gories present in this subspace more accurately than a
classifier which has to learn from the full dataset.

Overall, it was observed that there was an improve-
ment in subtopic classification accuracy along with a
significant reduction in training time. The classifica-
tion accuracies of all the hybrid classifiers were quite
close to each other but all of them were much better
than the classification accuracy of the single classifier
with tf-idf baseline for both the Reuters and the LSHTC
corpora. The difference with the significance vector
baseline was smaller for the Reuters Corpus but even
there the classification accuracies of the hybrid systems
were better. The training times showed a very steep
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Fig. 5. Hybrid parallel classifiers performance metrics with baselines.

reduction compared to both baselines. The average of
10 runs was taken for each experiment. In the hybrid
classifier, even though we are using more classifiers, the
training time is reduced. This is because each classifier
now trains on a reduced set of data with a reduced set of
vector components. This two-fold reduction translates
to a significant decrease in training time.

We also compared the performance of one hybrid
classifier (HC4) with three different vector formats:

FSV FullVector, FSV RelVector and CSV RelVector.
It was observed that the CSV RelVector gave the best
subtopic classification accuracy.

4.1. Reuters corpus results

Figures 6(a) and 6(b) show the detailed results for
the Reuters Corpus. The Hybrid 4-classifier sys-
tem (HC10) shows the best classification accuracy
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Fig. 6. Hybrid parallel classifiers only - Performance metrics.

which is quite similar to that of the hybrid classifier
with category-wise classifiers chosen from training set
(HC1). The training times of all hybrid classifiers were
quite close to each other with HC1, HC8, HC9 and
HC10 showing the least training time. The other hybrid
classifiers were two-classifier systems with one MLP
and one non-MLP classifier alternating on the main

topics. Hence for the Reuters data with four main top-
ics, there were two MLPs in all the hybrid 2-classifier
systems. This could account for the slightly higher
training time of these classifiers versus the hybrid 4-
classifier systems (HC8, HC9 and HC10) which have
only one MLP in the combination. The hybrid classifi-
er with category-wise classifiers chosen from training
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Fig. 7. Comparison of hybrid classifier performance with basic classifiers on full data.

set (HC1) had MLP for the CCAT main topic and J48
for all other main topics. Since this combination also
had only one MLP, its training time was comparable to
the hybrid 4-classifier systems.

Figure 7(a) shows the comparison of the classifica-
tion accuracy of the best hybrid classifier (HC10) on
category-wise data with that of each basic classifier on
full data. The average classification accuracy is also
shown. The chart shows the performance of each ba-
sic classifier using two different vector formats – tf-idf
and Significance Vector. The performance of the hy-
brid classifier is better than the average basic classifier
accuracy for both vector formats.

Figures 8(a) and 8(b) shows the performance of the
HC4 classifier (Hybrid parallel 2-classifier MLP/NNge
combination) with different vector formats for the
Reuters Corpus. It can be seen that CSV RelVector
(Conditional Significance Vectors with only the rel-
evant subtopic vector components) gives the highest
subtopic classification accuracy and the lowest training
time.

4.2. LSHTC corpus results

Figures 6(c) and 6(d) show the detailed results for
the LSHTC Corpus. The highest subtopic classifica-
tion accuracy is shown by the Hybrid Parallel Classi-
fier with category-wise classifiers chosen from train-
ing data performance (HC1) with 82.85%. It has a
training time of 63.69 seconds. This is very close-
ly followed by Hybrid 2-Classifier (MLP/NNge) Sys-
tem (HC4) with 82.72% classification accuracy and
43.68 seconds training time. The lowest training time
is shown by the Predefined Hybrid 4-Classifier Sys-
tem (MLP/NB/NNge/J48) (HC8) at 24.14 seconds. In
an overall tradeoff between classification accuracy and
training time, the best hybrid classifier seems to be the
Hybrid 2-Classifier System (MLP/NNge) (HC4). This
classifier also eliminates the step of choosing the best
classifier per main category from the training set and
thus effectively reduces training time even further.

Figure 7(b) shows the comparison of the classifica-
tion accuracy of the best hybrid classifier (HC1) on



112 N. Tripathi et al. / Semantic subspace learning using hybrid intelligent techniques

Fig. 8. Comparison of hybrid classifier (HC4) performance with different vector formats.

category-wise data with that of each basic classifier on
full data for the LSHTC Corpus. The average classi-
fication accuracy is also shown. The chart shows the
performance of each basic classifier using two different
vector formats – tf-idf and Significance Vector. The
performance of the hybrid classifier is much better than
the average basic classifier accuracy for both vector
formats.

Figures 8(c) and 8(d) show the performance of the
HC4 classifier (Hybrid parallel 2-classifier MLP/NNge
combination with different vector formats for the
LSHTC Corpus. Here again, it can be seen that

CSV RelVector (Conditional Significance Vectors with
only the relevant subtopic vector components) gives the
best subtopic classification accuracy and training time.
The improvement is higher with the LSHTC Corpus
than with the Reuters Corpus.

The classification accuracy of the hybrid classifier
is better than the average basic classifier accuracy for
both vector formats. The improvement in performance
is much more marked with the LSHTC Corpus as com-
pared to the Reuters Corpus. As the LSHTC Corpus has
more categories (10 main and 158 subtopic) than the
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Reuters Corpus (4 main and 50 subtopics), this result
is particularly encouraging.

5. Conclusion

In this paper, we attempt to leverage the differences
in the characteristics of different subspaces to improve
semantic subspace learning. The main objective here
is to improve document classification in a document
space by combining various learning methods. Our
experiments show that hybrid parallel combinations of
classifiers trained on different subspaces offer a sig-
nificant performance improvement over single classi-
fier learning on full data space. Individual classifiers
also perform better when presented with less data in
lower dimensions. Our experiments also show that
learning based on the semantic separation of the data
space is more efficient than full data space learning.
Combining different types of classifiers has the advan-
tage of integrating characteristics of different subspaces
and hence improves classification performance. Future
work should test whether this approach can work well
in other domains like pattern / image recognition where
different classifiers can work on different parts of the
image to improve overall recognition.

In our experiments, subspace detection is done by
processing a single document vector. This method is
independent of the total number of data samples and
only compares the level 1 topic entries. The time com-
plexity of the combining classifier is thus O(k) where
k is the number of level 1 topics. The novelty of our
approach is in the use of a maximum significance based
method of input vector projection for a hybrid paral-
lel classifier. Combining MLP in parallel with a ba-
sic classifier (Bayesian, tree based or rule based) im-
proves the classification accuracy and significantly re-
duces the training time. The performance improvement
is even more significant when the number of topics and
subtopics is large (LSHTC v/s Reuters). The experi-
ments also show that using the maximum significance
value is very effective in detecting the relevant sub-
space of a test vector and that conditional significance
vectors further boost subtopic classification accuracy.
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