
Learning Contextual Affordances

with an Associative Neural Architecture

Francisco Cruz, German I. Parisi, and Stefan Wermter

University of Hamburg - Department of Informatics
Vogt-Koelln-Strasse 30, 22527 Hamburg - Germany
http://www.informatik.uni-hamburg.de/WTM/

Abstract. Affordances are an effective method to anticipate the ef-
fect of actions performed by an agent interacting with objects. In this
work, we present a robotic cleaning task using contextual affordances, i.e.
an extension of affordances which takes into account the current state.
We implement an associative neural architecture for predicting the effect
of performed actions with different objects to avoid failed states. Experi-
mental results on a simulated robot environment show that our associative
memory is able to learn in short time and predict future states with high
accuracy.

1 Introduction

Robots are increasingly being used in diverse fields of application and it is ex-
pected that they will carry out dexterous tasks in real time. Therefore, the
anticipation and resolution of conflict situations that may lead to mistakes or
incomplete tasks is a desired property for robots aiming to successfully operate
in real-world environments. In this work, we extend a reinforcement learning
scenario that consists of a robot in front of a table with the aim to clean it [1].
During the execution of this task, the robot will transit different states by per-
forming actions and using objects until a desired final state is achieved. However,
there are actions that cannot be performed in certain states since they may lead
to a failed state, thereby preventing the robot to successfully finish its task. To
deal with this issue we use affordances [2], which are a learning model that allows
to predict the effect of performing an action utilizing an object. Nevertheless,
this scheme does not take into account the current state of the agent and hence,
the information needed as input to anticipate the effect is incomplete. In this
regard, we propose an extension to this model called contextual affordances that
considers the current state as an additional input variable in order to accurately
predict the effect of an action using an object.

We implement an architecture containing a layer with a quadratic complex
neuron [3] to learn and associate the contextual affordances. The associative
architecture shapes a virtual grid in a complex plane to map inputs into the
output space. This architecture allows us to train our model with few iterations
obtaining accurate results in a simulated environment with a humanoid robot
that must clean a table interacting with different objects.

In: European Symposium on Artificial Neural Networks (ESANN), pp. 665-670, Bruges, Belgium (2016)



(a) In this scenario, the affordance of
graspability is temporally unavailable.

(b) Our simulated scenario with two
objects: a cup and a sponge.

Fig. 1: A real (a) and a simulated (b) robotic scenario.

2 Contextual Affordances

Affordances are available action possibilities for an agent in its environment [2].
They represent characteristics of the relation between an agent and an object in
terms of opportunities the object offers to the agent[4]. In robotics, they have
been used as a triplet:

affordance :=< action, object , effect >, (1)

which encodes relationships between its components [5][6]. Therefore, it is pos-
sible to predict the effect using actions and objects as domain variables, i.e.
effect = f (action, object).

Nevertheless, although this model has been shown to be suitable for many
scenarios, it does not include context information which allows to properly an-
ticipate the effects in all situations [7]. We would like to point out that the fact
of being able to use or not an affordance in a given state does not determine the
existence of the affordance itself. Conversely, the affordance is still present but
cannot be applied at this state, or it can imply a different effect using a certain
action with a given object. Let us consider the scenario shown in Fig. 1a: a cup
affords grasping, as does a die, but in the case that an agent has both hands
occupied with two dice, then it will not be able to also grasp the cup, i.e. the
affordance is temporarily unavailable.

To overcome this issue, it is possible to use contextual affordances where
an additional variable is considered to introduce information about the current
state [7]. In this case, the previous triplet is now extended to:

contextualAffordance :=< state, action, object , effect >. (2)

Using this tuple, we then can predict the effect by considering the function
effect = f (state, action, object). For instance, given two affordances using the

In: European Symposium on Artificial Neural Networks (ESANN), pp. 665-670, Bruges, Belgium (2016)



same action a and the same object o, but at different states s1 6= s2, they
may generate different effects e1 6= e2. It is unfeasible to establish differences
between these affordances without state information, given that e1 = f(a, o)
and e2 = f(a, o) would suggest e1 = e2. Therefore, dealing with the current
states s1 6= s2, an agent will distinguish each case and learn at the same time
by using contextual affordances to predict the effects e1 6= e2 by e1 = f(s1, a, o)
and e2 = f(s2, a, o) establishing clear differences between them [1].

In some cases, the object can also be a location, e.g., a hill affords climbing
if the action is to climb and the object, or rather the location, is the hill. In
general, we use the term object to refer to both objects and locations.

3 Associative Neural Architecture

We develop an associative neural architecture with a complex-valued quadratic
neuron [8] to define a new two-dimensional grid on the output space as presented
in [3]. For an input vector X ∈ C

n, the scalar complex output is y = X∗AX,
where A ∈ C

n×n is the weight matrix and X∗ denotes the conjugate transpose.
The output can be written as the summation of the individual terms that involve
the components of X and A:

y =

n∑

j=1

n∑

k=1

x̄jxkajk. (3)

The gradient descent learning rule that minimizes the mean-square error is:

△A = αεX̄XT , (4)

where α is a small real-valued learning rate. For a given input vector X, the
desired output Y to be used in the learning algorithm is defined as the nearest
intersection point of the grid lines of the complex plane. In practice, a function
Ψ is defined that rounds to the nearest integer for grid lines spaced at a fixed
distance δ in both directions:

Ψ(Y ) =
round(δRe(Y ))

δ
+ i

round(δIm(Y ))

δ
. (5)

This function creates a virtual grid where the output snaps onto the nearest
grid corner. The training algorithm is as follows: (i) initialize the weights of the
neuron with random values, (ii) compute Y , (iii) compute d = Ψ(Y ), and (iv)
update the weights of the neuron according to Eq. 4.

At each iteration, the steps (ii) to (iv) are carried out for all the input vectors,
so that a cluster in the input space will map to a similar region in the output
space due to the continuity of the activation function. The stop criterion can
be a fixed number of iterations, a decreasing learning rate, or a given minimum
mean-square error over all inputs.

In: European Symposium on Artificial Neural Networks (ESANN), pp. 665-670, Bruges, Belgium (2016)



Data Representation

Side conditions Locations Actions Objects

dd 1 0 0 0 home 1 0 0 get 1 0 0 0 sponge 1 0
dc 0 1 0 0 left 0 1 0 drop 0 1 0 0 cup 0 1
cd 0 0 1 0 right 0 0 1 goto 0 0 1 0 free 0 0
cc 0 0 0 1 none 0 0 0 clean 0 0 0 1

Table 1: Representation of training data used for neural classification.

4 Robotic Scenario

The task consists of a robot standing in front of a table to clean it. The robot can
use one arm and its gripper to manipulate a set of objects in order to complete
the cleaning task. For this task, we define objects, locations, and actions. The
scenario includes two objects: a sponge and a cup. The table is divided in three
zones, the left and right table sides and an additional position called home where
the robot can place the sponge during the execution of the task. We allow the
robot to perform four actions: get <object>, drop <object>, goto <location>,
and clean the table section where the robot arm is placed at that moment. The
robotic-cleaning task in a simulated environment is depicted in Fig. 1b.

Each robot state in the scenario takes into account four variables: (i) the
robot’s hand position, (ii) the object held in its hand (if any), (iii) the position
of the cup, and (iv) the condition of each side of the table, i.e. whether the
surface is clean or dirty. The vector state is represented as:

st =< handPosition, handObject, cupPosition, sideCondition > . (6)

Nevertheless, from a given state the robot could perform actions that lead to a
failed state, i.e. a state from where it is not possible to complete the task. For in-
stance, let us assume the current state st =< right , sponge, right , (dirty , dirty) >,
i.e. the cup is placed on the right side of the table and the robot’s hand is above
it holding the sponge. If the robot then cleans the right section of the table, it
may shatter the cup, therefore, it is not feasible to finish the cleaning task from
the next state st+1.

We encode all the variables as presented in Table 1, where we show the
data representation for side conditions, locations, actions, and objects. In side
conditions, letters d and c represent the fact of being dirty or clean respectively.

5 Experimental Results

Our approach uses contextual affordances to predict the effect of an action after
it has been performed by the robot. We use the representation shown in Table 1
to represent the training data. As input, we use vectors with 21 variables con-
taining information about the current state, the action, the object and/or the
location, whereas each state is contained in the first 12 components of the vector

In: European Symposium on Artificial Neural Networks (ESANN), pp. 665-670, Bruges, Belgium (2016)



Fig. 2: Associative neural architecture for next state prediction. In our scenario,
the state reached by the robot represents the affordance effect.

(a) Mean squared error over 10 training
iterations.

(b) Final distribution of the output
projected into the complex domain.

Fig. 3: Training error (a) and final distribution (b) of the associative layer.

considering the four variables that define a state (see Fig. 2). Our architecture
comprises an associative neural layer that maps the current state of the system
into the expected effect, that corresponds to the effect from contextual affor-
dances encoded as 12 variables representing the next state. When a performed
action leads to a failed state, all components of the output vector are equal to
zero. The data were created considering all possible states together with actions
and objects (or locations). The total number of data samples was 368 instances
for the training of the associative layer.

During the training, we associate the desired output state label l(Ψ(Y ))
for classification purposes. After the training phase, when a new sample is
presented to the neuron, we compute y′ and return the state label that minimizes
‖Ψ(y′)−Ψ(Y )‖. For our implementation, we set δ = 0.001 and used the decaying
learning rate:

αt = α0 ∗ e
−t(t+3)

k , (7)

In: European Symposium on Artificial Neural Networks (ESANN), pp. 665-670, Bruges, Belgium (2016)



where t is the iteration number, α0 = 0.01 and k = 5000.
Experiments show that our architecture with an associative layer is able

to classify all the instances correctly after training. The mean square error
decreased from 2.92e-3 to 2.37e-5 after 10 iterations as shown in Fig. 3a. The
final distribution of the output after 10 iterations is shown in Fig. 3b, where the
x and y axes are the real and imaginary parts respectively of the complex plane.

6 Conclusions and Future Work

Our proposed architecture is able to successfully predict the effect of performing
an action using an object by using contextual affordances. We use additional
state information to distinguish different situations in a robotic cleaning scenario
and avoid failed states to effectively finish the task. The associative complex
architecture allows to map the input vectors into valid states with few training
iterations, which represents an advantage for online learning applications where
the response time plays a crucial role.

As future work, we will extend the simulated scenario to a real robot platform
obtaining the input vector using a vision sensor and the output vector from the
real state of the robot after performing the action in the cleaning scenario.

Acknowledgment

The authors gratefully acknowledge partial support by the Universidad Central de
Chile, CONICYT scholarship 5043, the DAAD German Academic Exchange Service
(Kz:A/13/94748) under CASY project, the German Research Foundation DFG under
project CML (TRR 169), and the Hamburg Landesforschungsförderungsproject.

References

[1] F. Cruz, J. Twiefel, S. Magg, C. Weber, and S. Wermter, Interactive reinforcement learn-

ing through speech guidance in a domestic scenario, in The International Joint Conference
on Neural Networks (IJCNN), pp. 1341–1348, 2015.

[2] J. J. Gibson, The Ecological Approach to the Visual Perception of Pictures, Boston:
Houghton Mifflin, 1979.

[3] G. Georgiou and K. Voigt, Self-organizing maps with a single neuron, in The International
Joint Conference on Neural Networks (IJCNN), pp. 1–6, 2013.

[4] T.E. Horton, A. Chakraborty, and R. St. Amant, Affordances for robots: a brief survey,
in AVANT: Journal of Philosophical-Interdisciplinary Vanguard, Vol (2), pp. 70–84. 2012

[5] E. Şahin, M. Çakmak, M. R. Doğar, E. Uğur, and G. Üçoluk, To afford or not to afford:

A new formalization of affordances toward Affordance-Based robot control, in Adaptive
Behavior, Vol. 15, no. 4, pp. 447–472, 2007.

[6] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, Learning Object Af-

fordances: From Sensory-Motor Coordination to Imitation, in IEEE Transactions on
Robotics, Vol. 24, No. 1, pp. 15–26, 2008.

[7] M. Kammer, T. Schack, M. Tscherepanow, and N. Yukie, From Affordances to Situ-

ated Affordances in Robotics - Why Context is Important, in Frontiers in Computational
Neuroscience, Conference Abstract IEEE ICDL-EpiRob, Vol. 5(30), 2011.

[8] G. Georgiou, Exact interpolation and learning in quadratic neural networks, in The In-
ternational Joint Conference on Neural Networks (IJCNN), pp. 230–234, 2006.

In: European Symposium on Artificial Neural Networks (ESANN), pp. 665-670, Bruges, Belgium (2016)


