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Abstract— Robots in domestic environments are receiving
more attention, especially in scenarios where they should
interact with parent-like trainers for dynamically acquiring and
refining knowledge. A prominent paradigm for dynamically
learning new tasks has been reinforcement learning. How-
ever, due to excessive time needed for the learning process,
a promising extension has been made by incorporating an
external parent-like trainer into the learning cycle in order to
scaffold and speed up the apprenticeship using advice about
what actions should be performed for achieving a goal. In
interactive reinforcement learning, different uni-modal control
interfaces have been proposed that are often quite limited and
do not take into account multiple sensor modalities. In this
paper, we propose the integration of audiovisual patterns to
provide advice to the agent using multi-modal information. In
our approach, advice can be given using either speech, gestures,
or a combination of both. We introduce a neural network-based
approach to integrate multi-modal information from uni-modal
modules based on their confidence. Results show that multi-
modal integration leads to a better performance of interactive
reinforcement learning with the robot being able to learn faster
with greater rewards compared to uni-modal scenarios.

I. INTRODUCTION

Human-Robot Interaction (HRI) has become an increas-

ingly interesting area of study among developmental roboti-

cists since robot learning can be speeded up with the use

of parent-like trainers who deliver useful advice, allowing

robots to learn a specific task in less time compared to a robot

exploring autonomously [1]. In this regard, the parent-like

trainer guides the apprentice robot with actions that allow

to enhance its performance in the same manner as external

caregivers may support infants in the accomplishment of a

given task, with the provided support frequently decreasing

over time. This teaching technique has become known as

parental scaffolding [2].

When interacting with their caregivers, infants are subject

to different environmental stimuli which can be present in

various modalities. In general terms, it is possible to think

about some of those stimuli as guidance that the parent-

like trainer delivers to the apprentice agent. Nevertheless,

when more modalities are considered, issues can emerge

regarding the interpretation and integration of multi-modal
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Fig. 1. An interactive reinforcement learning approach with policy shaping.
The agent autonomously performs action a in state s obtaining reward r′

and reaching the next state s′. In selected states, the parent-like trainer
advises the apprentice agent changing the action to be performed in the
environment.

information, especially when multiple sources are conflicting

or ambiguous (e.g. yielding low confidence levels [3]). As

a consequence, the actions to follow may not be clear and

misunderstood, and hence, may lead the apprentice agent to

a decreased performance when solving a task [4].

In this work, we present a multi-modal interactive re-

inforcement learning scenario which consists of a robot

learning a domestic task. The robot can manipulate two

objects with the goal of cleaning a table. During the ap-

prenticeship process, advice can be provided by a parent-

like trainer using audiovisual inputs, respectively speech

and gestures. Our proposed architecture is able to process

information from multiple sources with the use of a neural

associative memory that computes multi-modal advice as

a function of the recognition and confidence of uni-modal

modules. We present a set of experiments using 7 possible

advice classes from audiovisual inputs, showing that multi-

modal integration leads to a better performance of interactive

reinforcement learning, with the robot being able to learn

using a smaller number of training episodes compared to

uni-modal scenarios.

II. RELATED WORK

A. Interactive Reinforcement Learning

Reinforcement Learning (RL) [5] is an approach based

on behavioural psychology where an agent autonomously

explores its environment in order to find an optimal policy to

perform a given task. As such, the agent selects at each state

an action to perform for obtaining a reward and reaching a

new state. This cycle is shown in the yellow square in Fig. 1.

A common problem which still remains open is the

excessive time in terms of training episodes required by

the agent to learn a proper policy. In this regard, interactive
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reinforcement learning (IRL) has added an external parent-

like trainer (as shown in Fig. 1) in order to speed up

the apprenticeship process by either reward or policy shap-

ing [6] [7]. Although IRL has been implemented in robotic

scenarios, a general problem is that the communication

interface between the trainer and the robot has not been

developed in a natural manner for domestic scenarios. For

instance, Suay & Chenova [8] addressed an IRL task where

the parent-like trainer was able to deliver guidance using

a graphic interface built from a camera image and adding

buttons and bars for interaction. Another IRL approach was

proposed by Knox [9], in which the device used to deliver

feedback to the robot was a presentation control (a presenter),

allowing to change between positive and negative reward.

In both the aforementioned approaches, the interfaces are

useful in terms of accomplishing the interaction with an ex-

ternal trainer. Nevertheless, these interfaces are quite tedious

and impractical for non-expert trainers taking into account

home-like environments, where external trainers should be

able to use their natural communication skills (e.g. speech

and gestures). Therefore, it is much more desirable to have

more natural interactive scenarios where external parent-like

trainers can deliver their instructions similar to caregivers

instructing infants.

B. Multi-modal Integration

People are constantly subject to different perceptual stim-

uli through different modalities such as vision, audition, and

touch among others. Such modalities are used to perceive

information and process it independently, in parallel, or

integrating the received information to provide a coherent

and robust perceptual experience. Similarly, humanoid robots

work with many of these sensory modalities and the way

of processing and integrating the information coming from

various sources is currently an important research issue in

autonomous robotics. In HRI scenarios, robots can take

advantage of such multi-sensory information in order to

improve their capabilities when any sensory modality is

limited, lacking, or unavailable.

For instance, early work by Andre et al. [10] proposed a

multi-modal integration of speech and gestures for human-

computer interaction using a tactile glove to identify hand

gestures and a microphone array for speech recognition. The

system functionality was limited to manipulate geometric

objects on topographical maps. In robotic scenarios, Wermter

et al. [11] designed a neurobiologically inspired robot for

multi-modal integration and topological organization of ac-

tions with an associative memory. Their work integrated

motor, vision, and language representations for learning by

demonstration. Lacheze et al. [12] presented an approach

for the recognition of static patterns fusing audio and video.

In their work, auditory information was used to recognize

objects that were partially occluded and therefore difficult to

detect using only vision. Sanchez-Riera et al. [13] presented

a scenario with a robot companion that performs audio-visual

fusion for speaker detection using a multi-modal Gaussian

mixture model. The approach detected multiple speakers in

a domestic scenario with information from two microphones

and two cameras mounted on a humanoid robot. Kimura

& Hasegawa [14] used an incremental neural network to

integrate real-time information in order to estimate attributes

for unknown objects. The method used an RGB-D camera,

a stereo microphone, and pressure and weight sensors to

process different modalities. Ozasa et al. [15] proposed the

integration of image and speech recognition confidence val-

ues to improve the recognition accuracy of unknown objects

using logistic regression. In their approach, the confidence

integration does not consider the case in which predicted

labels are in contradiction. Moreover, in order to obtain

improved recognition, it is also necessary to estimate proper

logistic regression coefficients.

Nevertheless, in domestic scenarios and dynamic environ-

ments, assistive robot companions still need to understand

and interpret instructions faster and more efficiently, yielding

the integration of available multi-sensory information with

different confidence levels in a consistent mode.

III. ROBOTIC DOMESTIC SCENARIO

In previous work [1], we developed an IRL scenario

with automatic speech recognition to guide an apprentice

robot in the achievement of a task. In this paper here, we

extend the approach to incorporate visual information and

integrate it with audio as a more robust guidance during the

apprenticeship process. The robotic scenario consists of a

humanoid robot in front of a table to clean it. The scenario

comprises two objects that the robot can manipulate using

its gripper. The two objects are:

i. cup, which is initially placed at any location of the table

and should be moved in order to finish the cleaning task,

ii. sponge, which is used along with the robot’s hand to

clean different positions of the table.

For each object, we defined three locations: the right and

left parts of the table, and an additional position defined as

home, where the sponge should be placed when not in use.

Moreover, in this scenario the robot is allowed to perform

seven action classes:

i. get, which allows the robot to pick up the nearest object

to its gripper,

ii. drop, which allows the robot to put down the object held

in its hand,

iii. go <location>, which moves the robot’s gripper to

some of the defined locations; therefore, there are three

different action classes which are yielded from this

action, i.e. go home, go left, and go right,

iv. clean, which allows the robot to clean the table surface

at the current hand position,

v. abort, which cancels the execution of the cleaning task

at any time.

The vector state is represented using four vari-

ables as st = [handObject, handPosition, cupPosition,
sideCondition], where handObject is the object held in

the robot’s hand, handPosition is the current hand position

of the robot, cupPosition is the position of the cup, and
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Fig. 2. Cleaning scenario with the NICO robot. Our scheme is composed
of two objects, 3 locations, and 7 action classes.

sideCondition is the surface condition of each part of the

table.

The robot task finishes when both sides of the table are

cleaned, obtaining a reward of 1. In case that the robot

cannot continue the task execution, then it receives a negative

reward of −1. During a learning episode, intermediate states

lead to a small negative reward of −0.01 to encourage

faster transitions to the final state. RL is performed using

SARSA algorithm with learning rate α = 0.3, discount factor

γ = 0.9, and ǫ-greedy action selection with ǫ = 0.1. In the

IRL approach, we use probability of advice of 0.3.

Although the robot is able to perform actions au-

tonomously using RL, we use a parent-like trainer to advise

the robot at specific steps about what action to perform next

in order to reduce the time required to learn the shortest

sequence of actions for finishing the task.

For our scenario, we define a set of possible advice classes

that can be given to the robot by a parent-like trainer. Each

advice class has a spoken representation in a domain-based

language and a visual representation with gestures from

vision. The advice can be delivered at any time using speech,

gestures, or both with the following advice classes: go left,

go right, go home, get, drop, clean, and abort.

For instance, let us now suppose that the cup is located

on the left side of the table at the beginning. The initial

position of the robot hand is the location home, and we

want to finish with the hand free and above home with both

sides of the table clean. The following example shows the

shortest episode to complete this task successfully: get, go

right, clean, go home, drop, go left, get, go right, drop, go

home, get, go lef trainer-liket, clean, go home, drop. Fig. 2

shows an example of the domestic scenario with our Neural

Inspired COmpanion (NICO) robot.

Fig. 3 shows the overall architecture of our system,

where we use a microphone and a depth sensor to capture

the advice from the parent-like trainer that is subsequently

integrated and sent to the IRL algorithm as one single piece

of consistent advice. The integrated advised action is then

Multi-modal Advice
Audio and 

Visual Capture

Learning Algorithm

Interface Environment

Control Environment

Robot 
Environment

Low Level 
Control

Neural-
Inspired

Companion
Robot
(NICO)

Multi-modal Associative 
Memory

Fig. 3. Overall view of the system architecture. In the interface en-
vironment, we use the robot with a microphone and a depth sensor to
capture advice from the parent-like trainer. In the control environment, we
integrate the advice and send it to the IRL algorithm with a confidence
value associated to decide when a valid advice is considered according to
a defined threshold. The integrated advised action is then sent to the robot
environment where a NICO robot performs the action using the pypot library
which allows to control the robot actuators either in the real or simulated
environment. In this paper, we are particularly focused on the speech and
gesture representations and the integration of them.

sent to the NICO robot to be performed using the pypot

library [16], allowing to control the robot actuators either in

real or simulated environments.

IV. OUR APPROACH

In our architecture, a parent-like trainer interacts with

an apprentice robot using speech and gestures as guidance

for the cleaning scenario. In this work, we are particularly

focused on processing audiovisual inputs and their integra-

tion. The following subsections describe how each modality

module is implemented and how they are integrated in order

to obtain a unified advice to shape a more effective guidance

for the robot learning task.

A. Automatic Speech Recognition

To understand the verbal commands, the apprentice robot

processes audio data and recognizes the given advice by

applying an automatic speech recognition (ASR) system that

In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 759-766, Daejeon, Korea (2016)

(c) 2016 IEEE. Personal use of this material is permitted.



Multi-modal
Integration

I = argmax ( )
 I = ln(1+ϕ)

Google Voice 
Search

A. Domain-based
 ASR System

10-best 
hyp

A

A
I

 I

Audio

Vision

Levenshtein
distances

Sentences

Feature 
Extraction

V

V
ANN2

ANN1

B. Neural Network-
        based GR System

Fig. 4. Overall view of the system architecture. The domain-based ASR system (on top) processes the audio input modality to obtain an audio advice
label λA and an audio confidence value γA and the neural network-based gesture recognition system (at bottom) processes the visual input modality to
obtain a visual advice label λV and a visual confidence value γV . Afterwards they become the input of the multi-modal integrative system implemented
by an associative neural architecture to obtain the integrated advice label λI and the integrated confidence value γI .

is based on Google Voice Search (GVS) [17], a cloud-based

ASR service to process audio data captured by a local micro-

phone and generating hypotheses for the corresponding text

representation. As GVS is usually applied in web searches,

the involved language models are optimized for that task and

not for the given scenario. To overcome the issue of out-of-

domain language models, we utilized DOCKS [18], a post-

processing technique to fit the ASR hypotheses provided by

GVS to the given HRI domain.

For our HRI scenario, a set of robot commands is defined

and represented by a list of sentences. To identify the best-

matching hypothesis out of the list of sentences, the phone-

mic representation of the ASR hypothesis is compared to the

phonemic representation of each sentence in the list. For this

task, the Levenshtein distance [19] is employed to calculate

the difference between phoneme sequences. After calculating

the Levenshtein distance between the ASR hypothesis and

each sentence of the list, the sentence possessing the shortest

distance is chosen as the best matching result. To improve

the technique, the Levenshtein distance is calculated for the

ten best hypotheses provided by GVS. Section A in Fig.

4 summarizes the functional principle of the ASR system

employed in our architecture.

The predicted audio label is computed as

λA = argmin L(hi, sj), where L is the Levenshtein

distance in our ASR system. The confidence value was

computed as γA = max(0, 1− L(hi, sj)/|sj |) with hi ∈ H
(set of the 10-best hypotheses) and sj ∈ S (set of reference

sentences) both in phonemic representation.

B. Gesture Recognition

For gesture recognition, we used an extended version of

the HandSOM framework [20] for learning gestures from

depth map videos using self-organizing neural networks. Our

learning architecture consists of two hierarchically arranged

self-organizing neural networks (Fig. 4.B). The use of hier-

archical self-organization has been shown to be an effective

method for recognizing human motion [20] [21]. Further-

more, for each predicted label we also estimate a confidence

value that expresses the degree of belief that the prediction

is correct based on a set of predictions over a given time

window. We now describe the gesture features that we extract

from depth video sequences used as input for the neural

network learning architecture and the hierarchical processing

for learning a set of training gestures and predicting gesture

labels from novel input.

1. Feature Extraction

Hand motion from depth images was extracted to represent

gestures as hand-independent motion sequences. To encode

motion patterns, only the motion information of the most

salient hand performing a gesture was taken into account.

In case that both hands are used, the type of interaction

between the hands is considered, i.e. physical if the two

hands overlap, or symmetric, if they follow the same (mir-

rored) behavior (Fig. 5.d). We consider a set of motion

descriptors for a given set of tracked body joints, i.e. hands

and head. For each frame i, the gesture feature vectors were

of the form mi = (si, vi, ϕi, hi, λi), where si is the hand

interaction type, λi is the annotated gesture label, vi is the

hand 3D motion intensity in terms of pixel difference from

consecutive frames, ϕi is the hand angle with respect to

the y axis in the image plane, and hi is the distance from

the head [20]. Training videos were recorded with a Kinect

sensor operating at 30 frames per second, from which we

estimated the 3D skeleton model using the OpenNI/NITE

framework. To attenuate noise, we computed the median

value for each joint every 3 frames, resulting in a total of 10

feature vectors per second. These vector sequences are then

clustered by a hierarchical learning architecture to obtain a

representation of prototype gestures from a set of training

samples.

2. Learning Architecture

Our learning model consists of two hierarchically arranged

Growing When Required (GWR) networks [23] that incre-
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Fig. 5. Gestures used as advice in the robotic scenario. Red arrows represent the hand movement performed to advice the robot. The motion from the
most salient hand is used to estimate the motion vector. In case that both hands are used, the type of hand interaction is considered (details in the text).
Since gesture labels are seamlessly predicted from depth map video sequences, we add the label still to indicate no advice at that moment.

mentally obtain generalized representations of sensory inputs

to learn latent spatiotemporal structure. Hierarchical learning

is carried out by training the higher-level network with

neuron activation trajectories from the lower-level network.

The GWR network is composed of a set of neurons and

their associated weight vectors wj linked by a set of edges.

During the training, the network starts with two neurons

and then dynamically changes its topological structure to

better match the input space following competitive Hebbian

learning [22]. The network growth process takes into account

the overall activity of the network with respect to the input

and the number of times that existing neurons have fired. The

activity is calculated as a function of the distance between the

input and its best-matching neuron. This allows the model

to add new neurons whenever they are required, i.e. if the

activity of the network with respect to the input is smaller

than a given threshold aT for a well-trained best-matching

neuron (firing counter smaller than the firing threshold fT ).

The GWR algorithm will then iterate over the training set

until a given stop criterion is met, e.g. a maximum number

of training iterations (epochs). The standard unsupervised

training algorithm was presented in [23].

In our architecture, the network in the first layer receives as

input the sequence of vectors mi. The network in the second

layer is trained with neural activation trajectories from the

first layer. These trajectories are obtained by computing the

best-matching neurons of the input sequence xi with respect

to the trained network with N neurons, so that a set of

trajectories is given by

Ω(xi) = {wb(xi),wb(xi−1),wb(xi−2)}, (1)

with b(xi) = argmini∈N ‖xi − wj‖. After the training of

the higher level network is completed, each neuron will

encode a sequence-selective gesture segment from 3 consec-

TABLE I

TRAINING PARAMETERS FOR GWR HIERARCHICAL LEARNING

Parameters Network Layer 1, 2

Activation threshold aT = {0.85, 0.65}
Firing threshold fT = 0.01
Firing counter τb = 0.3, τn = 0.1
Learning rates ǫb = 0.1, ǫn = 0.01
Maximum edge age 200

Training epochs 100

N. of neurons after training {337, 316}

utive frames. This mechanism allows to obtain specialized

neurons coding the spatiotemporal structure of the input. For

classification purposes, neurons created in this second layer

are attached to gesture labels obtained from the training set.

The GWR training algorithm for attaching labels to neural

activation trajectories was discussed in [21]. The training

parameters and number of neurons created after the training

session are shown in Table 1.

In the hierarchical architecture, a label prediction is re-

turned every 3 frames in a sliding window scheme. We con-

sidered the last 5 observations and computed the statistical

mode that returns the most frequent value in a set. Given

the set of predictions ΛV and denoting N as the number of

occurrences of the mode within ΛV , the confidence value

is then defined as γV = N/|Λ|, yielding a maximum

confidence value of 1 and a minimum of 0.2. Since we

processed 10 feature vectors per second and we compute the

mode of the last 5 predictions, our system returns a predicted

label λV and a confidence value γV for a window of 7 frames

(0.7 seconds).

C. Multi-modal Integration of Audiovisual Patterns

A general overview of the architecture including the

speech and gesture processing is depicted in Fig. 4, where
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(b) Integrated confidence with different uni-modal predicted labels(a) Integrated confidence with equal uni-modal predicted labels

Fig. 6. Confidence values used in the neural network-based associative architecture. While in (a) the corresponding output labels for audio and visual
modalities are the same, in (b) they are different. During the training we use a grid of 20x20 values for each modality and for the validation an equal
distribution with a grid of 100x100 values.

λ and γ are the label and the confidence value respectively.

First, the audio and visual sensory inputs are individually

processed. Then, the outputs, i.e. predicted labels and confi-

dence values, become inputs for the multi-modal integration

system. To ingrate the two aforementioned sensory modal-

ities, we propose a mathematical model and implement it

with a neural associative memory.

1. Mathematical Model

Our mathematical function relates the predicted advice

classes and confidence pairs from uni-sensory input, respec-

tively denoted as (λA, γA) for audio and (λV , γV ) for vision.

The integrated predicted label λI is calculated according

to the highest confidence value:

λI = argmax
λ

γ(λ) (2)

In other words, if the audio and visual labels λA and λV

are different, then the integrated label λI takes the value

from the modality which has the biggest confidence value.

On the other hand, the integrated confidence value is

computed by the function:

γI = ln (1 + φ), (3)

where φ is a time-varying parameter which depends on each

label λ and confidence value γ. We call this parameter

the likeness parameter and it is obtained according to the

following equation:

φ =

{

γA + γV if λA = λV

|γA − γV | if λA 6= λV (4)

Therefore, if the labels λA and λV are the same, then the

confidence value γI is calculated using φ = γA + γV in

order to strengthen the integrated confidence level over the

prediction made from both devices. On the contrary, if the

labels λA and λV are different, then the integrated confidence

value γI is calculated using φ = |γA − γV | in order to

diminish the confidence level given the differences in the

class predictions.

This function yields an integrated confidence value γI ∈
[ln (1), ln (3)] = [0, 1.0986]. We use a unity-base normaliza-

tion to rescale the range of confidence between 0 and 1:

γI =
γI −min(Γ)

max(Γ)−min(Γ)
. (5)

where Γ is the set of all possible confidence values γI .

Fig. 6 shows the integrated confidence values when the

predicted audio and visual labels are the same (a) and

different (b).

2. Neural Network-based Associative Architecture

To implement the proposed mathematical model, we de-

velop an associative neural architecture with a complex-

valued quadratic neuron [24] to define a new two-

dimensional grid on the output space as presented in [25].

For an input vector X ∈ C
n, the scalar complex output is

y = X∗AX , where A ∈ C
n×n is the weight matrix and X∗

denotes the conjugate transpose. The output can be written

as the summation of the individual terms that involve the

components of X and A:

y =
n
∑

j=1

n
∑

k=1

x̄jxkajk. (6)

The gradient descent learning rule that minimizes the mean-

square error is:

△A = αεX̄XT , (7)

where α is a small real-valued learning rate. For a given input

vector X , the desired output Y to be used in the learning

algorithm is defined as the nearest intersection point of the

grid lines of the complex plane. In practice, a function Ψ
is defined that rounds to the nearest integer for grid lines

spaced at a fixed distance δ in both directions:

Ψ(Y ) =
round(δRe(Y ))

δ
+ i

round(δIm(Y ))

δ
. (8)

This function creates a virtual grid where the output snaps

onto the nearest grid corner. The training algorithm is as

follows:
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Fig. 7. Confusion matrices with the average confidence values for predicted
(a) speech and (b) gesture labels. The input speech advice of get was
predicted in one occasion as go home with confidence of 0.5. Nevertheless,
all other predicted labels were correctly classified with high confidence
values over 0.75. The gesture still was in some occasions misclassified
with low confidence of 0.4 and 0.2. This was due to the transition from
one gesture to the next and the use of the last three consecutive frames for
the prediction. Regardless, all the gestures were correctly classified with
high confidence values over 0.84.

0) Initialize the weights of the neuron with random values

1) Compute Y
2) Compute d = Ψ(Y )
3) Update the weights of the neuron using Eq. 7

At each iteration, the steps (1) to (3) are carried out for all

the input vectors, so that a cluster in the input space will map

to a similar region in the output space due to the continuity

of the activation function. The stop criterion can be a fixed

number of iterations, a decreasing learning rate, or a given

minimum mean-square error over all inputs.

V. EXPERIMENTS AND RESULTS

For our experiment set-up, we implemented the robotic

domestic scenario described in section III. We recorded

pieces of advice from a parent-like trainer for all advice

classes including speech and gestures with four repetitions

for each one. Recorded advice allowed us to control better

the experimental set-up for repeating the learning process

under different situations. At recognition time, our goal

was to predict the gesture label from novel audio and

video sequences (λA, λV ) and provide the confidence values

(γA, γV ) that expressed how reliable these predictions were.

Fig. 7a shows the confusion matrix with the average

confidence values for the predicted speech labels whereas

the confusion matrix with the average confidence values for

the predicted gesture labels is shown in Fig. 7b. In the

latter, we added the label still since the depth sensor is

always processing visual information and this label allows

to represent the fact that no gesture belonging to the advice

classes is being recognized.

After processing each sensory input independently, the

inputs integrated using our neural architecture to determine

a combined λI and γI . We used a grid of 20×20 points for

training and a subsequent validation grid of 100×100 points

obtaining an average quantization error eq(n) of 0.05984
computed as eq(n) = xq(n) − x(n) where x(n) represents

Fig. 8. Integrated rewards with different thresholds of minimal confidence
level to be considered as a valid advice. The best performance is observed
with θmin = 0.25 depicted in red. Autonomous RL is shown as a base in
yellow color.

Fig. 9. Collected rewards with advice from audio and visual modalities
are shown in blue and green respectively. Autonomous RL is shown as a
base in yellow color. Working with advice from the multi-modal integration
approach, the IRL agent is able to collect faster and greater reward in
comparison to individual advice approaches.

the sample sequences of the validation set, xq(n) the sample

sequences of the training set, and eq(n) represents the sample

sequences of the quantization error.

When working autonomously in the domestic scenario,

the robot selects the actions using ǫ-greedy action selection

policy with ǫ = 0.1. We used interactive advice proba-

bility of 0.3 since it has been shown to be effective and

small enough [4]. After the integration, we used different

confidence levels to verify whether small confidence values

benefit the learning scenario. Therefore, we considered γI >
θmin with θmin being the minimum confidence threshold to

be considered as a valid advice. In the case that the advice

did not accomplish this minimal condition, the next action

was selected through the aforementioned ǫ-greedy policy.

We tested different thresholds θmin ∈ {0.0, 0.25, 0.5, 0.75}
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observing that in general IRL works better with θmin = 0.25
in comparison with the other thresholds. Fig. 8 shows the

average convoluted rewards for those θmin values using 100

agents over 500 training episodes.

Finally, we use a fixed threshold θmin = 0.25 during the

learning process to compare uni- and multi-modal advice in

the IRL scenario. In uni-modal IRL approaches, collected

rewards are close to each other in terms of the time needed

for convergence (more than 200 episodes) as well as the

maximal reward value (approximately 0.3). On the other

hand, the multi-modal integrated IRL approach using both

sensory inputs obtains the same level of reward as uni-modal

approaches in fewer episodes (in this case, less than 200

episodes) and converges to greater reward (approximately

0.4). Therefore, the integrated information benefits the IRL

performance, where greater rewards are accumulated faster

in comparison to the use of uni-modal modules. Fig. 9 shows

the average collected reward over 500 training episodes for

the uni- and multi-modal learning procedure.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed an interactive reinforcement learning

scenario with multi-modal integration of dynamic audiovi-

sual input advice. The architecture processes individually the

input advice to classify them with a correspondent associated

confidence value. Afterwards, our architecture integrates the

input advice into one single label and confidence value.

Although both sensory modalities show good advice predic-

tion and confidence levels, the integrated advice leads to a

better performance in our domestic scenario in terms of the

accumulated reward and required learning episodes. In this

regard, we have shown that our integration function allows to

enhance the performance of a learning robot using multiple

sources of information for a more natural trainer-like learning

procedure.

Currently, our multi-modal IRL scenario runs in an off-line

manner. Therefore, future work directions should consider

experiments accounting for on-line interactions. Further-

more, experiments should also consider a wider number of

parent-like trainers with different teaching characteristics.
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