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Abstract. Presented is a model of an integrate-and-fire neuron with active den-
drites and a spike-timing dependent Hebbian learning rule. The learning algo-
rithm effectively trains the neuron when responding to several types of temporal
encoding schemes: temporal code with single spikes, spike bursts and phase cod-
ing. The neuron model and learning algorithm are tested on a neural network
with a self-organizing map of competitive neurons. The goal of the presented
work is to develop computationally efficient models rather than approximating
the real neurons. The approach described in this paper demonstrates the potential
advantages of using the processing functionalities of active dendrites as a novel
paradigm of computing with networks of artificial spiking neurons.

1 Introduction

For a long time, dendrites have been thought to be the structures where complex neu-
ronal computation takes place, but only recently we have begun to understand how
they operate. Dendrites do not simply collect and pass synaptic inputs to the soma, but
in most cases they shape and integrate these signals in complex ways [1]. With our
growing knowledge of such processing, there is a stronger argument for taking advan-
tage of the processing power and active properties of the dendrites, and integrating their
functionality into artificial neuro-computing models [2]. The features of the models pre-
sented here are a computationally optimized interpretation of processing functionalities
observed in real neurons.

2 Spike Processing with Active Dendrites

Real neurons show a passive response only under very limited conditions. In many
brain areas, such as the cerebellar cortex and neocortex, a reduction of ongoing synaptic
activity has been shown to increase the membrane time constant and input resistance,
suggesting that synaptic activity can reduce both parameters [3, 4]. The model of a
neuron with active dendrites presented in this paper is based on such observations. It
builds upon the leaky integrate-and-fire neuron. The developed model of an artificial
neuron has a set of new active dendrites. In the equations describing the model, thes, d
andm indices indicate that the variable or parameter belongs to a synapse, dendrite or
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Fig. 1.Model of a neuron with active dendrites.

the membrane respectively. For the active dendritei with a set ofSi synapses, the total
post-synaptic currentIis is described by:

τs
d

dt
Iis(t) = −Iis +

∑
j∈Si

cij
∑

t(f)∈Fj
δ(t− t(f))

where synaptic connectionj at dendritei has weightcij , Fj is the set of pre-synaptic
spike times filtered as Diracδ-pulses, andτs is the synaptic time constant. In addition,
the neuron has a number of synapses feeding close to or directly to the soma. The same
as the above equation holds for the total currentIs from these synapses.

Further, the current passing through the dendrite into the soma is described by:

τ id
d

dt
Iid(t) = −Iid +RidI

i
s(t)

Here, the time constantτ id and resistanceRid define the active properties of the artificial
dendrite as they depend on the incoming post-synaptic current. They are defined as
functions ofIi∗s which is the maximum ofIis(t) since the last pre-synaptic spike:
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For low synaptic input, this leads to values ofτ id approaching the time constant of
the somaτm, and for high inputsτ id approaches the time constant of the synapseτs
which is usually much faster thanτm. The effect is that a dendrite receiving strong post-
synaptic input generates a sharp earlier increase of the membrane potential at the soma,
whereas the potential generated from a lower input signal will be delayed. Furthermore,
Rid is defined such that for a single spike at a synapse with strengthcij , the value of



the maximum of the soma membrane potential is proportional to the neuron’s firing
threshold, i.e. it equalscijθ. Finally, the soma membrane potentialum is:

τm
d

dt
um(t) = −um +Rm(Id(t) + Is(t))

whereId(t) =
∑
i I
i
d(t) is the total current from the dendritic tree, andIs(t) is the total

current from synapses attached to the soma.
The current from dendritei generates part of the potential at the soma, which will

be referred to aspartial membrane potentialand annotated asuim. The total partial
membrane potentialudm =

∑
i u

i
m is the soma membrane potential generated from all

dendrites.
The introduced active properties of the dendrites are the basis for the development

presented in the next section, where the ability to control thetime and value of the
maxima of the membrane potentials plays a critical role in the learning algorithm.

3 Spike-Timing-Dependent Hebbian Learning

The spike-timing dependent Hebbian learning algorithm developed here adjusts the
synaptic weightcij of synapsej at dendritei, so that a post-synaptic spike occurs
at the time when the partial membrane potentialuim is at its maximum. Immediately
following a post-synaptic spike at timet′ in a simulation with time step∆t, the synapse
receives two weight correction signals, from the dendrite∆cid and from the soma∆cm:

∆cid =
2
π

arcsin

 ∆uid(t
′)√

∆t2 +∆uid
2(t′)

 , ∆cm = − 2
π

arcsin

 ∆udm(t′)√
∆t2 +∆udm

2(t′)


where∆uid(t

′) and∆udm(t′) are the changes in the partial mebrane potential and total
partial membrane potential just before the post-synaptic spike. The correction signal
∆cid sent from the dendrite follows the rule: if a post-synaptic spike occurs in the ris-
ing phase of the partial membrane potentialuim, i.e. before it reaches its maximum, the
synaptic strength will be increased so that next time the maximum will occur earlier.
Respectively, the synaptic strength will be decreased if a post-synaptic spike occurs af-
ter the maximum (Figure 2 (A)). The role of the correction signal∆cm sent from the
soma is to prevent the weights of the synapses from reaching high values simultane-
ously, or to prevent a total decay in the synaptic strength. Its rule is opposite to the one
for the dendrite. Based on the two signals, the total correction signal for the synapse is:

∆cij =

{
∆cid+∆cm

2 if |∆cm| > ε,
∆cid if |∆cm| ≤ ε.

where the constantε allows the neuron to fire without generating a correction signal
from the soma when the potential is sufficiently close to the maximum.

Finally, following a post-synaptic spike, the synaptic weights are updated with
learning rateη according to:

cijnew =
{
cijold + η∆cij(1− cijold) if ∆cij > 0,
cijold + η∆cijcijold if ∆cij < 0.
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Fig. 2. (A) The correction signal∆cid that would be sent from the dendrite to a synapse with
weight 0.8 or 0.3 in the the event of a post-synaptic spike.∆cid = 0, i.e. no change in the
weight occurs, if the post-synaptic spike is at the point of maximum ofuim; (B) Soma membrane
potential of two neurons with different weights, receiving two input spikes at different dendrites.
The second spike is delayed 2 ms. If the maxima of partial membrane potentials coincide or are
close in time, the neuron will reach the firing threshold earlier (neuron 6). If the maxima are not
close in time, the neuron will reach the threshold later (neuron 5) or not reach it at all.

There have been several suggestions for spike-timing dependent and Hebbian learning
algorithms [5–8]. The learning algorithm presented in this paper achieves very precise
tuning of the synapses in response to input spikes representing information with dif-
ferent temporal encoding schemes. The algorithm leads to a normal distribution and
intrinsic normalization of the synaptic weights, which allows competitive behaviour of
the neurons with dynamic synapses in a network (Figure 2 (B)).

4 Experiments

4.1 Learning to respond to different temporal codes

The next three examples demonstrate the responses of neurons trained on temporal
encoding with single spikes, spike bursts and phase coding. The neuron model and the
learning algorithm are able to detect the temporal properties of the input independently
on the encoding scheme being applied. The neuron in the first example receives single
spikes at three synapses each belonging to a different dendrite (Figure 3 (A)). In the
second example, the neuron receives two decaying spike bursts with fixed onset times
(Figure 3 (B)). The third example presents a neuron responding to the phase of an input
spike with respect to a global oscillation (Figure 3 (C)). The trained neurons fire near
the maximum of the partial membrane potentials.

4.2 Competitive Learning

This section demonstrates an application of the neuron with active dendrites and its
learning algorithm in a network of self-organizing competitive neurons. The network
consist of 2 input and 10 competitive neurons. The input is encoded in the relative spike
timing for the two input neurons. Each competitive neuron receives feedforward signals
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Fig. 3. (A) Response of a trained neuron receiving three input spikes at 0, 5 and 10 ms.um is
the membrane potential at the soma,u0

m is the partial membrane potential generated from the
dendrite receiving the first spike,u1

m andu2
m are for the dendrites receiving the second and the

third spikes respectively. (B) Response of a trained neuron receiving two input spike bursts with
onset times at 0 and 5 ms.u0

m is the partial potential generated from the dendrite receiving the
first spike burst, andu1

m is for the dendrite receiving the second spike burst. (C) Response of
a trained neuron receiving a single spike 8 ms before a peak of an oscillation with a period of
24 ms.u0

m is the partial membrane potential generated from the dendrite receiving as input the
oscillation spike train andu1

m is the partial membrane potential for the dendrite receiving the
single spike.

from the input neurons via excitatory synapses at different active dendrites. Further-
more, each competitive neuron receives lateral connections from all other competitive
neurons via synapses attached to the soma. These synapses have a fast and strong direct
influence on the soma membrane potential and are very efficient for lateral connections.

Figure 4 (A) shows the beginning of the formation of a self-organizing map after
50 epochs. After full training, a well formed self-organizing map is observed (Figure 4
(B)). Each competitive neuron responds only to a particular interval of input values.
Since the competitive neurons are relatively fine-tuned to respond only to a particu-
lar interval of input values, the feedforward connections are sensitive to noise in the
weights. Such noise will destroy the map. On the other hand, due to the fine tuning,
the competitive neurons are very robust to noise in the lateral connections. The net-
work was tested with the lateral inhibition removed, and showed relatively little overlap
of the responses of the different neurons in the map (Figure 4 (C)). The responses of
the trained neurons exhibit clear selectivity to the input. A zoomed-in example of the
response of neurons 5 and 6 without lateral connections is shown in Figure 2 (B).

5 Conclusions

The developed new model of a neuron with active dendrites and spike-timing depen-
dent Hebbian learning algorithm are viewed as a contribution towards novel efficient
computing models of networks with artificial spiking neurons. The introduction of the
active dendrites plays a critical role in achieving a learning algorithm which goes be-
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Fig. 4. Self-organization of competitive neurons with active dendrites. The three graphs show
the response of the network to two input spikes with relative delays from the interval[−15, 15]
ms. The darker color indicates faster response of the competitive neuron to the particular input.
Lighter colors indicate later post-synaptic spikes. White areas indicate no post-synaptic response.
Left (A): Early self-organized formation after 50 training epochs; Middle (B): A well formed
self-organizing map where each competitive neuron responds only to a particular interval of input
values; Right (C): Response of the trained network with all lateral connections removed.

yond the relative timing of the pre- and post-synaptic spikes to incorporate functions
of the membrane potential at the dendrite and at the soma, and the synaptic strength.
The algorithm trains the neurons independently on the temporal code being used at the
input and achieves precise selective responses. The presented experiments show details
of the functionalities of the neuron, the learning algorithm and their application in train-
ing a network of competitive neurons. Further work will build upon these encouraging
results and concentrate on applying the model of a neuron with active dendrites and the
spike-timing dependent learning algorithm in the development of more complex neural
structures such as cell assemblies and synfire chains.
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