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Abstract 

We present a system for visual robotic docking using an 
omnidirectional camera coupled with the actor critic reinforcement 
learning algorithm. The system enables a PeopleBot robot to locate 
and approach a table so that it can pick an object from it using the 
pan-tilt camera mounted on the robot. We use a staged approach to 
solve this problem as there are distinct sub tasks and different 
sensors used. Starting with random wandering of the robot until the 
table is located via a landmark, and then a network trained via 
reinforcement allows the robot to turn to and approach the table. 
Once at the table the robot is to pick the object from it. We argue that 
our approach has a lot of potential allowing the learning of robot 
control for navigation removing the need for internal maps of the 
environment. This is achieved by allowing the robot to learn 
couplings between motor actions and the position of a landmark. 

Keywords: Reinforcement Learning; Robot Control; Robotics; Neural 
Networks 

1 Introduction  
Navigation is one of the most complex tasks currently under development in 
mobile robotics. There are several different components to navigation and many 
different sensors that can be used to complete the task, from range finding sensors 
to graphical information from a camera. The main function of robot navigation is 
to enable a robot to move around its environment, whether that is following a 
calculated or predefined path to reach a specific location or just random wandering 
around the environment. Some of the components involved in robotic navigation 
are (i) localisation, (ii) path planning and (iii) obstacle avoidance. For an overview 
of localisation and map-based navigation see [5 & 6]. When discussing robot 
navigation, simultaneous localisation and map building should be included (see [3, 
10 & 17] for some examples). 

There has been a lot of research and systems developed for robot navigation using 
range finding sensors (sonar, laser range finders etc) [1, 2 & 14] but there has been 
less research into visual robotic navigation. There are recent developments in the 
field of visual navigation mainly concentrating on omnidirectional vision (see [4, 
11 & 15] for examples).  

Many of the navigation systems implemented for robot navigation still use hard 
coding which causes a problem with the lack of adaptability of the system. 
However, some systems have included learning (see [8 & 9] for examples). A 
common training method used for the learning systems are various forms of 
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reinforcement learning, [16] provides a good overview. These learning algorithms 
overcome the problem of supervised learning algorithms as input output pairs are 
not required for each stage of training. The only thing that is required is the 
assignment of the reward which can be a problem for complex systems as 
discussed in [20]. However, for systems where there is just one goal this does not 
pose a problem as the reward will be administered only when the agent reaches the 
goal. 

The focus on this paper is to extend the system developed in [19] where 
reinforcement learning is used to allow a PeopleBot to dock to and pick an object 
(an orange) from a table. In this system neural vision is used to locate the object in 
the image, then using trained motor actions (via the actor critic learning algorithm 
[7]) the aim is to get the object to the bottom centre of the image resulting in the 
object being between the grippers of the robot.  

There are some limitations to the system which need to be overcome to improve its 
usefulness. For example, the docking can only work if the object is in sight from 
the beginning which results in the system being confined to a very small area. Also 
the system fails if the object is lost from the image. Finally, the angle of the robot 
with respect to the table is inferred from the odometry, which makes it necessary to 
start at a given angle. None of these are desirable and it is the aim of this work to 
address some of the limitations and extend the range that the robot can dock from. 

The system proposed in this paper will make use of an omnidirectional camera to 
locate and approach a table in an office environment. The use of an 
omnidirectional camera allows the robot to continuously search the surrounding 
environment for the table rather than just ahead of the robot. Here the extended 
system will use the omnidirectional camera to locate the table via a landmark 
placed beneath it. Once located the robot is to turn and approach the table using a 
network trained by reinforcement.  

The remainder of the paper is structured as follows; Section 2 discusses the task, 
the overall control of the system and what triggers the shifts between the different 
phases. The first phase uses an omnidirectional camera to detect any obstacles and 
take the necessary action to avoid them and is discussed in Section 2.1. The second 
phase uses the omnidirectional camera to locate the position of the landmark in 
relation to the robot, which it then passes to a neural network to produce the 
required motor action on the robot and is discussed in Section 2.2. The final phase 
uses a neural system with the pan tilt camera mounted on the robot to allow the 
robot to dock with the object on the table and pick it up; this is discussed in Section 
2.3. Section 3 covers the algorithm used for the table approaching phase of the 
extended scenario. The experimentation of the extended scenario is then described 
in section 4. Finally, Sections 5 and 6 cover the discussion and summary 
respectively. 

2 The Scenario 
The overall scenario is illustrated in Figure 1. It starts with the robot being placed 
in the environment at a random position away from the table. The robot is then to 
wander around the environment until it locates the table (Phase I). This phase uses 
conventional image processing to detect and avoid any obstacles. Once the table is 
located via a landmark placed beneath it the robot is to turn and approach the table  
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Figure 1 - Scenario 

(Phase II). Then once at the table the robot is to pick the object from the table 
(Phase III), this system is discussed in [19]. Both Phase II & III use neural 
networks trained with the Actor Critic learning algorithm. 

The first two phases of the system use an omnidirectional camera illustrated in 
Figure 2 and the final phase uses the pan tilt camera mounted on the robot. 

 
Figure 2 – (Left) PeopleBot Robot with mounted omnidirectional camera, (Right) Close up 

of the Omnidirectional Camera 

Conical Mirror 

Camera 
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To enable the integration of the three phases an overall control function was 
needed to execute the relevant phases of the system depending on the 
environmental conditions. Figure 3 shows the control algorithm. 

 
While the robot is not at the table 

  Take a picture (omnidirectional) 
  Check if the landmark is in sight 
  If the landmark is not in sight 
   Wander  
  Else the landmark is in sight 
   Pass control to the actor critic and get exit status 
   If exited because landmark is lost 
    Go back to Wandering 
   Else exited because robot is at the table 
    Pass control to the object docking 
   End if 
  End if 

End While 
 

Figure 3 - Syst  
 
 

When the robot is not at the table, or the 
for the landmark at each iteration through
looks for is produced by a board of red LE
table as illustrated in Figure 4. 

While the robot has not located the lan
executed. If the landmark has been loc
approaching behaviour which runs to com
for the table approaching which are; (i) L
the table. If the landmark has been lost th
otherwise it has reached the table and con
completes the task. 

Landmark

Figure 4 - Setup of the Environment: The lan
tab
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2.1 Phase I – The Random Wandering 
This behaviour allows the robot to move around the environment while avoiding 
obstacles. The system uses an omnidirectional camera (Figure 2 right) to get a view 
of the environment surrounding the robot. From this image the robot is able to 
detect obstacles and produce the required motor action to avoid them. To perform 
this detection the behaviour uses classical image processing to remove the 
background from the image and leave only perceived obstacles, as seen in Figure 
5. Here the original image taken by the omnidirectional camera is in the left of the 
figure, with different stages of the image processing shown in the centre and right. 
 

 
 

Figure 5 – Obstacle Detection 

The centre image is the intermediate stage where just the background of the image 
has been removed; this is achieved by colour segmentation of the most common 
colour from the image. To find the most common colour in the image a histogram 
is produced for the RGB values of each pixel. Then the value with the largest 
density is found and any colour within the range of +/- 25 of the most common 
colour is removed. This removes the carpet from the image (assuming that the 
carpet is present in the majority of the image) which leaves the obstacles and some 
noise. Also at this stage the range of the obstacle detection is set removing any 
noise from the periphery of the image. Then the noise is removed by image erosion 
followed by dilation. The erosion strips pixels away from the edges of all objects 
left in the image. This removes the noise but it also reduces the size of any 
obstacles present. To combat this once the erosion has been performed, dilation is 
performed to restore the obstacles to their original size, the shape of the obstacles 
are slightly distorted by this process. However, the obstacles left in the final image 
are still suitable to produce the required motor action to avoid them. The last stage 
of the image processing is to use edge detection to leave only the outlines of the 
obstacles (Figure 5 right). 

The robot always tries to move straight ahead unless an obstacle is detected in the 
robot’s path. When this happens the robot turns the minimum safe amount allowed 
to avoid the obstacles. In the example provided in Figure 5, the robot cannot move 
straight ahead so the robot would turn to the left until it can avoid the obstacle on 
the right of the image. As the image is a mirrored image of the environment the 
objects which appear on one side of the image are physically to the other side of 
the robot. Once the robot has turned the required amount it would start to move 
straight and the obstacle detection would then be performed again. 

2.2 Phase II – The Table Approaching Behaviour 
This phase of the system allows the robot to approach the table (landmark) once 
detected. This has two exit statuses which are (i) the robot lost sight of the 
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landmark or (ii) the robot has reached the table. If the robot looses sight of the 
table it goes back to the wandering phase until it locates the landmark again. This 
can happen if the landmark moves behind one of the supporting pillars of the 
conical mirror. If the robot reaches the table, control will be passed to the final 
stage of the system which is to dock to and pick up the object.  

To allow the robot to move to the table a network was trained using the Actor 
Critic reinforcement learning rule [7]. The state space was the image with the goal 
set to where the landmark is perceived to be in front of the robot. The motor action 
that the network performs is to rotate the robot to the left or to the right depending 
on where the landmark is perceived in relation to the robot. The input to the 
network is the x y coordinates of the closest point of the perceived landmark. Once 
the landmark appears to be ahead of the robot, the robot then moves forward, 
checking that the landmark is still ahead of it. Once the landmark is ahead of the 
robot and less than the threshold distance of 1 meter the robot then moves directly 
forward until the table sensors located on the robot’s base are broken. When this 
happens the robot is at the table and control is given to Phase III. 

The robot only looks for the landmark in the range that the robot can detect directly 
ahead (as the webcam produces a rectangular image, more can be seen to the sides 
of the robot. The range is set to the maximum distance the image can detect ahead 
of the robot; this is roughly 2m). If the landmark is detected outside this range 
when the robot turned it would lose sight of the landmark, therefore anything 
outside this region is ignored. If the landmark appears in the right side of the 
detectable range then the robot should rotate to the left as the image is mirrored, if 
it appears in the left the robot should rotate to the right and if it is straight ahead of 
the robot then it should move forward.  

LANDMARK DETECTED 
LANDMARK

Figure 6 - Landmark Detection 

To detect the landmark classical image processing is once again employed to detect 
the landmark as shown in Figure 6. The original image is in the left of Figure 6 
with the landmark highlighted and the detected landmark is highlighted in the right 
of Figure 6. The first stage to the image processing is to perform colour 
segmentation where it segments any colour that is the designated colour of the 
landmark. Once this process is complete edge detection is used to leave just the 
edges of the remaining objects. Then it is assumed that the largest object left in the 
image is the landmark. The last stage of the image processing is to locate the 
closest point of the landmark to the robot. This point is then fed into the network to 
produce the required action by the robot. 
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2.3 Phase III – Docking 
This phase allows the robot to dock to and pick an orange from the table. The 
functionality of the system is described in [19]. However, there is a problem with 
this system for the integration into the extended scenario; the odometry of the robot 
is set to 0 and the robot must start parallel to the table to allow the robot to dock to 
the orange. With the table approaching system it cannot be guaranteed that the 
robot will be parallel to the table and hence the robot will not know the relationship 
between the odometry and the angle of the table. 

Before this system is integrated it is required that the angle of the table to the robot 
is calculated. To solve this it is planned to use image processing to detect and 
calculate the angel of the table in relation to the robot. Once the robot reaches the 
table a picture will be taken using the conventional pan tilt camera mounted on the 
robot. The edge of the table will then be detected using colour thresholding and 
edge detection.  

The thresholding will be performed in the same way as in Phase I with the most 
common colour being removed. It is assumed that the most common colour will 
either be (i) the colour of the table itself or (ii) the colour of the carpet beneath the 
table. In both cases the edge between the removed colour and the remaining colour 
will be the edge of the table. Using edge detection the coordinates of the two end 
points of this line can be found and from this the angle of the table calculated and 
used with the odometry to get the robot to dock to the orange.  

 
Figure 7 - Edge Detection of the Table 

α 

a) b) 

c) d) 

Figure 7 demonstrates this image processing using the artificial image (a), here the 
white is thought to be the most common colour so will be removed and the 
remaining components of the image are changed to white (b). The next stage is to 
perform the edge detection (c). With this done the angle can be calculated (d) and 
used to alter the odometry of the robot. This is to remove the constraint that the 
robot must arrive parallel to the table. 
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3 Actor Critic Algorithm 
The developed network is an extension of the actor critic model used in [7]. Here 
the system has been adapted to work with continuous real-world environments. We 
have used this algorithm in two phases of the scenario: first, the approach to the 
table (Phase II), and then to perform the docking at the object. In Phase II, the 
input to the network is the position in the omnidirectional image where the 
landmark appears as opposed to the location of the agent in the environment. In 
Phase III, the input is the perceived location of the object of interest from the 
standard robot camera.  

For the architecture of the network developed for Phase II, it was decided that there 
would be two input neurons; one for the x and y coordinates respectively, 50 
hidden units to cover the state space of the image and two output neurons one for 
each of the actions to be performed and one neuron for the critic. The architecture 
is illustrated in Figure 8. The hidden area covers only the detectable region of the 
image with each neuron covering roughly 40mm2 of actual space. This results from 
the fact that the detectable range of the environment is roughly a radius of 2m from 
the robot. All units are fully connected to the hidden layer. Initially the critics’ 
weights are set to 0 and are updated by Equation 4. The Actor weights (Motor 
Action units) are initialised randomly in the range of 0 – 1 and are updated via 
Equation 7. Finally, the weights connecting the input units to the network (High 
level vision) are set to 1 and these weights are not updated.  

 

Equation 1 describes the firing rate of the “place cells” (here the term place cell is 
used loosely as they encode a perceived position of a landmark in the image) to be 
calculated. The firing rate is defined as:  

Figure 8 - Architecture of the Network. The nodes are fully connected, the input for the x, y 
coordinates are normalised into the range 0-50 and the output of the network generates the 

motor action to rotate the robot 
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where p is the perceived position of the landmark, si is the location in the image 
where neuron i has maximal firing rate and σ is the radius of the Gaussian of the 
firing rates covering the image space of each neuron. This was set to 0.75 during 
the experiments. The firing rate C of the Critic is calculated using Equation 2 and 
has only one output neuron as seen in Figure 8. The firing rate of the critic is thus a 
weighted sum of all of the firing rates of the place cells. 

(2) ( ) ( )pfwpC
i

ii∑=
 
To enable training of the weights of the critic some method is needed to calculate 
the error generated by the possible moves to be made by the robot. This is made 
possible by Equation 3 and the derivation of this equation can be found in [7].  

( ) ( )tttt pCpCR −+= +1γδ (3) 

However as Rt only equals 1 when the robot is at the goal location and C(pt+1) is 0 
when this occurs and vice versa they are never included in the calculation at the 
same time. γ is the constant discounting factor and was set to 0.7 for the 
experiments. With the predicted error, the weights of the critic are updated 
proportionally to the product of the firing rate of the active place cell and the error 
(Equation 4). 

( )titi pfw δ∝∆ (4) 

This concludes the equations that were used for the place cells and the critic, 
finally there are the equations used for the actor. There were two output neurons 
used in this experiment, one to make the robot rotate to the left and the other to 
make the robot rotate to the right. The activation of these neurons is achieved by 
taking the weighted sum of the activations of the surrounding place cell to the 
current location as illustrated in Equation 5.  

(5) ( ) ( )∑=
i

ijij pfzpa
 

( )
( )∑

=

A probability is used to judge the direction that the robot should move in, this is 
illustrated in Equation 6. Here the probability that the robot will move in one 
direction is equal to the firing rate of that actor neuron divided by the sum of the 
firing rate of all the actor neurons. To enable random exploration when the system 
is training, a random number is generated between 0 and 1. Then the probability of 
each neuron is incrementally summed; when the result crosses the generated value 
that action is executed. As the system is trained the likelihood that the action 
chosen is not the trained action decreases. This is because as the network is trained 
the probability that the trained action will occur will approach 1. 
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Ultimately, the actor weights are trained using Equation 7 in a modified form of 
Hebbian learning where the weight is updated if the action is chosen and not 
updated if the action is not performed. This is achieved by setting gj(t) to 1 if the 
action is chosen or to 0 if the action is not performed. With this form of training 
both the actor and the critics weights can be bootstrapped and trained together. 

( ) ( )tgpfz jtitji δ∝∆ (7) 



4 Experimentation and Results 
To train and test the network separate training and test data sets were produced.  
The training set contained 1000 randomly generated samples and the test set 
contained 500 randomly generated samples. These samples were stored in separate 
vectors and contained the following information (i) the normalised x coordinate of 
the landmark, (ii) the normalised y coordinate of the landmark, (iii) the angle of the 
landmark in relation to the robot and (iv) the distance of the landmark from the 
robot. During training each sample was fed into the network and it ran until the 
goal was achieved.  Therefore, after each epoch there would be 1000 successful 
samples and the testing data was fed into the network without any training taking 
place.   

The trained weights of the critic are shown in Figure 9 (d), which took 50 epochs 
to get the training to the level shown. It would have been impractical to train the 
network on the robot due to the time it would require, so a simple simulator was 
employed which used the training set to perform the action recommended by the 
network (this used the same data that would be generated from the image 
processing). This was achieved by calculating the next perceived position of the 
landmark. This greatly reduced the time needed to train the network, for the 50 
epochs it took roughly 5 hours to train (including the testing after each epoch) on a 
Linux computer with a 2GHz processor and 1 Gigabyte of ram. Figure 9 also 
shows the untrained weights (a), the weights after the presentation of 1 training 
sample (b) and the weights after the presentation of 500 training samples (c). Here 
it can be seen that the weights spread from the goal location around the network 
during the training. There is a ‘V’ section of the weights that remain untrained, this 
relates to the goal location (see Figure 8) so no training is needed in this section of 
the network as the required state is reached.   

   
 

 
 

d) c) 

b) a) 

 
Figure 9 - Strength of Critic Weights During Training. (a) untrained weights, (b) weights 

after presentation of 1 sample, (c) weights after presentation of 500 samples and (d) weights 
after 50 epochs of training 
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Figure 10 shows the statistics gathered during the training of the network. After 
each epoch of training the network is tested both with the training data and the 
testing data.  Here the samples are presented to the network and data gathered 
about (i) number of steps needed to reach the goal and (ii) the percentage of correct 
moves made by the network at each step. During this testing of the network 
training was prohibited and the relevant statistics gathered.  This was done three 
times with all results being similar. Figure 10 (top) shows the average number of 
moves needed after each epoch for the goal to be reached. An average is taken for 
both the test and training set so the test value is averaged over the 500 test samples 

 
Figure 10 - Training Stats (Top) average number of steps required to reach the goal location 

during the testing of the network. (Bottom) percentage of correct moves made during the 
testing of the network. 

11 



and the training over the 1000 training samples. Initially, with no training, it takes 
on average approximately 650 steps for the agent to reach the goal location.  This 
rapidly decreases and settles to about 10 steps after roughly 30 epochs, the number 
of steps required for the testing and training sets are very similar and the 
performance is as good on the testing set as the training set. 

Figure 10 (bottom) illustrates the percentage of correct moves made at each step 
during the testing of the network. As expected initially, as the agent moves 
randomly the number of correct moves is roughly 50%, as there are two actions to 
be performed. This steadily rises during training, however, this doesn’t stabilise 
after 30 epochs like the number of moves does. The performance keeps improving 
although the rate of improvement does decrease after approximately 60 epochs. In 
addition, the testing set doesn’t perform as well as the training set does during the 
testing; this doesn’t affect the average number of moves required to reach the goal.  

5 Discussion 
The developed system has been successful in allowing the robot to approach the 
table from random places in the environment. Once the orange docking is linked, 
the scenario will be complete. Reinforcement learning has been successfully used 
in two of the phases of this application. This illustrates that reinforcement learning 
is a viable option for use in robot navigation tasks. 

This poses quite an interesting question; humans can easily see distinctive 
differences in tasks; would we be able to train a computer to do a similar thing?  
Instead of the programmer splitting the state space, could the computer 
automatically partition the state space? This has been approached in [12 & 13]. In 
these papers different techniques are adopted to partition the state space. Simple 
portioning of the state space would not have been a viable option in our approach 
as one network would be needed for the entire system. However, this would result 
in a large state space covering in our application the visual inputs of the 
omnidirectional camera as well as the pan-tilt camera. Therefore we have 
addressed this “curse of dimensionality” problem by segmenting the task into 
phases resulting in two smaller manageable state spaces.  

Investigation could be made into improvements in the network to enhance the 
percentage of correct moves made. Some possibilities could include increasing the 
number of samples in the training set to increase the coverage of the training, 
allowing more starting locations to be trained. Another possibility could be to 
adjust the training algorithm to allow a smoother degrade in the strength of the 
critics weights. As the agent move away from the goal location there are large 
decreases in the strength of the weights to the extent that when the landmark 
appears behind the agent the critic’s weights are very weak so the agent may still 
be moving randomly in this section. A smoother decrease in the critic’s weights 
would allow this section of the network to have stronger weight connections and 
thus improve the performance of the network. There is one method that could be 
used to improve the network instantly which would be to switch from exploration 
of the environment to exploitation. Here the actor unit would be chosen which 
would give maximum reward. This however could lead to suboptimal solutions if 
used too early in training. 

An alternative to the developed system could be to pan and tilt the camera that is 
supplied with the robot to find the target from a large distance and perform the 
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whole action based on this visual information. So instead of keeping the camera in 
a fixed position the camera could be moved to locate the table and object. This 
requires a coordinate transform to allow the calculation of the angle to the object 
given the odometry of the robot, the perceived position of the orange on the camera 
image and the pan of the camera. This is also an approach which we are currently 
pursuing [18] While such an approach enhances the range of an action strategy that 
relies on a single state space, there will remain situations in which a multi-step 
strategy has to be employed, such as if the target object is not visible from the 
starting point. Without the object visible, again one strategy is needed to get the 
robot close to the table and another for the docking to the object.  

6 Summary 
This paper has discussed the navigation system developed to allow the robot to 
firstly locate and dock to a table via a landmark. This greatly extended the range of 
docking of the system developed in [19]. Both systems (the original docking and 
the extended navigation) used the actor critic reinforcement technique to train the 
networks they used to achieve their goals. The extended navigation system trained 
its own network to allow the robot to move to the table, which has been 
demonstrated to work effectively. Once at the table the docking phase is able to 
complete the task. The navigation system developed has shown that reinforcement 
learning can successfully be applied to a real world robot navigation task. This 
system shows great potential for the development of a more advanced navigation 
system.   
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