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Introduction

The metric representation of space during navigation is attributed to grid cells in the
entorhinal cortex. The cell responses form triangular grid-like patterns that tile the entire
environment as an animal moves (Giocomo, Moser, and Moser [2011]). Earlier �ndings
suggest that the precision of place cells in the hippocampus (CA1 area) of a rodent's
brain is increased by the inter-connectivity from grid cells in the parahippocampal CA3
area (Moser, Moser, and Roudi [2014]). Figure 1, left, shows the grid cells organised into
modules where the receptive �elds of the cells in one module have the same spacing and
orientation but the scale di�ers in others forming multiple spatially scaled modules that
together precisely encode position over a large space.

Figure. 1: Left: In vivo imagery of four dMEC grid cell responses in a square arena (Moser, Moser, and Roudi
[2014]). The spacing of �ring �elds increases from left to right. Near right: Activities of place cells that serve as
inputs I to our model; here, the virtual rat being at the lower-right part of the arena. Far right: a random trail
taken by the virtual rat. The trail fades at the tail, the darker part showing the rat's recent path.

Although the mechanisms through which these multiple spatially scaled modules
emerge are still unknown, existing neural models attribute this modular behaviour to
odometry such that the change of the triangular tessellating grid cell �ring is in�uenced
by the animal's velocity and direction inputs.

In our auto-encoder model, we prescribe to evidence suggesting the existence of auto-
associative networks within the entorhinal cortex which cohesively support the emerging
activity patterns (Duigou, Simonnet, Teleñczuk, Fricker, and Miles [2014], Rolls [2007]).
We hypothesise that grid cell responses can arise in an auto-associative model using feed-
forward circuitries and inhibition mechanisms. The inhibition is implemented at both
spatial and temporal level, indirectly in�uencing scaling and �ring �eld sizes within the
cells. The emergent grid cells carry a compressed representation of localised place cells
through trained weights that encode a virtual rat's position in the environment with
varying scales of grid patterns.
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Methods

Figure 1, right, shows an example input vector to the model: simulated activities I of
place cells and the trajectory of the place cells as a virtual rat randomly moves with
constant velocity in a box arena. The activity is modelled as a Gaussian function centred
on the position of the rat.

Our auto-encoder model is a simple feed-forward architecture with additional short-
range recurrent connectivity as shown in Figure 2, left. Neurons in the input layer are
connected to the hidden layer with weight matrix W 1 and the hidden layer neurons to
the output layer with weight matrix W 2. A �xed recurrent or lateral weight matrix
W 3 implements short-range spatial inhibition. W 1 and W 2 are randomly intialised, bias
vectors b1 and b2 are added to the hidden and output layers. The size of the input space
is 1600 (40×40) neurons, the hidden layer has 16 neurons and the output space the same
size as the input. This forms a compressing auto-encoder with strongly under-complete
coding. The output layer activation is complemented with a competitive softmax function
to let only those place cells �re for which grid cells of several di�erent scales agree.

Figure. 2: Left: Auto-encoder architecture. W 3 (red) is the short-range recurrent cell-to-neighbourhood con-
nectivity for spatial inhibition. Right: The temporal inhibition function H(t,i). The plot shows cell number
(y-axis) over time (x-axis). Grey indicates self-inhibition of an activated neuron after time t. Faster cells (top)
receive activity inhibition from recent history; slower cells from activity deeper back in time.

Since we assume no prior knowledge of space, we implement a temporal inhibition
mechanism, which is based on the notion that grid cells of high spatial frequency will
be quickly activated and deactivated as a rat moves, while cells of low spatial frequency
have slow activity changes. The inhibition mechanism allows cells to remain active only
for limited times. Figure 2, right, shows the function H(t,i) which determines how much
temporal inhibition hi neuron i receives from its previous activations Si, inhibiting fast
cells more quickly from their own activities than slow cells:

hi(t) =
∑T

t′ Hit′ · S(t− t′) (1)

where T is the memory span, t is current and t′ previous time-steps.
The spatial inhibition via short-range inhibitory recurrent weights W 3 causes distant

neurons to �re independently. The net hidden layer S activity was then computed by
applying a sparse transfer function g.

a(t) =W 1 · I(t) +W 3 · S(t− 1) + b1 − η · h(t) (2)

S = g(a) = a− 0.9/(1 + a2) (3)



where η scales the temporal inhibition. Activation on the output layer is computed as

O = softmax(W 2 · S + b2) (4)

whereW 2 are the weights to the output layer with the respective bias vector b2. The error
on the output layer e = I−O is then used for learning of the weights by back-propagation
using gradient descent on the sum square error.

Results

Figure 3 shows the emergent weights of the 16 hidden layer neurons after 70000 training
steps. Receptive �elds of the cells are spatially organised in approximately triangular
grids, showing grid cell responses. The scales of these grids increase from left to right,
i.e. from grid cells with faster temporal inhibition to cells with slower temporal inhibition.

Figure. 3: Model results. Each square shows the input weights of one of the 16 hidden layer neurons, i.e. one
row of W 1. Non-zero weights (dark) connect to isolated regions in input space forming triangular arranged grid
patterns, which vary in size, from small scales of "fast" grid cells (left) to larger scales of "slow" cells (right).

Discussion

We implemented an auto-encoder that encodes a localised place cell input e�ciently
with fewer grid cells. Varying temporal local inhibition led to varying grid spacing, while
spatial short-range inhibition enforced the coding to be performed by cells of di�erent
scales. The results simulate the emergent triangular grid pattern activity at di�erent
scales where the cells' receptive �eld weight pro�le (Figure 3) is similar to biological
�ndings of grid cell activations (Figure 1, left).

Our simple model does not integrate path signals from odometry to in�uence the
behaviour of the activity bumps, as most other models of grid cells do. Nevertheless,
the emergent hexagonal grid patterns are stable over time, explaining emerging and
convergent connectivity between place cells and grid cells, which existing models do
not yet explain. Naturally, odometric information needs to be represented within the
hippocampus/dMEC to achieve accurate path integration. Introducing odometry could
lead to a class of more detailed and plausible grid cell models.
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