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Abstract 

 
In this paper we present a robotic head MIRA 

(Multimodal Interactive Robot Agent) which has been 
developed for studying the learning of human robot 
interaction and improving our understanding of 
human robot interaction techniques. In this paper we 
focus on two main aspects of the system; first, we 
describe how the robot head learns to recognise faces 
for supporting the interaction process between a 
human and MIRA. Second, we show how MIRA can 
learn to identify sound sources of interest and attend to 
the source location improving the social interaction 
effect. We propose that there is substantial potential 
for learning visual and auditory features in order to 
increase adaptability and robustness of robotic heads.  
 

1. Introduction 
 

The development of robotic heads has recently been 
driven by the desire to create more socially interactive 
robots [4]. Since communication between humans 
relies heavily on both visual and verbal information 
[11, 2, 10] some approaches have addressed the 
combination of these modalities. However, in order to 
allow better robot-human interaction, it is not only 
necessary for robots to communicate but also to 
automatically adapt based on visual and auditory input. 
This automatic adaptation and learning is particularly 
important as it allows the human to feel that the 
interaction with the robot is being conducted in a 
natural manner [4]. 

There are many socially interactive robots in use, 
for example, Minerva [9] developed at Carnegie 
Mellon University is a tour guide robot that takes 
visitors around a museum. However, Minerva's 
learning, language and sound localisation capabilities 
are restricted in terms of natural social interaction. The 
University of Freiburg have developed an interactive 
robot called Fritz [1] but again learning and sound 
localisation is not being used to support visual 
recognition. 

In this paper we describe an approach to learning 
facial recognition and sound-source localisation in 
order to support human-robot interaction in a more 
natural human-like manner, drawing on inspiration 
from biological systems. Sound-source localisation 
allows MIRA to detect and then orientate towards a 
speaker wishing to gain MIRA's attention. The facial 
recognition gives MIRA the ability to either learn a 
new face or to recognise a previously learnt face. We 
argue that both these learned auditory and visual 
capabilities are essential for developing a socially 
interactive robot. While there has been substantial 
research in facial detection [1] and some research in 
sound localisation [9] our focus in this paper is not on 
replicating this research performance but on focusing 
on integrating both tasks in one robot head as well as 
allowing for automatic adaptation and learning of these 
tasks as much as possible. 

 

 
Figure 1. MIRA’s emotional expressions. 

 
2. Facial Recognition 
 

MIRA (see Fig. 1) is designed to be capable of 
tracking and recognising human faces. The method 
used for initial detection of a face is based on Viola's 
[10] rapid object detection with improvements made 
by Lienhart [6]. In order to be able to detect a face, or 
any desired object of interest, specially trained 
classifiers are used. These classifiers are trained as 
described in [10] using a sample set of images that 
contain the particular feature we wish to detect; in our 
case this was a collection of face images. 

We are aware that there are other more complex and 
accurate methods of face detection using such methods 



as principle component analysis [7]. However, within 
this paper, our focus is on the multimodal interaction 
between auditory and visual information for human-
robot interaction. The particular classifier used in our 
system is a cascade of boosted classifiers working with 
Haar-like features [6]. Haar-like features, instead of 
using the actual value of individual pixels, use the 
change in contrast values between adjacent rectangular 
groups of pixels. Contrast differences of selected 
groups of pixels are used to determine relative light 
and dark areas of a sample region within the image. 
Two or three adjacent groups of pixels with a relative 
contrast variance then form a Haar-like feature [6]. 

 

2.1 Facial Feature Extraction 
 

In order to be able to learn and therefore, recognise 
a face, MIRA needs to have some mechanism of 
collecting facial information. For this we use the 
relative positions of the significant elements present on 
all faces: eyes, nose and mouth. It is therefore 
necessary to train several independent classifiers each 
responsible for the detection of a feature we wish to 
detect within the face. For our system, four classifiers 
were trained to resemble all the required features: a 
human face, eye, nose and mouth respectively Table 1 
shows the number of images per training set. 

Our aim was to study images taken under various 
conditions and with various cameras in order to build 
robustness into our learning systems. Initially we used 
the NIST FERET face recognition database [8]. 
However, the acquisition of these images is very 
specific, taken with the same lighting conditions, at the 
same distance from the camera and the same 
orientation. Therefore, we also collected training 
images using Google's image search tool providing the 
search criteria 'eye', 'eyes', 'nose' and 'mouth'. 

Once the classifiers are trained they are applied to 
the images captured by MIRA's camera and processed 
accordingly. MIRA waits for an instruction to start 
interacting which can come in the form of a user 
saying "Hello", "MIRA" or a combination of the two. 
MIRA then orientates to the direction of the sound and 
begins to capture images. Each of the captured images 
is sent to the face classifier to see if the image contains 
an actual face. This process is fairly efficient, with 
MIRA being able to analyse an image for a face in less 
than 80ms allowing a frame rate of 12fps to be 
achieved. 

If a face is detected it is extracted from the rest of 
the image and normalised by resizing it to 250px in 
width, maintaining a ratio of 1:1. It is then passed to 
the second stage of processing. This normalising 
ensures the faces are always the same size (in pixels) 
when presented to the feature extraction stage and this 

helps to prevent the system from classifying the same 
face as different people when viewed at different 
distances. However, if a face is more than three meters 
away the resolution of the image decrease too much to 
recognise. Fig. 2 shows the scene capture with the 
detected face (inserted). The bounding box in this 
image is displayed to show which section of the image 
the classifier extracts as the detected face, and is 
performed automatically by the face detection 
software. 

 

 
Figure 2. Captured scene and face detection. 

 

Table 1. Number of Training Images 
Feature Positive Samples Negative Samples 

Face 1,000 1,000 
Eyes 500 100 
Nose 500 100 

Mouth 500 100 
 

The face is split into three parts, as shown in Fig. 3, 
and each segment applied to the appropriate classifier 
Q1 & Q2 to the eye classifier and Q3 to the nose and 
mouth classifiers. Fig. 3 shows how the face is split 
into the separate parts for feature and data extraction. 
Once the features have been extracted from the image 
segments, unique feature data is created that is used to 
identify the face on future views. For this purpose we 
use the Euclidean distance of the features within the 
original face image. We find this is a useful measure of 
identifying different people due to the variance in the 
structure of people's faces. The first feature data we 
compute is the distance between the two eyes. In order 
to acquire this we need to have a reference point for 
the eye. We use the centre of gravity (COG) of the eye 
image extracted by the classifier for this. Fig. 4 shows 
the algorithm used for determining the COG. 

Once the feature data has been extracted from the 
image, it is used to train a neural network for later 
facial recognition. A neural network provides some 
generalisation advantages over the use of a standard 
lookup table. The most important advantage is an 
artificial neural network's (ANN) ability to adapt to 
noise within the input data, which is very important in 
our deployment of MIRA in real world situations when 
people will be exposed under difference lighting 
conditions, rotations and distances. 
 

2.2 Training the Neural Network 
 



We use a feed-forward multi-layer perceptron 
(MLP) network with the following empirically 
determined architecture: four input units, one hidden 
layer containing 20 hidden units and ten output units. 
Each of the input units receives their activation from 
one of the extracted facial features. The feature data 
extracted from the facial image is normalised to a 
value between 0, 1 as determined by, 

 

 1)(1
−⎟

⎠
⎞

⎜
⎝
⎛

−
−+

=
AB

AxIn
 (1) 

 

where In is the normalised value of the particular 
feature data that is input into the ANN, x is the value 
of the feature data in question, A is the minimum 
possible value of the feature data, and B is the 
maximum possible value. The ten output units 
represent separate faces that have been learnt by the 
network. With this particular architecture and scenario, 
the system is capable of learning a restricted number of 
faces; however, we feel a small number of faces (e.g. 
10s rather than 1000s) are sufficient within a domestic 
scenario where there would be few people to be 
recognised, for instance in a single home environment. 

 

 
Figure 3. Individual face segments. 
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stem with a rotation of 0°. In line with human 
performance, as the rotation increases, the accuracy of 
the system decreases to a point where at a rotation of 
±20° the system only gives a 15% accuracy rate. 
However, the system is fairly reliable with the best 
results in the range of ±10°. Currently our system does 
not apply an in-plane or out-of-plane rotation on the 
face image. 

 

Table 2. Recognition Rates of Faces 
Face 0° 

1 N Y Y N N Y N 
2 Y Y N N ! Y N 
3 Y ! N N ! ! N 
4 Y Y ! N ! N N 
5 Y Y N N Y N N 
6 Y Y N N Y Y N 
7 Y N N N N Y N 
8 Y ! ! N Y N N 
9 Y Y N N N ! N 
10 Y Y N N N ! N 
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MIRA is also capable of sound-sou
allowing the head to orientate its

ection of a sound-source of interest, i.e. a person 
trying to attract MIRA’s attention. This capability 
plays an important role for robot-human interaction: if 
a user wishes to attract the attention of MIRA when the 
attention/gaze of the robot is elsewhere, then the 
natural reaction would be to call the robots name 
"MIRA". The robot would then respond to this by 
determining the direction of the sound-source and 
turning to face the source. 

The mammalian auditory system is very adept at 
localising sound-sources 

 
ttered environment. Therefore, inspiration for the 

acoustic model developed is taken from that of the 
mammalian central auditory system (CAS). Within the 
CAS several cues are used to determine the direction 
COG_X = COG_X + (I*x) 
COG_Y = COG_Y + (I*y) 
Total = Total + I  

where I = (R+G+B)/3, x, y is the current pixel location.
COG_X = COG_X/Total  
COG_Y = COG_Y/Total  

results in the final x, y location of the COG.  
 
igure 4. The algorithm for calculating COG 

 

To determine the capability of the system in face 
ognition the network was trained on ten different 
es presented to MIRA. To gauge how the system 
uld later respond to those same faces when they are 
sented at varying rotations. Each face was presented 

 times at each angle of rotation and the average 
ognition result taken. Table 2 gives the results of 
 system on recognising ten separate faces that the 
tem has previously learnt. The faces were initially 
sented to the system with a rotation of 0° for the 

rpose of learning. Within the table a 'Y' indicates a 
cessful recognition of ≥ 75% over the total number 
trials, an 'N' represents < 75% whilst a '!' represents 
isclassification of ≥ 50%. 

 taken as the phase 
dif

of a sound-source. These include the Interaural Time 
Difference (ITD) and the Interaural Phase Difference 
(IPD) as two cues for azimuth estimation. The ITD is 
the delay between the sound signal arriving at the left 
and right ears, whereas the IPD is the phase difference 
of the two signals at the ears. There is evidence as 
shown by Licklider's triplex model [5] suggesting that 
cross-correlation exists in biology. 

The localisation capabilities provided on MIRA are 
implemented using the IPD cue, and

ference in the signals detected by the microphones. 
The two signals (g(t) and h(t)) phase difference are 
calculated using a method known as cross-correlation 
[11]. This involves taking the signals g(t) and h(t) and, 
using a sliding window approach, calculating the phase 
difference by firstly offsetting the two signals and then 



sliding them across each other, computing the product 
of the values at each point. This produces a correlation 
vector C (sizeof (g(t))*2)-1. The maximum value 
within this vector corresponds to the maximum point 
of similarity between the two signals. Using this value 
and its corresponding location within the correlation 
vector we can use the ITD cue to calculate the time 
difference between the signals arriving at the left then 
right microphone and thus determine the azimuth angle 
of the sound-source. We calculate this angle using the 
following equation. 
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where, σ is the lag between g(t) and h(t) d
by correlation vector C, ∆ is the sample time increment 
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ermined by the sound card sample rate, i.e. 1/44100 
= 22.7µs and θ is the angle of incidence, with the 
speed of sound being taken as 348 m/s at 24°C. 
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Therefore, using Eq. 3, when the system detects a 
nterest the azimuth angle of the source is 

cal

 

sound of i
culated and MIRA orientates towards the direction. 

This orienting allows the speaker's face to come into 
view and for the MIRA to see if this is a previously 
recognised person or someone new using the visual 
recognition process. The performance of the system 
gives an accuracy of ±2° with the response more 
accurate in the range of 0° to ±45°. See Fig. 5. 

 
Figure 5. Accuracy of the sound source localisation 
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We have shown the development 
learning robot agent MIRA. The resu

 facial recognition show that the system is capable 
of learning a person's face and using this knowledge to 

recognise that person on successive presentations. The 
system we have presented also demonstrates the use of 
simple interactive behaviour using basic verbal 
expressions. Emotions allow the robot to convey more 
information in a human-like manner than is possible 
with just the verbal interaction aspects of the system. 

In this paper we have described, for this first time, 
the overall architecture and first set of experiment

 

th MIRA.  Future work will focus on improving the 
recognition rate of the system by integrating 
transformations on the detected face images. 
Furthermore we consider scaling up the system to 
create a dynamically expandable learning system 
which can grow and develop with experience [3]. 
http://www.his.sunderland.ac.uk/projects/robot_head.h
tm shows MIRA in action. 
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