
Real-world reinforcement learning for autonomous

humanoid robot dockingI

Nicolás Navarro-Guerrero∗, Cornelius Weber, Pascal Schroeter, Stefan
Wermter

Knowledge Technology Group, University of Hamburg, Department of Informatics,
Vogt-Koelln-Str. 30, 22527 Hamburg, Germany

Abstract

Reinforcement learning (RL) is a biologically supported learning paradigm,
which allows an agent to learn through experience acquired by interaction
with its environment. Its potential to learn complex action sequences has
been proven for a variety of problems, such as navigation tasks. However,
the interactive randomized exploration of the state space, common in rein-
forcement learning, makes it difficult to be used in real-world scenarios. In
this work we describe a novel real-world reinforcement learning method. It
uses a supervised reinforcement learning approach combined with Gaussian
distributed state activation. We successfully tested this method in two real
scenarios of humanoid robot navigation: first, backward movements for dock-
ing at a charging station and second, forward movements to prepare grasping.
Our approach reduces the required learning steps by more than an order of
magnitude, and it is robust and easy to be integrated into conventional RL
techniques.

Keywords:
Reinforcement learning, SARSA, Humanoid robots, Autonomous docking,
Real-world

IPortions of this work were presented at the Annual Conference Towards Autonomous
Robotic Systems (TAROS), Aug. 31 - Sep. 2, 2011.

∗Corresponding author Tel.: +49 40 428 83 2530
Email address: navarro@informatik.uni-hamburg.de (Nicolás Navarro-Guerrero)

Preprint submitted to Robotics and Autonomous Systems June 25, 2012

1. Introduction

Reinforcement learning (RL) [1, 2] is a biologically inspired learning
paradigm consistent with the trial-and-error learning process related to the
dopaminergic system [3]. RL models are able to learn through experience
acquired by an agent interacting with its environment that tries to maximize
rewards and minimize punishments. Given a certain initial condition, RL
algorithms are particularly suitable for solving action sequences by building
a value function that encodes the effect of different decisions.

For tasks with delayed reward, methods based on temporal-difference
(TD) learning have been broadly accepted because of their simplicity requir-
ing minimal computational power, as indicated by Sutton and Barto [1] and
supported by a vast body of research [4, 5, 6, 7, 8, 9]. TD based methods
do not require detailed models of the environment and are fully incremental,
i.e. are capable of learning based on previous knowledge [1].

Reinforcement learning usually consists of many trials that begin with
the agent’s random initialization followed by many executed actions until the
agent eventually reaches the goal. Following a few successful trials the agent
learns beneficial state-action pairs based on its acquired knowledge. Learning
is carried out using positive and negative feedback during the interaction with
the environment in a trial and error fashion. In contrast with supervised
and unsupervised learning, reinforcement learning may not use feedback for
intermediate steps, but a reward (or punishment) may be given only after
a learning trial has been finished. The reward is a scalar and indicates
whether the result was right or wrong (binary) or how right or wrong it
was (real value). This limited feedback characteristic makes it a relatively
slow learning mechanism, but attractive due to its potential to learn action
sequences that are not known by a teacher.

Researchers use RL broadly within simulated environments or for abstract
problems [10, 4, 5, 6]. Here, a model of the agent-environment dynamics is
available, which is not always available or easy to infer in real-world problems.
Moreover, a number of assumptions, which are not always realistic, are made,
e.g. on the state-action transition model, the design of the reward criterion,
and the magnitude and kind of noise if any, etc.

On the other hand, real-world RL approaches are scarce [7, 8, 9], mostly
because RL is expensive in data or learning steps, the state space tends
to be large and the turnaround times for results are long. Moreover, real-
world problems present additional challenges, such as safety considerations,

2

real-time action execution, changing sensor characteristics, actuators and
environmental conditions, among many others.

Several techniques exist to improve real-world learning capabilities of RL
algorithms. Dense reward functions [7] provide performance information for
intermediate steps, thereby shaping the policy and restricting the emergence
of novel unforeseen policies. State space reduction [7] is dependent on the
particular problem and can be a very time-consuming designing task. An-
other approach proposes modification of the agent’s properties to fit the
given problem [8], which relies on a smart definition of the state space that
accounts for a reduction of dimensionality. Batch reinforcement learning [9]
uses information from past state transitions, instead of only the last transi-
tion, to calculate the prediction error function based on storage and reuse of
state-action pairs. Supervised reinforcement learning [7, 6] is based on batch
RL, but differs in the generation of training examples. In batch RL the state-
action pairs are generated autonomously through random exploration while
supervised RL uses human-guided action sequences during initial learning
stages avoiding the costly random exploration.

The proven value of RL techniques for navigation tasks [11, 7] motivates
us to develop a real-world RL approach for a humanoid robot to navigate au-
tonomously into a docking station. This approach makes use of a supervised
RL algorithm and Gaussian distributed state activation. We successfully
tested this method in a simulated 2-dimensional grid-world and two real sce-
narios. The latter are a backward configuration for an experimental docking
station for recharging and a forward docking configuration for grasping tasks.
Our approach works with a reduced number of training examples, has few
model assumptions, and it is robust and easy to incorporate into conventional
RL techniques based on TD learning.

The paper is organized as follows. Section 2 presents the motivation and
design criterion of the model. Section 3 presents the neural architecture, algo-
rithm and training procedure. Section 4 demonstrates the proposed method
in a simulated scenario. Section 5 presents the results of applying the method
to two real-world applications. Section 6 analyzes comparatively both real-
world scenarios. Section 7 presents conclusions.

2. Motivation and system design

Despite advances in humanoid robot control there are still difficulties in
accurate maneuvering tasks, which we consider a key building block for do-

3

mestic applications of robots. In particular, humanoid robots, like the NAO
[12], are used in a growing number of social, service and entertainment robot
scenarios [13, 14]. One of the NAO’s major limitations for domestic applica-
tions is the difficulty of precise localization, due to slippage and accumulated
localization errors, which increases the difficulty to perform other tasks such
as object grasping and delivering. Our interest of studying domestic robot
applications motivates us to tackle the issue of precise localization and posi-
tioning. Here, we describe the successful docking of a NAO robot based on
RL techniques, described in detail in Section 3. The two scenarios are both
easy to build and “non-invasive”, i.e. do not require major interventions on
the robot’s hardware and do not affect the robot’s mobility or sensor capa-
bilities.

2.1. Backward docking station for autonomous recharging

One of the NAO’s limitations is its energetic autonomy, which typically
does not surpass 45 minutes. This motivates the development of strategies
to increase the robot’s operational time minimizing human intervention [15].
Despite the challenge to maneuver the robot backwards, we chose to test a
partial backward docking [15]. This offers advantages such as easy mounting
on the NAO. It does not limit the robot’s mobility, does not obstruct any
sensor, nor does it require cables going to the robot’s extremities, and allows
a quick deployment after the recharging has finished or if the robot is asked
to do some urgent tasks.

The prototype built for the proposed autonomous recharging is shown
in Fig. 1(a). The large landmark (naomark1) is used for a hard-coded ap-
proaching behavior when the robot is more than 40 cm away from the docking
station2, while the two smaller landmarks are used for an accurate docking
behavior for which we use the RL algorithm described in Section 3.

The overall autonomous recharging was split into four phases. During
the first phase a coarse approach behavior takes place. This behavior is
temporarily a hard-coded algorithm that searches for the charging station via
a scanning head rotation followed by a robot rotation. The robot estimates
the charging station’s relative position based on geometrical properties of the
large landmark and moves towards the charging station. We are currently

12-dimensional landmark provided by Aldebaran-Robotics
2Distance measured from the landmark to the robot’s camera

4

(a) (b)

Figure 1: Backward docking station for NAO. (a) White arrows indicate the electrical
contacts placed on the docking station and gray arrows indicate the landmarks’ position.
(b) Robot’s electrical connections.

developing a more sophisticated approach in the KSERA project framework
[14, 16] where we use a ceiling camera to locate the robot anywhere within
an indoor room and to navigate the robot to a distance of approximately 40
cm away from the landmarks; see Fig. 2(a). In the second phase the robot
re-estimates its position and places itself so that its left shoulder as well as its
face are oriented towards the landmark, as shown in Fig. 2(b). In the third
phase the RL algorithm is applied to navigate the robot backwards very close
to the electric contacts as presented in Fig. 2(c).3 After reaching the final
rewarded position, in the fourth and final phase, a hard-coded algorithm
moves the robot to a crouch pose; see Fig. 2(d). Then, the motors are
deactivated and the recharging process starts.

2.2. Forward docking station for grasping

The second scenario aims at robot docking to allow autonomous grasping.
We developed a similar docking structure, i.e. one big landmark and two small
landmarks. A conceptual schema of the setup for grasping is depicted in Fig.
3. The forward docking consists of two phases. The first phase contains
all the features of the coarse approach described for the backward docking.

3In this docking phase, NAO’s gaze direction is oriented towards the landmark.

5

(a) Approach (b) Alignment (c) Docking (d) Crouch pose

Figure 2: Top view of the autonomous robot behavior in its four different phases: (a)
Approaching, (b) Alignment, (c) Docking and (d) Recharging in crouch pose.

Since the coarse approach behavior places the robot facing the landmarks at
approx. 40 cm away, the transition from coarse docking to precise docking
does not require an alignment phase. The second phase corresponds to the
precise docking behavior implemented using the RL algorithm described in
Section 3, which navigates the robot forward to the docking station and
places it in 15 cm proximity of the landmark. Once the robot is in this
position the grasping task is going to take place.

2.3. Choice of the learning system

In order to make reinforcement learning feasible in real-world scenarios
several techniques had been developed, as presented in Section 1. From these
techniques, supervised reinforcement learning [7, 6] offers the possibility of
reducing the number of learning steps by avoiding the initial exploration of
the state space. This is achieved by providing the agent with a few correct
training examples and using them for off-line training.

We create the training examples by tele-operating the robot from several
random positions to the goal position, while saving state, action and reward
information. The off-line training consists of the presentation of the saved
action and state vectors (or action sequences) to the agent. Thus, the agent
can learn the given action sequences without additional real-world execution
of actions. Since the training examples represent only a reduced subset of
possible solutions, we use additional reinforcement learning to safely operate
the robot around the near-optimal solutions provided by the operator. Par-
ticularly, we use SARSA learning, which is a classical on-policy algorithm

6

(a) (b)

Figure 3: Scenario for grasping a cup from a shelf. (a) Shelf with landmarks for accurate
docking behavior and a graspable object. (b) NAO robot is in grasping position (the inset
shows robot’s view).

for TD-Learning. SARSA does not have major restrictions of convergence,
and it can easily be combined with eligibility trace, opposed to Q-learning
[1]. The mathematical implementation is detailed in Section 3.

In order to limit even more random exploration and to achieve efficient
real-world reinforcement learning, we introduce an additional modification
that boosts the learning speed. Instead of using a single active state at a
given time, as conventionally used in reinforcement learning techniques, we
use a Gaussian activation of state units [17]: a Gaussian is centered around
the current robot state; see Fig. 4.

One motivation for a Gaussian state activation is that states close to the
current state should often generate the same action. Using this concept, we
can extend and spread what we know about a state to neighboring regions of
the state space. This differs from eligibility traces that allow faster on-line
learning by strengthening states recently visited. Repetitive off-line training,
though, incorporates the effect of eligibility traces.

3. Model architecture and learning

The model has an input layer, which represents the agent’s current state,
and an output layer, which represents the chosen action. Both layers are
fully connected (see Fig. 5). The number of states, actions and the size of the

7

(a) (b)

Figure 4: 2-dimensional grid-world example with two forms of state representation. The
goal position is indicated by a red cell. Gray-scale indicates state activation. Left, single
state activation at the agent’s position. Right, Gaussian distributed state activation. The
spread of activation to neighboring states speeds up learning.

Figure 5: Neural network schematic overview. For clarity, only one connection weight is
shown (thin arrow).

actions are adjusted empirically as a trade-off between speed and accuracy
for each of the tested docking behaviors. The algorithm implementation will
be explained using a grid-world example, which offers an intuitive ground
and facilitates graphical representation of the modifications that are being
introduced.

The navigation problem is modeled as a Markov decision process (MDP).
An MDP is defined by a set of states S, a set of actions A, a transition model
P (s′|s, a) that specifies the probability of reaching the next state s′ by taking
action a in state s, a reward model R(s′, s, a) that specifies the immediate
reward received when taking action a in state s, and an exploration policy
π(s|a), which is a mapping from states to actions.

Considering the 2-dimensional grid-world example shown in Fig. 4(a), the

8

state space S is formed by all cells. The goal position is indicated by a red
cell and the current agent’s position by a black cell. The agent’s objective is
to reach the rewarded goal position as quickly as possible.

The actions are moving UP, DOWN, LEFT and RIGHT. A move does not
depend on the history but only on the policy π(s|a), which depends on the
learnt network weights W . A binary reward r is used to indicate whether the
agent has succeeded or not. The agent is given r = 0 as long as the desired
position is not reached. Once the goal position is reached, the agent receives
r = 1 and the “trial” is finished.

The learning algorithm is based on SARSA [1, 2] and can be summarized
as follows. For each trial the robot is placed at an initial random position
within the defined workspace. The agent reads the cell’s coordinates to obtain
the internal state activation vector s, with all entries zero except for the entry
that corresponds to the world position.

The net activation hi of action unit i is computed as

hi =
∑
l

Wilsl , (1)

where Wil is the connection weight between action unit i and state unit l.
For the particular case that only one state unit l∗ is activated, Eq. 1 becomes

hi = Wil∗ sl∗ = Wil∗ (2)

Connection weights Wil are initially set to zero. Next, we used a softmax-
based stochastic action selection policy

Pβ(ai = 1) =
eβhi∑
k e

βhk
, (3)

where β controls how deterministic the action selection is. Large β implies
a more deterministic action selection or a greedy policy. Small β encourages
the exploration of new solutions. We use β = 500 to prefer exploitation of
known routes and to conservatively explore unforeseen policies. Based on
the active state (l∗) and on the current selected action (k∗), i.e. ak∗ = 1;
ai 6=k∗ = 0, the current estimate value Q(s, a) is computed:

Q(s, a) =
∑
k,l

Wklaksl (4)

9

For the particular case of SARSA, where only one single state l∗ and one
action k∗ can be active at a time, this becomes

Q(s, a) = Wk∗l∗ak∗sl∗ = Wk∗l∗ (5)

The old state-action value Q(s, a) is subtracted from the time-discounted
new value γQ(s′, a′) to yield the network prediction error δ. The time-
discount factor γ ∈ [0, 1] controls the importance of proximal rewards against
distal rewards. Small values are used to prioritize proximal rewards. In con-
trast, values close to one are used to equally consider all rewards. Considering
also the binary reward r ∈ {0, 1}, the prediction error is computed as

δ =

{
γQ(s′, a′)−Q(s, a), if r = 0,

r −Q(s, a), if r = 1,
(6)

Eq. 6 differs from δ = γQ(s′, a′) + r − Q(s, a), as presented by Sutton
and Barto [1], from which the name SARSA originates. Our modified ver-
sion works well with binary reward schemas and prevents unlimited growth
of weight values. We set γ = 0.65. The weights are updated using a δ-
modulated Hebbian rule with learning rate ε = 0.5:

∆Wil = εδaisl (7)

At this point, the two techniques, introduced in Section 2.3, to facili-
tate real-world RL come into play. First, to avoid random exploration, a
set of training examples are recorded and used for off-line training. Within
each trial, the learning algorithm was realized as described in Eq. (1)-(7).
However, instead of using Eq. (3) for stochastic action selection, the selected
action was provided by the tele-operation data. We refer to this procedure
as “supervised reinforcement learning”. Second, instead of using single state
activation as in Eq. (2), where only a single input neuron has maximal acti-
vation (sl = 1) at a time, we use a Gaussian activation of state units [17]: a
Gaussian is centered at the current robot state (“active state”)

sl = N · e
−

(xl − µx)2 + (yl − µy)2
2σ2

, (8)

where N is a normalizing factor, i.e. the sum over the state space activations
is 1. The different paradigms of state activation are shown in Fig. 4.

10

We use σ = 0.85, which effectively “blurs” the activation around the “ac-
tive state”. In this way generalization to states that have not been directly
visited is possible. The dimensionality of the Gaussian distribution will de-
pend on the number of variables used to build the state space. In this grid
world example, we show schematically a 2-dimensional Gaussian distribu-
tion. µx represents the current x-cell coordinate and µy the y-cell coordinate
of the agent.

4. Analysis of results from simulation (grid-world)

In Table 1, we compare the performance of two supervised RL methods
after off-line training, i.e. using “single active state” and using Gaussian
distributed state activation. The training examples for supervised RL in
both cases consist of 3 user-generated action sequences. The trajectories
for the training examples include the borders and the central path and cover
15.2% of the state space. Testing was performed with 100 trials with random
starting positions.

Results are shown after 300 off-line training trials, i.e. each of the 3 tele-
operated example trials is repeated approx. 10 times. This number was
sufficient for good performance. Training is governed by tele-operated policy
πsup without random exploration, i.e. without autonomous “interaction” with
the environment. This would be appropriate to do with real-world hardware
that must not run unattended. Testing is “interactive”, i.e. the agent action
selection is governed by the learnt policy πsup∗ .

After training using single state activation, the agent’s actions remain
random in those states that have not yet been visited. This leads to a high
STD of the number of steps required (see Table 1). After training with
Gaussian state activation the agent generalizes to those states and so requires
fewer steps, leading to a small STD.

We also verified the case of stochastic action selection following Eq. 3
for learning. The average number of steps required to solve a single trial
using stochastic action selection without any prior learning is 3, 072. RL
without any guidance or optimization would require many times this number
of learning steps. In contrast, only 99 steps were performed by tele-operation,
which would be required with real robot hardware. This advantage of several
orders of magnitude enables real-world RL.

11

Table 1: Performance of two supervised RL methods after 300 off-line training trials for a
grid world of size 25×25. Average (Avg.) number (#) of steps, standard deviation (STD)
and 95% confidence interval (95%CI).

State activation Avg. # steps STD 95%CI

Single activation 86.74 107.59 21.09
Gaussian activation 36.01 38.53 7.55

Tele-operated 33.00 6.93 7.84

5. Real-world docking scenarios and experimental results

After proving our techniques in simulation, we applied them to the two
real-world docking scenarios described in Section 2. Results of both cases
are presented below:

5.1. Backward docking station for autonomous recharging

Once the robot is 40 cm away from the docking position (see Fig. 2(b)),
the two small landmarks placed on the docking station can reliably be de-
tected and used for precise docking by the RL algorithm.

The state space is formed by the combination of three variables. These are
the angular sizes of the two small naomarks and the yaw (pan) head angle.
They encode the robot’s distance and orientation relative to the docking
station, respectively. The minimal allowed distance of the robot’s camera to
the landmark is approx. 13 cm, which corresponds to the robot’s shoulder
size plus a safety distance.

Those three values are discretized as follows. The angular size of each
landmark within the visual field is discretized into 10 values for each land-
mark. These values represent distances in an interval of [13 cm, 40 cm] in
increments of 2.7 cm. We add one value for each landmark to indicate the
absence of the corresponding landmark. This leads to a total of 11 values per
landmark. The third variable is the head’s pan angle. An internal routine
permanently turns the robot’s head to keep the interesting landmark cen-
tered in the visual field. The head movements are limited to [70◦, 120◦[and
the values are discretized with increments of 3.3◦ yielding 15 values. Hence,
the total number of used states is obtained by the combination of all the
values, i.e. 11× 11× 15 = 1815.

The actions that the robot can perform are as follows: move forward
and backward 2.5 cm, turn left or right 9◦ and move sideward to the left

12

Table 2: Summary of ten backward docking trials.

State activation
of

success
of false
positive

of
aborted

Avg. # of steps
on success

STD

Single
activation

6 1 3 23.80 8.23

Gaussian
activation

8 1 1 19.30 8.35

or right 2.5 cm. The turn and sideward movements are unfortunately very
unreliable, which will be discussed later in Section 6. These values were
adjusted empirically as a trade-off between speed and accuracy.

We tele-operate the robot from several random positions to the goal posi-
tion saving the action state vectors and reward value. This training set with
near-optimal routes is used for off-line learning. Specifically a total of 50
training examples with an average of 20 action steps were recorded. Then,
using this training set, 300 trials were performed off-line, i.e. each of the 50
examples were presented 6 times. Table 2 summarizes the obtained results.
We considered as success when the robot successfully reaches the desired goal
position; as false positive when the robot perceives to be in the goal position
but fails to make electrical contact with the charging station; and as aborted
trial when the robot leaves away from the working space or collides with the
docking station. The Gaussian activation led to more successful trials and a
slightly reduced number of steps required during these trials.

5.2. Forward docking station for grasping

Similarly to the backward docking scenario, the state space is formed by
the combination of three variables. In this case the variables are as follows:
the average distance d to the two small naomarks measured in cm (estimated
from the perceived size of the landmarks), the difference ϕ of the perceived
distance between both naomarks, and the horizontal position α measured in
radians between the center of the visual field and the naomarks array; see Fig.
6. They encode the robot’s relative distance and orientation, respectively.
Another difference to the backward docking is that the head remains fixed.

The three variables are discretized as follows: d is discretized into 14 val-
ues, representing distances within the interval [15 cm, 45 cm]. ϕ is discretized
into 14 values. α ranges from [−0.35, 0.35] in radians and is reduced to 10
values. Hence, the total number of states is obtained by the combination of

13

d = +

dright

dleft

dleft dright

2

(a)

φ = -

dright

dleft

dleft dright

(b)

α

(c)

Figure 6: State space definition for the forward docking scenario.

Table 3: Summary of 25 forward docking trials.

State activation
of

success
of

aborted
Avg. # of steps

on success
STD

Single activation 13 12 71.08 59.08
Gaussian activation 23 2 13.70 11.19

all the values, i.e. 14× 14× 10 = 1960 states. We use the same actions as in
the backward case.

We tele-operate the robot from 9 random positions to the goal position
saving the action state vectors and reward value. The average number of steps
required for tele-operated trials was 12. This training set with near-optimal
routes is used for 300 off-line repetitions. We compare results obtained after
300 off-line learning trials with supervised single-state and supervised Gaus-
sian activation. After the training phase using single state activation, the
robot is able to reach the goal imitating the tele-operated routes, while the
robot’s actions remain random in those states that have not been visited.
In contrast, after training with a Gaussian distributed state activation the
robot is able to dock successfully from almost every starting point. Table 3
summarizes the obtained results.

Samples of obtained receptive fields (RFs) are presented in Fig. 7. The
goal position is shown centered in the left side of each picture. Color in-
tensity indicates weight strength, blue excitatory weights and red inhibitory
weights. White pixels represent unlearned state-action pairs, which make
the majority after training with single state activation. More intense colored
pixels represent a stronger state-action binding and thus the action is more
likely to be selected when the robot is in this state. When using Gaussian
activation all weights have a non-zero value, although it may be small.

14

(a)

13 (mm)

-13 (mm)

0

15 (cm) 45 (cm)

φ

d

α = -0.14

15 45

φ

d

α = -0.07

15 45

φ

d

α = 0

15 45

φ

d

α = 0.07

(b)

13 (mm)

-13 (mm)

0

15 (cm) 45 (cm)

φ

d

α = -0.14
15 45

φ

d

α = -0.07
15 45

φ

d

α = 0
15 45

φ

d

α = 0.07

Figure 7: Receptive field (RF) samples of one action unit (Move forward) after learn-
ing. Color intensity represents the weight strength. Blue colors represent excitatory
weights and red colors inhibitory weights. From left to right the RF samples for
α ∈ {−0.14,−0.07, 0, 0.07} are presented. (a) Single state activation. (b) Gaussian state
activation, σ = 0.85.

15

6. Discussion

We notice significant performance differences in the tested real-world sce-
narios. Specifically, for the autonomous recharging case, side movements are
used as main actions, unfortunately, these movements were very unreliable,
leading often to stand-still, slight turns or even side movements to the op-
posite direction. Furthermore, for backward docking, we used an automatic
head repositioning to keep the landmarks centered in the visual field, and
we used the robots’ yaw angle as one of the variables to encode in the state
space, which includes motor errors. Therefore the encoding of the state space
is less precise than when keeping the head fixed and using the horizontal po-
sition of the landmark within the visual field, as done in the case of forward
docking for grasping.

These two factors, inaccurate sideward movements and less precise state
space definition, contributed to a lower success rate of the autonomous recharg-
ing behavior. This is why 50 tele-operated training examples were required to
achieve acceptable results; see Table 2. However, the higher number of tele-
operated examples implies that a larger portion of the state space has been
covered, approx. 5%. This was not necessary in the case of forward docking
and acceptable results were obtained using only 9 tele-operated examples,
equivalent to approx. 1% coverage of the state space. This, of course, has
an impact in the overall performance of supervised SARSA, but not much
in supervised SARSA with Gaussian state activation. Note that we did not
use any state space reduction technique.

Figure 8 presents a common problem to both scenarios, i.e. the effect of
noisy sensory input and action execution. It shows 7 actions of a successful
forward docking trial after off-line training using Gaussian state activation.
The blue curve represents a reconstruction of NAO’s perception of its posi-
tion and orientation and the red curve shows the real NAO’s position and
orientation, as obtained from a ceiling camera. The letters inside the head-
like shape denote the selected action. Of special interest are the cases of
wrong perception. For example, when the NAO performs a right step from
location 1 to location 2, he perceives a backward-directed movement, or,
when turning left at location 6, he perceives a larger translation.

Tele-operation creates a few representative training examples to cover
substantial parts of the state space and to speed up initial learning. Poor
sampling from the state space during training would lead to poor initial per-
formance in unexplored regions. A representative training set should consist

16

1

2

3

4

5 6

7

1

2

3

4

5
6

7

mm

mm

perceived

real

Figure 8: NAO’s trajectory during forward docking after being trained using Gaussian
state activation. The head-like shape represents NAO’s position and orientation. Letters
F, B, R, L, TR and TL denote forward, backward, move right, move left, turn right and
turn left respectively, starting at the shown position. Blue represents NAO’s perceived
positions. Red represents NAO’s real positions captured by a ceiling camera.

17

not only of the most frequent trajectories but it should particularly cover
less frequently visited regions of the state space. A practical way to build a
representative training set is in an incremental fashion, i.e. generate a train-
ing set, train the network and test the output placing the robot in a random
position within the workspace. If the result is unsatisfactory then generate
additional training examples by tele-operation containing the difficult case
and re-train the network. These steps should be repeated until the results
are satisfactory.

7. Conclusion

Motivated by the need for a precise docking behavior for the NAO robot
and the suitability of RL techniques for navigation, we developed a real-
world learning algorithm based on SARSA and supervised RL. We achieved
a considerable reduction in the required learning steps from several thousand
to a few hundred. The use of appropriate training examples proved to be
a key factor for real-world learning scenarios, i.e. a representative sampling
from the state space during tele-operation will contribute to the performance
of the running system.

Additionally, Gaussian distributed state activation demonstrated to be
useful for generalization and eliciting a state space reduction effect while
not losing performance when applied to large state spaces. This technique
reduces failures that may be induced by ambiguous or poor sampled state
spaces. Furthermore, the use of a memory of successful action sequences may
be of considerable value in other applications. This memory could be gen-
erated independently by tele-operation or fully automated operation. Then
these examples can be used for automatic off-line training, while the robot
is executing less demanding tasks.

Other well established methods for speeding up learning exist. For in-
stance, TD(λ) accelerates learning by maintaining an eligibility trace of re-
cently used states (in actor-critic learning), or state-action pairs (in SARSA),
controlled by a trace decay parameter 0 ≤ λ ≤ 1 [1]. Thereby, when δ be-
comes large at time t, not only the current, but also more recently visited
state-action pairs, prior to t, of the current trial will be affected by the up-
date. The number of trials required for learning can thereby decrease by an
order of magnitude. In our model, however, we distinguish real-world trials
of the robot from the repetition of stored sequences in an off-line mode. The
repetitions have an effect similar to TD(λ) reducing the number of necessary

18

real-world trials (which is the important quantity in terms of costs). More-
over, while an eligibility trace only affects the most recent trial, repetitions
affect all trials stored in memory, so dynamic programming can be performed
on all stored real-world trials until convergence. Finally, the use of Gaussian
activated states affects not only visited states but also neighboring states.

The proposed method was tested in two real-world scenarios; a partially
backward docking used for autonomous recharging, which the robot can per-
form successfully, and a forward docking for a grasping task, which is under
development. During the experimental phase, we noticed that 2-dimensional
landmarks can be detected only from within a small angle range, i.e. when the
robot sees them without much distortion, and detection is very noise suscep-
tible. For future work a docking procedure using a 3-dimensional landmark
is under development [18]. Additionally, forward, backward and turn move-
ments have to be preferred, because of the limited effectiveness of sideward
movements due to slippage of the NAO. The promising results shown in this
paper motivate us to further improve the presented real-world scenarios and
explore new applications.

Acknowledgments

This research has been partly supported by the EU projects RobotDoC
[19] under 235065 ROBOT-DOC from the 7th Framework Programme (FP7),
Marie Curie Action ITN, and KSERA funded from FP7 for Research and
Technological Development under grant agreement n◦ 2010-248085. The au-
thors thank Stefan Heinrich and Tayfun Alpay for proof reading and for
contributing to testing in the real world, respectively.

References

[1] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction
(adaptive computation and machine learning), The MIT Press, Cam-
bridge, 1998.

[2] C. Weber, M. Elshaw, S. Wermter, J. Triesch, C. Willmot, Reinforce-
ment learning embedded in brains and robots, in: Reinforcement learn-
ing: Theory and applications, InTech Education and Publishing, 2008,
pp. 119–142.

19

[3] W. Schultz, P. Dayan, P. R. Montague, A neural substrate of prediction
and reward, Science 275 (5306) (1997) 1593–1599.

[4] I. Ghory, Reinforcement learning in board games, Tech. rep., Depart-
ment of Computer Science, University of Bristol (2004).

[5] J. Provost, B. J. Kuipers, R. Miikkulainen, Self-organizing perceptual
and temporal abstraction for robot reinforcement learning, in: AAAI
Workshop on Learning and Planning in Markov Processes, 2004.

[6] P. Zang, R. Tian, A. L. Thomaz, C. L. Isbell, Batch versus interactive
learning by demonstration, in: Proceedings of the International Confer-
ence on Development and Learning (ICDL), IEEE, 2010, pp. 219–224.

[7] K. Conn, R. A. Peters, Reinforcement learning with a supervisor for a
mobile robot in a real-world environment, in: International Symposium
on Computational Intelligence in Robotics and Automation (CIRA),
IEEE, Los Alamitos, 2007, pp. 73–78.

[8] K. Ito, Y. Fukumori, A. Takayama, Autonomous control of real snake-
like robot using reinforcement learning; abstraction of state-action space
using properties of real world, in: M. Palaniswami, S. Marusic, Y. W.
Law (Eds.), Proceedings of the 3rd International Conference on Intel-
ligent Sensors, Sensor Networks and Information (ISSNIP), IEEE, Los
Alamitos, 2007, pp. 389–394.

[9] T. C. Kietzmann, M. Riedmiller, The neuro slot car racer: Reinforce-
ment learning in a real world setting, in: M. A. Wani, M. Kantardzic,
V. Palade, L. Kurgan, Y. Qi (Eds.), International Conference on Ma-
chine Learning and Applications (ICMLA), IEEE, Los Alamitos, 2009,
pp. 311–316.

[10] C. Weber, J. Triesch, Goal-directed feature learning, in: Proceedings of
the International Joint Conference on Neural Networks (IJCNN), IEEE
Press, Piscataway, NJ, USA, 2009, pp. 3355–3362.

[11] D. Muse, S. Wermter, Actor-critic learning for platform-independent
robot navigation, Cognitive Computation 1 (3) (2009) 203–220.

[12] Nao academics edition: medium-sized humanoid robot developed by
Aldebaran Robotics, http://www.aldebaran-robotics.com/.

20

[13] A. Louloudi, A. Mosallam, N. Marturi, P. Janse, V. Hernandez, Inte-
gration of the humanoid robot Nao inside a smart home: A case study,
in: Proceedings of the Swedish AI Society Workshop (SAIS), Vol. 48
of Linköping Electronic Conference Proceedings, Uppsala University,
Linköping University Electronic Press, 2010, pp. 35–44.

[14] The KSERA project (Knowledgeable SErvice Robots for Aging),
http://ksera.ieis.tue.nl/.

[15] N. Navarro, C. Weber, S. Wermter, Real-world reinforcement learning
for autonomous humanoid robot charging in a home environment, in:
R. Groß, L. Alboul, C. Melhuish, M. Witkowski, T. Prescott, J. Pen-
ders (Eds.), Proceedings of the Annual Conference Towards Autonomous
Robotic Systems (TAROS), Vol. 6856 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 231–240.

[16] W. Yan, C. Weber, S. Wermter, A neural approach for robot navigation
based on cognitive map learning, in: Proceedings of the International
Joint Conference on Neural Networks (IJCNN), 2012.

[17] D. Foster, R. Morris, P. Dayan, A model of hippocampally dependent
navigation, using the temporal difference learning rule, Hippocampus
10 (1) (2000) 1–16.

[18] J. Kleesiek, A. K. Engel, C. Weber, S. Wermter, Reward-driven learning
of sensorimotor laws and visual features, in: Proceedings of the IEEE
International Conference on Development and Learning (ICDL), Vol. 2,
IEEE, 2011, pp. 1–6.

[19] The RobotDoC collegium: The Marie Curie doctoral training network
in developmental robotics, http://robotdoc.org/.

21

