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Abstract

The integration of multisensory information plays a crucial role in autonomous robotics to forming robust and meaningful represen-
tations of the environment. In this work, we investigate how robust multimodal representations can naturally develop in a self-organizing
manner from co-occurring multisensory inputs. We propose a hierarchical architecture with growing self-organizing neural networks for
learning human actions from audiovisual inputs. The hierarchical processing of visual inputs allows to obtain progressively specialized
neurons encoding latent spatiotemporal dynamics of the input, consistent with neurophysiological evidence for increasingly large
temporal receptive windows in the human cortex. Associative links to bind unimodal representations are incrementally learned by a
semi-supervised algorithm with bidirectional connectivity. Multimodal representations of actions are obtained using the co-activation
of action features from video sequences and labels from automatic speech recognition. Experimental results on a dataset of 10 full-
body actions show that our system achieves state-of-the-art classification performance without requiring the manual segmentation of
training samples, and that congruent visual representations can be retrieved from recognized speech in the absence of visual stimuli.
Together, these results show that our hierarchical neural architecture accounts for the development of robust multimodal representations
from dynamic audiovisual inputs.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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1. Introduction

As humans, our daily perceptual experience is modu-
lated by an array of sensors that convey different types of
modalities such as visual, auditory, and somatosensory
information. The ability to integrate multisensory informa-
tion is a fundamental feature of the brain that provides a
robust perceptual experience for an efficient interaction
with the environment (Ernst & Bulthoff, 2004; Stein &
Meredith, 1993; Stein, Stanford, & Rowland, 2009).
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Similarly, computational models for multimodal integra-
tion are a paramount ingredient of autonomous robots to
forming robust and meaningful representations of
perceived events (see Ursino, Cuppini, & Magosso (2014)
for a recent review). There are numerous advantages from
the crossmodal processing of sensory inputs conveyed by
rich and uncertain information streams. For instance, the
integration of stimuli from different sources may be used
to attenuate noise and remove ambiguities from converging
or complementary inputs. Multimodal representations
have been shown to improve robustness in the context of
action recognition and action-driven perception,
human-robot interaction, and sensory-driven motor
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behavior (Bauer, Magg, & Wermter, 2015; Kachouie,
Sedighadeli, Khosla, & Chu, 2014; Noda, Arie, Suga, &
Ogata, 2014). However, multisensory inputs must be repre-
sented and integrated in an appropriate way so that they
result in a reliable cognitive experience aimed to trigger
adequate behavioral responses. Since real-world events
unfold at multiple spatial and temporal scales, artificial
neurocognitive architectures should account for the effi-
cient processing and integration of spatiotemporal stimuli
with different levels of complexity (Fonlupt, 2003;
Hasson, Yang, Vallines, Heeger, & Rubin, 2008; Lerner,
Honey, Silbert, & Hasson, 2011; Taylor, Hobbs, Burroni,
& Siegelmann, 2015). Consequently, the question of how
to acquire, process, and bind multimodal knowledge in
learning architectures represents a fundamental issue still
to be fully investigated.

A number of computational models have been proposed
that aim to effectively integrate multisensory information,
in particular audiovisual input. These approaches generally
use unsupervised learning for obtaining visual representa-
tions of the environment and then link these features to
auditory cues. For instance, Vavrecka and Farkas (2014)
presented a connectionist architecture that learns to bind
visual properties of objects (spatial location, shape and
color) to proper lexical features. These unimodal represen-
tations are bound together based on the co-occurrence of
audiovisual inputs using a self-organizing neural network.
Similarly, Morse, Benitez, Belpaeme, Cangelosi, and
Smith (2015) investigated how infants may map a name
to an object and how body posture may affect these map-
pings. The computational model is driven by visual input
and learns word—to—object mappings through body posture
changes and online speech recognition. Unimodal repre-
sentations are obtained with neural network self-
organization and multimodal representations develop
through the activation of unimodal modules via associative
connections. The development of associations between co-
occurring stimuli for multimodal binding has been strongly
supported by neurophysiological evidence (Fiebelkorn,
Foxe, & Molholm, 2009).

However, the above-mentioned approaches do not nat-
urally scale up to learn more complex spatiotemporal pat-
terns such as action—-word mappings. In fact, action words
do not label actions in the same way that nouns label
objects (Gentner, 1982). While nouns generally refer to
objects that can be perceived as distinct units, action words
refer instead to spatiotemporal relations within events that
may be performed in many different ways with high spatial
and temporal variance. Humans have an astonishing capa-
bility to promptly process complex events, exhibiting high
tolerance to sensory distortions and temporal variance.
The human cortex comprises a hierarchy of spatiotemporal
receptive fields for features with increasing complexity of
representation (Hasson et al., 2008; Lerner et al., 2011;
Taylor et al., 2015), i.e. higher-level areas process informa-
tion accumulated over larger spatiotemporal receptive win-
dows. Therefore, further work is required to address the

learning of multimodal representation of spatiotemporal
inputs for obtaining robust action-word mappings.

To tackle the visual recognition of actions, learning-
based approaches typically generalize a set of labeled train-
ing action samples and then predict the labels of unseen
samples by computing their similarity with respect to the
learned action templates. In particular, neurobiologically-
motivated methods have been shown to recognize actions
with high accuracy from video sequences with the use of
spatiotemporal hierarchies that functionally resemble the
organization of earlier areas of the visual cortex (e.g.
Giese & Poggio, 2003; Jung, Hwang, & Tani, 2015;
Layher, Giese, & Neumann, 2014; Parisi, Weber, &
Wermter, 2015). These methods are trained with a batch
learning scheme, and thus assuming that all the training
samples and sample labels are available during the training
phase. However, an additional strong assumption is that
training samples, typically represented as a sequence of fea-
ture vectors extracted from video frames, are well seg-
mented so that ground-truth labels can be univocally
assigned. Therefore, it is usually the case that raw visual
data collected by sensors must undergo an intensive pre-
processing pipeline before training a model. These pre-
processing stages are mainly performed manually, thereby
hindering the automatic, continuous learning of actions
from live video. Intuitively, this is not the case in nature.

Words for actions and events appear to be among chil-
dren’s earliest vocabulary (Bloom, 1993). A central ques-
tion in the field of developmental learning has been how
children first attach verbs to their referents. During their
development, children have a wide range of perceptual,
social, and linguistic cues at their disposal that they can
use to attach a novel label to a novel referent (Hirsch-
Pasek, Golinkoff, & Hollich, 2000, chapter 6). Referential
ambiguity of verbs may then be solved by children assum-
ing that words map onto the most perceptually salient
action in their environment. Recent experiments have
shown that human infants are able to learn action—word
mappings using cross-situational statistics, thus in the pres-
ence of sometimes unavailable ground-truth action words
(Smith & Yu, 2008). Furthermore, action words can be
progressively learned and improved from linguistic and
social cues so that novel words can be attached to existing
visual representations. This hypothesis is supported by
neurophysiological studies evidencing strong links between
the cortical areas governing visual and language process-
ing, and suggesting high levels of functional interaction
of these areas for the formation of multimodal representa-
tions of audiovisual stimuli (Belin, Zatorre, Lafaille, Ahad,
& Pike, 2000; Foxe et al., 2000; Belin, Zatorre, & Ahad,
2002; Pulvermiiller, 2005; Raij, Uutela, & Hari, 2000).

From a neurobiological perspective, neurons selective to
actions in terms of time-varying patterns of body pose and
motion features have been found in a wide number of brain
structures, such as the superior temporal sulcus (STS), the
parietal, the premotor and the motor cortex (Giese &
Rizzolatti, 2015). In particular, it has been argued that
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the STS in the mammalian brain may be the basis of an
action-encoding network with neurons driven by the per-
ception of dynamic human bodies (Vangeneugden,
Pollick, & Vogels, 2009), and that for this purpose it
receives converging inputs from earlier visual areas from
both the ventral and dorsal pathways (Beauchamp, 2005;
Garcia & Grossman, 2008; Thirkettle, Benton, & Scott-
Samuel, 2009). Furthermore, neuroimaging studies have
shown that the posterior STS shows a greater response
for audiovisual stimuli than to unimodal visual or auditory
stimuli (Beauchamp, Lee, Argall, & Martin, 2004; Calvert,
2001; Senkowski, Saint-Amour, Hfle, & Foxe, 2011;
Wright, Pelphrey, Allison, Mckeown, & Mccarthy, 2003).
Thus, the STS area is thought to be an associative learning
device for linking different unimodal representations and
accounting for the mapping of naturally occurring, highly
correlated features such as body pose and motion, the char-
acteristic sound of an action (Barraclough, Xiao, Baker,
Oram, & Perrett, 2005; Beauchamp et al., 2004) and lin-
guistic stimuli (Belin et al., 2002; Stevenson & James,
2009; Wright et al., 2003). These findings together suggest
that multimodal representations of actions in the brain
play an important role for a robust perception of complex
action patterns, with the STS representing a multisensory
area in the brain network for social cognition (Adolphs,
2003; Allison, Puce, & McCarthy, 2000; Beauchamp,
2005; Beauchamp, Yasar, Frye, & Ro, 2008).

In this work, we investigate how congruent multimodal
representations of actions can naturally emerge from the
co-occurrence of audiovisual stimuli. In particular, we pro-
pose an approach where associative links between uni-
modal representations are incrementally learned in a self-
organizing manner. For this purpose, we extended our
recently proposed spatiotemporal hierarchy for the integra-
tion of pose-motion action cues (Parisi et al., 2015) to
include an associative network layer where action-word
mappings develop from co-occurring audiovisual inputs
using asymmetric inter-layer connectivity. Each network
layer comprises a self-organizing neural network that
employs neurobiologically-motivated Hebbian-like plastic-
ity and habituation for stable incremental learning
(Marsland, Shapiro, & Nehmzow, 2002). The proposed
architecture is novel in two main aspects: First, our learn-
ing mechanism does not require the manual segmentation
of training samples. Instead, spatiotemporal generaliza-
tions of actions are incrementally obtained and mapped
to symbolic labels using the co-activation of audiovisual
stimuli. This allows us to train the model in an incremental
fashion also in the presence of occasionally unlabeled sam-
ples. Second, we let asymmetric inter-layer connectivity
emerge taking into account the spatiotemporal dynamics
of sequences so that symbolic labels are linked to
temporally-ordered representations in the visual domain.
This kind of connectivity allows the bidirectional retrieval
of audiovisual inputs, i.e. it is possible to retrieve action
words from processed visual patterns and, conversely, to
activate congruent visualizations of learned actions from

recognized action words. We conduct a set of experiments
with a dataset of 10 full-body actions, using body pose-
motion cues as visual features and action labels obtained
from automatic speech recognition. Experimental results
show that we achieve state-of-the-art recognition perfor-
mance without the need to manually segment training sam-
ples, and that this performance is not drastically
compromised as the number of available labeled samples
is decreased.

2. Methods

Our neural architecture consists of a self-organizing
hierarchy with four network layers for the unsupervised
processing of visual action features and the development
of associative connections between learned action represen-
tations and symbolic labels. An overall diagram of the
architecture is shown in Fig. 1. Network layers 1 and 2
comprise a two-stream hierarchy for the processing and
subsequent integration of body pose and motion features,
resembling the ventral and the dorsal pathway respectively
for the processing of complex motion patterns (Giese &
Poggio, 2003). The integration of pose and motion cues
is carried out in network layer 3 (or G3*%) to provide move-
ment dynamics in the joint feature space (Parisi et al.,
2015). Hierarchical learning from contiguous Growing
When Required (GWR) networks (Marsland et al., 2002)
shapes a functional hierarchy that processes spatiotempo-
ral visual patterns with an increasing level of complexity
by using neural activation trajectories from lower-level lay-
ers for training higher-level layers. For learning multi-
modal representation of actions, network layer 4 (or
GS™™) implements a self-organizing algorithm where
action—-word mappings are developed by binding co-
occurring audiovisual inputs using bidirectional inter-
layer connectivity. For this purpose, we extended the
traditional GWR learning algorithm with a mechanism
for semi-supervised label propagation and enhanced synap-
tic connectivity for learning prototype neural activation
patterns in the temporal domain. The proposed learning
algorithm is referred to as Online Semi-Supervised GWR
(OSS-GWR). The self-organizing associative connectivity
between G°™™ and the Action Words layer (AWL) will
yield an incremental formation of congruent action-word
mappings for the bidirectional retrieval of audiovisual
patterns.

2.1. A self-organizing spatiotemporal hierarchy

Experience-driven development plays a crucial role in
the brain (Nelson, 2000), with topographic maps being a
common feature of the cortex for processing sensory inputs
(Willshaw & von der Malsburg, 1976). Different models of
neural self-organization have been proposed to resemble
the dynamics of basic biological findings on Hebbian-like
learning and map plasticity (e.g., Fritzke, 1995; Kohonen,
1988).
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Fig. 1. Diagram of our learning architecture with GWR networks and the number of frames required for hierarchical processing. Layers 1-3: parallel
spatiotemporal clustering of visual features and self-organizing pose-motion integration (G5T5). Layer 4: Self-organization of GSTS representations and
associative learning for linking visual representations in GS™™ to the action words (AWL) obtained from automatic speech recognition (ASR).

Our learning model consists of hierarchically-arranged
GWR networks (Marsland et al., 2002) that obtain pro-
gressively generalized representations of sensory inputs
and learn inherent spatiotemporal dependencies. The
GWR network is composed of a set of neurons with their
associated weight vectors linked by a set of edges. During
the training, the network dynamically changes its topolog-
ical structure to better match the input space following
competitive Hebbian learning (Martinetz, 1993). Different
from other incremental models of self-organization that
create new neurons at a fixed growth rate (e.g. Fritzke,
1995, 1997), GWR-based learning creates new nodes when-
ever the activity of trained neurons is smaller than a given
threshold. The amount of network activation at time ¢ is
computed as a function of the distance between the current
input x(¢) and its best-matching neuron wj:

a(t) = exp(=||x(2) = w||). (1)

Additionally, the training algorithm considers the num-
ber of times that a neuron has fired so that recently created
neurons are properly trained before creating new ones. For
this purpose, the network implements a firing counter
n €[0,1] to express how frequently a neuron has fired
based on a simplified model of how the efficacy of an habit-
uating synapse reduces over time (Stanley, 1976). The firing
counter is given by

) =~ (1~ exp(-a/), 2)

where 7, is the resting value, S(¢) is the stimulus strength,
and 7 and o are constants that control the behavior of
the curve.

The use of an activation threshold and firing counters
to modulate the growth of the network leads to create a
larger number of neurons at early stages of the training
and then tune the weights of existing neurons through sub-
sequent training iterations (epochs). This behavior is par-
ticularly convenient for incremental learning scenarios
since neurons will be created to promptly distribute in

the input space, thereby yielding fast convergence through
iterative fine-tuning of the topological map. The GWR
algorithm will then iterate over the training set until a
given stop criterion is met, e.g. a maximum network size
or a maximum number of iterations. The learning proce-
dure for GWR is illustrated by Algorithm 1 (except for
steps 3, 7.c, 8.c, 9, and 10 that are implemented by the
OSS-GWR only).

Algorithm 1. OSS-GWR - In layers 1, 2, and 3 of our
architecture, we use GWR learning, while in layer 4
(G3T5™) we use OSS-GWR.

I: Create two random neurons with weights w; and w,.
2: Initialize an empty set of spatial connections E = .
3: [OSS-GWR only] Initialize an empty set of temporal
connections P = ¢J and a set of label-to—action
references V' = (.
4: At each iteration 7, generate an input sample x(z) with
sample label ¢&
5:  Select the best and the second-best matching neuron
such that:
b = argmin,c ||x(¢) — w,||,
s = argmin,c g ) |X(1) — Wil
6: Create a connection £ = EU {(b,s)} if it does not
exist and set its age to 0.
7. If (exp(—||x(z) — ws||) < ar) and (1, < f7) then:
a: Add a new node r (4 = AU {r}) with
w, =0.5-(x(t) +wp),n, =1,
b: Update edges: £ = E U {(r,b), (r,s)} and
E=E/{(b,s)},
c: [OSS-GWR only] Initialize neuron label (Eq. 4):
Mr) = 7% (b, ©).
8: If no new neuron is added:
a: Update the best-matching neuron w; and its
neighbors i
Awy, = ¢ - Np - (X(f) — W},),
Aw; =€, - n; - (X(¢) — w;),
with the learning rates 0 < ¢, < ¢, < 1.
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b: Increment the age of all edges connected to b by 1.
c: [OSS-GWR only] Update neuron label (Eq. 5):
A(b) = yoedate(p g &),

9: [OSS-GWR only] Create a temporal connection
Pz(t_l) if it does not exist, increase it by a value of 1
and decrease all the others if P2(~1 > 0.

10: [OSS-GWR only] Create or update the label-to—
action reference Vi(b) (Eq. 8): Vz(b> = A" (p).

11: Reduce the firing counters of the best-matching
neuron and its neighbors i:
Ay =1p-1c-(L=mnp) — 1, Ay =71:- - (1 — ;) — 15,
with constant v and x controlling the curve behavior.

12: Remove all edges with ages larger than u,,,,. and
remove neurons without edges.

13: If the stop criterion is not met, repeat from step 4.

The motivation underlying hierarchical learning is to
obtain progressively specialized neurons coding spatiotem-
poral dependencies of the input. This is consistent with
neurophysiological evidence supporting increasingly large
temporal receptive windows in the mammalian cortex
(Hasson et al., 2008; Lerner et al., 2011; Taylor et al.,
2015), where neurons in higher areas encode information
accumulated over longer timescales. In our architecture,
hierarchical learning is carried out by training a higher-
level network with neural activation trajectories from a
lower-level network. These trajectories are obtained by
computing the best-matching neurons for the current input
sequence with respect to the trained network with N neu-
rons, so that a set of trajectories of length ¢ is given by

QUx(2)) = {Woix()s Wox(t-1))s - - - » Whx(—g+1)) }+ (3)

with b(x(¢)) = argmin;ey||x(f) — w;|| computing the index
of the neuron that minimizes the distance to the current
input.

The overall hierarchical flow is illustrated in Fig. 2. The
low-level networks GF~' and GM~! learn a set of time-
independent primitives that will be used for higher-level
representations and should exhibit robust activation
regardless of temporal disruptions of the input. The net-
works G*2 and GM~2 process activation trajectories of 3
neurons from the previous layer and the integration of
the input is carried out in G3™ over activation trajectories
of 3 neurons from layer 2. The network layer G5™ inte-
grates pose-motion features by training the network with
the concatenation of vectors ¥ = {Q/(P) ~ Q'(M)},
where P and M are the activation trajectories from G2
and GM~2 respectively. Network layer GS™™ processes
activation trajectories of 3 neurons from G3™5, thereby rep-
resenting visual information over a temporal window of 7
frames. After the training is completed, neurons in G3T™
encode sequence-selective prototype action segments, fol-
lowing the assumption that the recognition of actions must
be selective for temporal order (Giese & Poggio, 2003;
Hasson et al., 2008).

x4 [ Input value

x(t-5) (O Best-matching neuron
(O symbolic label

x(t-6) - - Bidirectional connection

Fig. 2. Hierarchical learning of the last 7 inputs for processing neural
activations with a sliding window scheme and asymmetric inter-layer
connectivity between GST5™ and AWL used for bidirectional retrieval of
audiovisual patterns. A neuron in GST™ encodes action segments of 7
inputs. Action labels are predicted from 4 neurons in GST™ (10 inputs),
while for each action word in AWL, one onset neuron in GST5™ ig
computed.

2.2. GWR-based associative learning

For the G5T5™ layer, we extended the standard GWR
algorithm with: (1) semi-supervised label propagation func-
tions so that prototype neurons can be attached to sym-
bolic labels also in the absence of labeled samples and (2)
enhanced synaptic connectivity in the temporal domain
for learning activation patterns of consecutively activated
neurons. The detailed learning algorithm for the proposed
Online Semi-Supervised GWR (OSS-GWR) is illustrated
by Algorithm 1.

2.2.1. Semi-supervised label propagation

For the semi-supervised propagation of labels, we attach
labels to neurons by taking into account local connectivity
and neural activation patterns. In this way, only labels
attached to well-trained neurons are propagated to unla-
beled neighbors (Algorithm 1, steps 7.c and 8.c). For this
purpose, we defined two labeling functions: ™" for when
a new neuron is created, and y"*% for when a neuron is
updated.

Provided that b is the index of the best-matching neuron
of the training sample x(¢) with label £ and that we denote
a missing sample label with the value —1, the label of a new
neuron A(w,) is assigned according to

¢ # 1

For updating the label of an existing neuron, we also
consider whether the current training sample is labeled. If
this is not the case, then the best-matching neuron b will
take the label of its closest neighbor s, provided that the
two neurons have been sufficiently trained as expressed
by their firing counters. Given the index of the second-
best matching neuron s of x(¢), the update labeling func-
tion for A(wj) is defined as

)

otherwise
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Table 1

Training parameters for the S-GWR and the OSS-GWR used for the
classification task of the Iris dataset (results in Fig. 3).

ar = {0.35,0.75}

fr=01

Insertion threshold
Firing threshold
Learning rates e = 0.1, ¢, =0.01

Firing counter 7, =03,7,=0.1,k=1.05
Training epochs 20

Labeling threshold (OSS-GWR only) nr =0.5
¢ E# —1
PPEE(E bys) = Aw) (E= 1) A () = ) (5)
A(w,) otherwise
7'Ei- — Et/ (6)
o ltn+my 7

with E’/ =1 if the neurons i and j are connected and 0
otherwise. Thus, this function yields greater values for
interconnected, well-trained neurons, i.e. that have smaller
firing counters. The value =y is used as a threshold to mod-
ulate the propagation of a label from s to b.

We evaluated our semi-supervised labeling strategy with
a classification task using the Iris benchmark dataset' con-
taining 3 classes with 50 four-dimensional samples each.
The goal of our experiment was to compare the classifica-
tion performance of the proposed OSS-GWR with respect
to the traditional GWR extended for classification (S-
GWR, Parisi et al., 2015) using a decreasing percentage
of available labeled samples in the training set. The average
accuracy was estimated over 10 runs by removing labels at
random positions for each percentage of available labels
(from 0% to 100%).

The training algorithm used for this experiment is illus-
trated by Algorithm 1, excluding steps 3, 9, and 10 which
are used in the G5">™ layer only, while the training param-
eters are listed in Table 1. Fig. 3 shows the average recog-
nition accuracy for two different insertion thresholds
ar = {0.35,0.75} used to modulate the number of neurons
created by the network, which has also an impact on the
classification performance. In a smaller network, a proto-
type neuron will represent a greater number of samples.
Thus, it is more likely that a neuron representing a dense
cluster of samples with the same label will be assigned
the correct one. It can be seen that the OSS-GWR outper-
forms S-GWR for the classification task as soon as not all
labels are available. Larger deviations from the average
accuracy can be observed due to the fact that for each
run labels were removed from randomly selected samples
and the distribution of missing labels can strongly influence
the final outcome, particularly when few samples were
labeled. Furthermore, the number of neurons created at
each run varied, i.e. ~ 16 for a; = 0.35 and ~ 100 for
ar = 0.75. This is due to the fact that the weight vectors

! http://archive.ics.uci.edu/ml/datasets/Iris.

__GWR vs OSS-GWR
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Fig. 3. Average classification accuracy with a decreasing percentage of
available labels in the training set for trained S-GWR and OSS-GWR
networks with ~100 neurons (top) and ~16 neurons (bottom).

for the two neurons initializing the networks were ran-
domly selected from the training samples.

These results show that the proposed labeling strategy
(Egs. (4)-(6)) yields higher classification performance in
the absence of sample labels. The overall approach is said
to be online since the algorithm incrementally propagates
labels during the training process (Beyer & Cimiano,
2011), in contrast to offline methods where labels are used
after the unsupervised training of a network has
finished.

2.2.2. Sequence-selective synaptic links

Next, we enhanced standard GWR connectivity by tak-
ing into account latent temporal relations of the input, so
that connections between neurons that are consecutively
activated can be created and incrementally updated. In
other words, when the two neurons i and j are activated
at time ¢ — 1 and 7 respectively, the synaptic link Pj. between

them is strengthened. At each iteration, the link PZ(H)
between the best-matching neuron b and the previous win-
ner neuron b(¢ — 1) is increased by a value of 1, while the
synaptic links between b(¢ — 1) and the other neurons are
decreased if P2‘"Y >0 for n € 4/{b} (Algorithm 1, step
9). This approach results in the efficient learning of the tem-
poral structure of the input in terms of neural activation
trajectories. The highest value of P? will encode the most
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frequent transition, and thus allowing to estimate a predic-
tion of b(¢t + 1) provided b(z).

Sequence selectivity driven by asymmetric connections
has been argued to be a feature of the cortex for neurons
encoding optic flow patterns, where an active neuron pre-
actives neurons encoding future patterns, while it inhibits
neurons encoding other patterns (Mineiro & Zipser,
1998). This mechanism can be used for iteratively retrieving
prototype neurons that encode an action sequence given
the onset neuron for that action.

2.3. Action—word mappings

We now describe the asymmetric connectivity between
the GS™>™ layer and the Action Words layer (AWL) that
allows the bidirectional retrieval of audiovisual patterns.
We will show how it is possible to predict action words
from processed visual patterns and, conversely, how to
activate congruent visualizations of learned actions from
recognized action words.

2.3.1. Action—to—word patterns

During the learning phase, unsupervised visual represen-
tations of actions in G3™™ are linked to symbolic action
labels 4 € L, with L being the set of possible words. Action
words in AWL will then have a one-to-many relation with
neurons in G5™>™, while neurons can be linked to only one
label in L. The development of connections between GST5™
and AWL depends on the co-activation of audiovisual
inputs. More specifically, the connection between a neuron
in G5™™ and a symbolic label in AWL will emerge if the
neuron is activated within a time window in which also
the label is activated by an auditory signal. In the case that
no auditory stimulus occurs during the training of neurons
in G5™™ the sample label will be given the value —1 to
indicate a missing label. Symbolic labels attached to neu-
rons will be updated according to the semi-supervised label
propagation rules (Egs. (4) and (5)).

Given a previously unseen sequence of visual inputs, we
want to predict the correct action word by comparing the
novel input to prototype action sequences in G3™ and then
return action labels attached to the best-matching neurons.
The hierarchical flow of the visual input is composed of
four networks, each of them processing activation trajecto-
ries of 3 neurons from the previous layer. Thus, each
neuron in G55 represents a prototype sequence encoding
7 consecutive frames (Fig. 2). By applying a temporal
sliding window scheme, we get a new action label for each
processed frame. To improve the robustness of the label
prediction process, we return an action word from 4
neurons consecutively activated in G5 (10 frames). Given
a set of 4 labels obtained from the last 4 activated neurons
from visual input, we output the statistical mode of the set,
i.e. the most frequent label in the set is returned as the pre-
dicted action word. If we assume visual input at 10 frames
per second, an action word will be predicted for 1s of
video.

2.3.2. Word-to—action patterns

For the development of connectivity patterns from
AWL to G5™5™  we take into account the temporal order
of consecutively activated neurons, yielding the learning
of onset neurons in G3T5™ to be linked with an action label,
and from which it is possible to retrieve temporally-ordered
prototype sequences for an action word. For a labeled neu-
ron b in G3T5™ activated at time 7, its connection strength
with the symbolic label 4 becomes:

1

A(b) = ——,
( ) 2"7b+c(;“7t)

(7)

with ¢(/, ¢) being a sequence counter that will increase by 1
when A(b) = A(b — 1) and reset to zero when this condition
does not hold. Thus, this function expresses the relation
between the firing counter 7, of the neuron b and its
sequential order within the set of neural activations with
the same label, yielding greater connection strengths for
well-trained neurons that activate at the beginning of a
sequence. The A* function for different neuron firing coun-
ters is depicted in Fig. 4 for a temporal window of 6 neural
activations.

Word-to-action connectivity patterns are stored in the
label-to-action reference ' and updated at each training
iteration so that Vi(w = A" (b) (Algorithm 1, step 10).
The neuron in G3™™ with the maximum value of A* can
then be selected as the onset neuron of an action label A
representing the first element of a prototype sequence.

We expect that word—to—action connections will develop
according to the A”* function (Eq. (7)) for each action label.
Thus, when an action label A(j) is recognized from speech,
the onset neuron in G3™™ of that action can be selected as
the neuron that maximizes A", and consequently as the
first element of a sequence used to generate prototype
visual representations of actions. The index of the onset
neuron w,(¢) for an action label A(j) is defined as:

v(t) = argmax V0. (8)
n
1.0 . .
0.9 —_— Cc= — c=4
0.8 — c=2 — ¢=5H
— ¢c=3 — ¢c=6
S 06
2 05
= 04
0-2 — s et
0.1
0.0 0.2 04 06 0.8 1.0

Firing counter 7,

Fig. 4. Values of the A* function (Eq. (7)) for different firing counters #,
and sequence counters c¢(4;,¢) in the range 1-6 expressing the sequential
order of processed samples. It can be seen how greater values are given to
neurons activated at the beginning of the sequence, with an increasing
response for well-trained neurons (smaller firing counter).
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Next, we can retrieve the next neuron of a prototype
action sequence by selecting the maximal temporal synaptic
connectivity:

v(t+1) = arg m’?xP;’(’), 9)

from which we can reconstruct a temporally-ordered
sequence of arbitrary length by retrieving the weight
vectors for a number of timesteps into the future. For
instance, the sequence (W,,,...,W, ) will generate visual
output for a temporal window of 10 frames (1s). This
mechanism can be used in practice to visually assess how
well the model has learned action dynamics and whether
it has accounted for effectively binding action words to
visual representations.

3. Experimental results

We present our experimental set-up and results on a
dataset of 10 full-body actions that has been previously
used to report recognition performance with manual seg-
mentation for ground-truth labeling (Parisi, Weber, &
Wermter, 2014, 2015). For the experiments reported in this
paper, instead, action labels were recorded from speech so
that action—word mappings of training samples can result
from co-occurring audiovisual inputs using unsupervised
learning and our strategy for label propagation. To evalu-
ate our system, we compared newly obtained results with
recently reported results using hierarchical GWR-based
recognition (Parisi et al., 2015). We conducted additional
experiments with different percentages of available labeled
samples during the training, ranging between 100% (all
samples are labeled) and 0%.

3.1. Audiovisual inputs

Our action dataset is composed of 10 full-body actions
performed by 13 subjects (Parisi et al., 2014). Videos were
captured in a home-like environment with a Kinect sensor
installed 1.30 m above the ground. Depth maps were sam-
pled with a VGA resolution of 640 x 480 and an operation
range from 0.8 to 3.5 m at 30 frames per second. The data-
set contains the following actions: standing, walking, jog-
ging, picking up, sitting, jumping, falling down, lying down,
crawling, and standing up. From the raw depth map
sequences, 3D body joints were estimated on the basis of
the tracking skeleton model and actions were represented
by three body centroids (Fig. 5): C; for upper body with
respect to the shoulders and the torso; C, for middle body
with respect to the torso and the hips; and C; for lower
body with respect to the hips and the knees, with each cen-
troid computed as a point sequence of real-world coordi-
nates C = (x,y,z). To attenuate sensor noise, we used the
median value of the last 3 estimated points (yielding action
features at 10 frames per second). We then estimated upper
and lower orientations 6, and 0, given by the slope angles
of the line segments {C, C,} and {C5, C;} respectively. As

shown in Fig. 5, the values 0, and 0, describe the overall
body pose according to the orientation of the torso and
the legs, which allows to capture significant body features
such as the characteristic posture of actions. We computed
the body velocity S; as the difference in pixels of the upper
centroid C; between two consecutive frames. This centroid
was chosen based on the motivation that the orientation of
the torso is the most characteristic reference during the exe-
cution of a full-body action (Papadopoulos, Axenopoulos,
& Daras, 2014).

For recording action labels, we used automatic speech
recognition from Google’s cloud-based ASR enhanced
with  domain-dependent  post-processing  (Twiefel,
Baumann, Heinrich, & Wermter, 2014). The post-
processor translates each sentence in a list of candidate sen-
tences returned by the ASR service into a string of pho-
nemes. To exploit the quality of the well-trained acoustic
models employed by this service, the ASR hypothesis is
converted to a phonemic representation employing a
grapheme-to-phoneme converter. The word from a list of
in-domain words is then selected as the most likely word
candidate. An advantage of this approach are the hard
constraints of the results, as each possible result can be
mapped to an expected action word. Reported experiments
showed that the sentence list approach obtained the best
performance for in-domain recognition with respect to
other approaches on the TIMIT speech corpus’ with a
sentence-error-rate of 0.521. The audio recordings were
performed by speaking the name of the action in a time
window of 2 s during its execution, i.e. for each repetition
in the case of jumping, picking up, falling down, and stand-
ing up, and every 2 s for cyclic actions (standing, walking,
jogging, sitting, lying down, crawling). This approach has
the advantage of assigning labels to continuous video
streams without the manual segmentation of visual features
from specific frames.

3.2. Results and evaluation

For a consistent comparison with previous results, we
adopted similar feature extraction and evaluation schemes.
We divided the data equally into training and test set, i.e.,
30 sequences of 10 s for each cyclic action (standing, walk-
ing, jogging, sitting, lying down, crawling) and 30 repeti-
tions for each goal-oriented action (jumping, picking up,
falling down, standing up). Both the training and the test
sets contained data from all subjects.

For the learning in the G3™>™ layer, we used the follow-
ing training parameters: insertion threshold ar =0.9,
learning rates €, = 0.3, ¢, = 0.006, firing counter parame-
ters 7, = 0.3, 7, = 0.1, k = 1.05, maximum age for edges
Uax = 500, labeling threshold 7y = 0.5 (OSS-GWR only).
These parameters were empirically found with respect to

2 TIMIT Acoustic—Phonetic Continuous Speech Corpus: https://cata-
log.Idc.upenn.edu/LDC93S1.
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Walking Jogging Sitting

Picking up Lying down Falling down

Fig. 5. Representation of full-body movements from our action dataset (Parisi et al., 2014). We estimate three centroids: C, (green), C, (yellow) and C;
(blue) for upper, middle and lower body respectively. The segment slopes 6 and 0’ describe the posture in terms of the overall orientation of the upper and
lower body. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

best accuracy in terms of classification performance.
Similar to Parisi et al. (2015), each network was trained
for 500 epochs over the entire training set. Once a layer
was trained, its weights were set fixed and the next
higher-level layer was trained. If we consider the 4 network
layers of the architecture, it took overall 2000 epochs to
obtain a trained neuron in the G™>™ network. Layers
GSTS™ and AWL were trained together according to
Algorithm 1.

Experimental results showed an average classification
accuracy of 93.3%, comparing with the state-of-the-art
results of 94% reported by Parisi et al. (2015) that required
the manual segmentation of training samples for assigning
ground-truth labels. The confusion matrices for the novel
OSS-GWR and the S-GWR approaches tested on a set
of 10 actions are shown in Figs. 6 and 7 respectively (with
the rows of the matrix being the instances of actual actions
and columns being the instances of predicted actions). The
matrices show that there is a significant similarity on which
samples were misclassified, suggesting that misclassification
depends more on the visual features than on issues related
to the associative learning mechanism via the co-
occurrence of audiovisual inputs. For example, actions that
are similar with respect to body posture (e.g. walking and
jogging, falling down and lying down), tend to be mutually
misclassified. The reason for this is that although the

Standing
Walking |
Jogging |
Sitting
Jumping |
Pick up

True label

Fall down |
Lying down |
Stand up |

Crawling |

Standing +
Walking -
Jogging +
Sitting -
Jumping +
Pick up Fr
Fall down |
Lying down |
Stand up
Crawling

Predicted label

Fig. 6. Confusion matrix for the novel OSS-GWR approach tested on a
dataset of actions with an average accuracy of 93.3% (no manual
segmentation).
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Fig. 7. Confusion matrix for the S-GWR approach (Parisi et al., 2015)
tested on a dataset of actions with an average accuracy of 94% (samples
manually segmented).

defined features used to learn relevant properties of actions
should be sufficient to univocally describe spatiotemporal
patterns over different timescales, tracking inaccuracies
from the depth sensor may have a negative impact on the
extraction of reliable pose-motion cues. While it is possible
to embed the detection of sensor noise in low-level
networks (Parisi et al., 2015), it is non-trivial to detect inac-
curate samples that belong to the feature space, e.g. caused
by the (self-)occlusion of body joints. In this case, tracking
errors will propagate from low to higher-level layers and
lead to the misclassification of samples.

An additional experiment consisted of decreasing the
percentage of labeled action samples. Since visual represen-
tations are progressively learned without supervision, we
expect that the absence of training action labels will not
have a catastrophic impact on the correct development of
associative connections of audiovisual input (as would be
expected for a strictly supervised method). For this pur-
pose, we trained our system with a similar scheme as in
the first experiment, but this time we omitted action words
from ASR of randomly chosen samples and varied the per-
centage of available labels from 100% to 0%. Here, with
sample we do not refer to a single data point (as in the
experiment from Section 2.2), but rather to a set of data
points represented by the amount of frames for the dura-
tion of the audio time window, i.e. 20 frames. The average
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Fig. 8. Average classification accuracy over 10 runs for a decreasing
percentage of available action labels on randomly selected training
samples.

classification accuracy with different percentages of omitted
audio samples for randomly selected samples over 10 runs
is displayed in Fig. 8. We can observe that although a
decreasing number of available labeled samples during
the training phase has a negative impact on the classifica-
tion performance, this decline is not proportional to the
number of omitted action words. As soon as 10% of labeled
samples are available during the training, the system shows
an accuracy of 58.5%, and accuracy values above 85% can
be observed for 50% or more available labeled samples. On
the other hand, we found that the timing at which these
action words are presented to the AWL layer over the
training epochs does have a significant impact on the per-
formance. In fact, best results were obtained if action
words are presented when visual representations have
reached a certain degree of stability, while associative con-
nections created at ecarly stages of visual development may
not be as reliable.

To have an idea of how well the associative layer has
learned action dynamics, we generated learned action

representations from action words in the absence of visual
input. The visualizations were generated from the recog-
nized action words by computing onset neurons in GST5™
via the associative connections from AWL (Eq. (8)). For
each onset neuron, one-step prediction was made using
the temporal connectivity (Eq. (9)) to compute snapshots
of 10 frames (1 s of action). The visual representations of
the actions sitting, jumping, and picking up for a time win-
dow of 1 s are shown in Fig. 9, where we displayed the
three body centroids and the motion intensity of the
upper-body centroid (black arrow). From these visualiza-
tions, we can argue that the associative layer successfully
learns temporally-ordered representations of visual input
sequences from onset neurons, and therefore that our
model accounts for the bidirectional retrieval of audiovi-
sual inputs.

4. Discussion
4.1. Summary

We presented a hierarchical neural architecture for
learning multimodal action representations from a set of
training audiovisual inputs. In particular, we investigated
how associative links between unimodal representations
can emerge in a self-organizing manner from the co-
occurrence of multimodal stimuli. Visual generalizations
of action sequences were learned using hierarchically-
arranged GWR networks for the processing of inputs with
increasingly larger temporal windows. Multimodal action
representations in terms of action—-word mappings were
obtained by incrementally developing bidirectional
connections between learned visual representations and
action labels from automatic speech recognition. For this
purpose, we proposed an associative network with
asymmetric inter-layer connectivity that takes into account
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Fig. 9. Example of learned visual representations generated from bidirectional connectivity between GST™ and AWL for the action words sitting,
Jjumping, and picking up obtained from speech recognition. The figure shows the three body centroids and the motion intensity of the upper-body centroid
(black arrow) for a time window of 10 frames (1 s) starting from the action onset neuron.
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the spatiotemporal dynamics of action samples and binds
co-occurring audiovisual inputs. For this associative layer,
we implemented an extended GWR learning algorithm (the
OSS-GWR) that accounts for the propagation of action
labels in a semi-supervised training scenario and that learns
neural activation patterns in the temporal domain through
enhanced synaptic connectivity. We conducted experiments
with a dataset of 10 full-body actions showing that our
system achieves state-of-the-art classification performance
without requiring the manual segmentation of training
samples. Together, these results show that our neural archi-
tecture accounts for the bidirectional retrieval of audiovi-
sual inputs, also in the scenario where a number of
action labels is omitted during the training phase.

Interestingly, our implementation of bidirectional
action—word connections roughly resembles a phenomenon
found in the human brain, i.e. spoken action words elicit
receptive fields in the visual area (Barraclough et al.,
2005; Miller & Saygin, 2013). In other words, learned
visual representations of actions can be activated in the
absence of visual inputs, in this case from recognized
speech. These visualizations can be generated by comput-
ing the onset neuron in the G3T5™ layer via the developed
associative connections to AWL, so that temporally-
ordered action snapshots can be obtained from neural acti-
vation patterns learned by synaptic connectivity in the tem-
poral domain. We have shown that this property can be
used in practice to assess how well the model accounts
for learning congruent visual representations of actions
from pose-motion features.

4.2. Neurobiologically-motivated multimodal integration

A vast corpus of studies has shown the ability of the
brain to integrate multimodal information for providing
a coherent perceptual experience (Ernst & Bulthoff, 2004;
Stein & Meredith, 1993; Stein et al., 2009). In particular
for the integration of audiovisual stimuli, neurophysiolog-
ical studies have evidenced strong links between the areas
in the brain governing visual and language processing for
the formation of multimodal perceptual representations
(Belin et al., 2000; Belin et al., 2002; Foxe et al., 2000;
Pulvermiiller, 2005; Raij et al., 2000). However, the ques-
tion of how to develop artificial models that efficiently pro-
cess and bind multimodal information has remained an
issue to be investigated (Ursino et al., 2014).

The development of associations between co-occurring
stimuli for multimodal binding has been strongly
supported by neurophysiological evidence (Fiebelkorn
et al., 2009; Ursino et al., 2014). Similar to Vavrecka and
Farkas (2014) and Morse et al. (2015), we argue that the
co-occurrence of sensory inputs is a sufficient source of
information to create robust multimodal representations
with the use of associative links between unimodal repre-
sentations that can be incrementally learned in an unsuper-
vised fashion. However, in contrast to previous models
focused on the development of object-word mappings,

we focus on the development of associative links between
action labels and visual actions, which have high spatial
and temporal variance, thereby requiring a processing
architecture that accounts for the generalization of inputs
at different spatiotemporal scales.

From a neurobiological perspective, neurons selective to
actions in terms of complex biological motion have been
found in a wide number of brain structures (Giese &
Rizzolatti, 2015). For example, in the STS, which is
thought to be an associative learning device for linking
different unimodal perceptual representations, and conse-
quently crucial for social cognition (Allison et al., 2000;
Adolphs, 2003; Beauchamp, 2005; Beauchamp et al.,
2008). It has been shown that different regions in the STS
are activated by naturally occurring, highly correlated
action features, such as pose, motion, the characteristic
sound of an action (Barraclough et al., 2005; Beauchamp
et al., 2004) and linguistic stimuli (Belin et al., 2002;
Stevenson & James, 2009; Wright et al., 2003).

In this paper, we propose a simplified computational
model that learns to integrate audiovisual patterns of
action sequences. Our model incrementally learns a set of
associative connections in a self-organized manner to bind
unimodal representations from co-occurring multisensory
inputs. Therefore, neurons in the G3™™ layer are tuned
to multimodal action snapshots in terms of action-word
mappings. The focus of our study was the self-organizing
development of associative connections between visual
and auditory action representations. For audiovisual stim-
ulation, neurons in the posterior STS showed greater
response to multimodal stimuli than to unimodal ones,
with these multimodal responses being greater than the
sum of the single unimodal responses. The modeling of
neurobiologically observed principles underlying audiovi-
sual integration in the STS for speech and non-speech stim-
uli, such as superadditivity (Calvert, Campbell, &
Brammer, 2000), spatial and temporal congruence
(Bushara, Grafman, & Hallett, 2001; Macaluso, George,
Dolan, Spence, & Driver, 2004), and inverse effectiveness
(Stevenson & James, 2009), was out of the scope of this
paper and will be subject of future research.

Based on the principle of learning associative connec-
tions from co-occurring inputs, it is possible to extend
the development of associative patterns beyond the audio-
visual domain. For instance, several neurophysiological
studies have evidenced strong interaction between the
visual and motor representations, more specifically includ-
ing the STS, parietal cortex, and premotor cortex (see
Giese & Rizzolatti (2015) for a recent survey), with higher
activation of neurons in the motor system for
biomechanically-plausible, perceived motion sequences
(Miller & Saygin, 2013). From the perspective of our
model, we could think of emerging associative connections
between auditory, visual, and motor representations in
terms of the self-organizing binding of temporally corre-
lated activations. However, while our architecture scales
up to a larger number of modalities, it does not account
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for crossmodal learning aspects, e.g. in an embodied robot
perception scenario where motor contingencies influence
audiovisual mappings (Morse et al., 2015). Consequently,
the extension of our model in such a direction would
require additional mechanisms for the crossmodal learning
of spatiotemporal contingencies built on the basis of
modality-specific properties.

4.3. Growing self-organization and hierarchical learning

Motivated by the process of input-driven self-
organization exhibited by topographic maps in the cortex
(Miikkulainen, Bednar, Choe, & Sirosh, 2005; Nelson,
2000; Willshaw & von der Malsburg, 1976), we proposed
a learning model encompassing a hierarchy of Growing
When Required (GWR) networks (Marsland et al., 2002).
GWR networks have the ability to dynamically change
their topological structure through competitive Hebbian
learning (Martinetz, 1993) and incrementally match the
distribution of the data in input space. Different from other
incremental models of self-organization that create new
neurons at a fixed growth rate (e.g. Fritzke, 1995, 1997),
GWR learning creates new neurons whenever the activity
of well-trained neurons is smaller than a given threshold.
This mechanism creates a larger number of neurons at
early stages of the training and then tune the weights
through subsequent training epochs. While the process of
neural growth of the GWR algorithm does not resemble
biologically plausible mechanisms of neurogenesis (e.g.,
Eriksson et al., 1998; Gould, 2007, Ming & Song, 2011),
it is an efficient learning model exhibiting a computation-
ally convenient trade-off between adaptation to dynamic
input and learning convergence. For instance, it has been
shown that GWR learning is particularly suitable for nov-
elty detection and cumulative learning in robot scenarios
(Marsland, Nehmzow, & Shapiro, 2005).

The two parameters modulating the growth rate of the
network are the activation threshold and the firing counter
threshold. The activation threshold a; establishes the max-
imum discrepancy (distance) between the input and its
best-matching neuron in the network. For larger values
of ar, the discrepancy expressed by Eq. (1) will be smaller.
The firing counter threshold f; is used to favor the training
of recently created neurons before creating new ones. Intu-
itively, the average discrepancy between the input and the
network representation should decrease for a larger num-
ber of neurons. On the other hand, there is not such a
straightforward relation between the number of neurons
and the classification performance. This is because the clas-
sification process consists of predicting the label of novel
samples by retrieving attached labels to the inputs’ best-
matching neurons, irrespective of the actual distance
between the novel inputs and the selected neurons. There-
fore, a convenient value for ar should be chosen by taking
into account the distribution of the input and, in the case of
a classification task, the classification performance. For
instance, in a scenario with a number of missing labels dur-

ing the training phase as described in Section 2.2, a better
classification performance may be obtained with a smaller
number of neurons (Fig. 3).

Our GWR-based hierarchical learning architecture
allows to obtain progressively specialized neurons encoding
latent spatiotemporal dynamics of the input (Parisi et al.,
2015). A hierarchical structure has also the advantage of
increased computational efficiency by sharing functionali-
ties of lower levels to obtain representations in higher
levels. We implemented hierarchical learning by training
a higher-level network with neuron activation trajectories
from lower-level representations. After the training is com-
pleted, neurons in higher-level layers will encode prototype
sequence-selective snapshots of visual input, following the
assumption that the recognition of actions must be selec-
tive for temporal order (Giese & Poggio, 2003; Hasson
et al., 2008). This hierarchical organization is consistent
with neurophysiological evidence for increasingly large
spatiotemporal receptive windows in the human cortex
(Hasson et al., 2008; Lerner et al., 2011; Taylor et al.,
2015), where simple features manifest in low-level layers
closest to sensory inputs, while increasingly complex repre-
sentations emerge in deeper layers. Specifically for the
visual cortex, Hasson et al. (2008) showed that while early
visual areas such as the primary visual cortex (V1) and the
motion-sensitive area (MT+) yield higher responses to
instantaneous sensory input, high-level areas such as the
STS were more affected by information accumulated over
longer timescales (~12 s). This kind of hierarchical aggre-
gation is a fundamental organizational principle of cortical
networks for dealing with perceptual and cognitive pro-
cesses that unfold over time (Fonlupt, 2003).

4.4. Future work

Our results encourage the leverage of the proposed
architecture in several directions. For instance, so far we
have assumed that the training labels provided from speech
are correct. On the other hand, several developmental stud-
ies have shown that human infants are able to learn action—
word mappings also in the presence of missing, ambiguous
or sometimes contradictory referents wusing cross-
situational statistics (Smith & Yu, 2008). Thus, it would
be interesting to evaluate the robustness of the system if
the available labels are sometimes inaccurate or in contra-
diction with previously learned labels. Furthermore,
another limitation of our model is the use of domain-
dependent ASR. Although this approach yields the reliable
recognition of a set of action words (Twiefel et al., 2014), it
has the disadvantage that a specific set of words has to be
defined a priori. Therefore, new action words cannot be
learned during the training process. We plan to address this
constraint by accounting for learning new lexical features
so that the action vocabulary can be dynamically extended
during training sessions. It has been shown that lexical fea-
tures can be learned using recursive self-organizing archi-
tectures (Strickert & Hammer, 2005), obtaining action
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word representations from a phonemic representation of
recognized audio. This extension would comprise a hierar-
chical stream for processing audio features and, similar to
the visual hierarchy, higher-lever representations of speech
(words) would be learned from lower-level representations
(e.g., phonemes). Such a processing scheme would be in
line with neurophysiological evidence supporting the hier-
archical processing of aural features in the auditory cortex
with increasing temporal receptive windows (Lerner et al.,
2011). By considering the aforementioned extensions, the
mechanism responsible for developing associative connec-
tions should be robust to situations in which action words
recognized from speech may not be reliable. Therefore, an
additional labeling scheme should be considered that takes
into account cross-statistical properties of labels to guaran-
tee a congruent audiovisual mapping.

Finally, our results motivate the extension of our
approach for scenarios that require more complex audiovi-
sual inputs, for instance by considering the recognition of
transitive actions. This challenging task would require
accounting for the learning of action-object relations to
be described by more flexible action words, e.g. labeling
both the action and the object being used. An interesting
question would then be how multiple different modules
develop bidirectional connections in order to provide a
congruent perceptual experience.

The manual labeling of training sequences is expensive
and hinders the automatic, continuous learning of novel
information. Thus, research work in the direction of
neurocognitive architectures aimed to develop robust mul-
timodal representations from more natural interactions
would provide a significant benefit for learning agents in
order to trigger proper action-driven behavior in complex
environments.
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