
Hierarchical SOM-Based Detection of Novel Behavior for
3D Human Tracking

German Ignacio Parisi and Stefan Wermter

Abstract— We present a hierarchical SOM-based architecture
for the detection of novel human behavior in indoor
environments. The system can unsupervisedly learn normal
activity and then report novel behavioral patterns as abnormal.
The learning stage is based on the clustering of motion with
self-organizing maps. With this approach, no domain-specific
knowledge on normal actions is required. During the tracking
stage, we extract human motion properties expressed in terms of
multi-dimensional flow vectors. From this representation, three
classes of motion descriptors are encoded: trajectories, body
features and directions. During the training phase, SOM net-
works are responsible for learning a specific class of descriptors.
For a more accurate clustering of motion, we detect and remove
outliers from the training data. At detection time, we propose a
hybrid neural-statistical method for 3D posture recognition in
real time. New observations are tested for novelty and reported
if they deviate from the learned behavior. Experiments were
performed in two different tracking scenarios with fixed and
mobile depth sensor. In order to exhibit the validity of the
proposed methodology, several experimental setups and the
evaluation of obtained results are presented.

I. INTRODUCTION

ANALYSIS of human activity has attracted great interest
from researchers due to its promising applications in

many areas such as assistance for the elderly, automatic
surveillance and human-robot interaction [5]. Generally,
activity recognition is presented in terms of extraction and
classification of time varying feature data, i.e. matching test
sequences with a group of reference sequences representing
typical behaviors [2]. In this context, two major challenges
must be addressed: a reliable estimation of the target position,
and the definition of high-level knowledge for interpreting
behaviors.

From a computer vision perspective, techniques for the
estimation of real-world coordinates from 2D images remain
a challenge in data-driven 3D tracking [1]. Recently, mea-
surements from depth sensors have been used to estimate
3D motion and detect falls. In [7][8][9][10], the authors use
depth information to accurately estimate the target’s body
posture and detect falls. However, most of the proposed
algorithms on fall detection rely on prior scene analysis, e.g.
the estimation of ground surface. Furthermore, they estimate
domain-specific threshold values for abnormal body velocity.
In fact, it should be considered that human actions can be
influenced by many factors. Therefore, a system for learning
behavioral patterns should not assume a substantial amount
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of prior knowledge. It has been shown that normal actions
can be learned unsupervisedly and a subspace of typical
actions can be obtained adaptively [17]. The analysis of
motion patterns is an effective method to better understand
human behavior [18].

From a machine learning perspective, the detection of
novel behavior can be seen as the identification of new data
that a system is not aware of during training [3]. Novelty
detection has been researched within diverse application
domains to identify patterns that do not conform to the
expected normal behavior [4]. Among different neural
architectures for unsupervised learning, self-organizing net-
works have shown to be suited to behavior classification
when motion can be expressed in terms of multi-dimensional
flow vectors [5].

We present a 3D tracking framework for the detection
of novel human behavior in indoor environments. The
system learns unsupervisedly normal activity and detects
novel behavioral patterns as abnormal. For the 3D tracking,
we extract spatio-temporal properties that describe human
motion in the scene. We estimate target position, velocity
and body orientation from depth map video sequences.
Tracked motion from depth sequences is extracted in terms
of multi-dimensional flow vectors. For the learning stage,
we propose a hierarchical architecture based on four self-
organizing map (SOM) networks. To tackle the effect of
tracking errors, a first SOM is used to remove outliers from
the training motion vectors. Preprocessed vectors are encoded
into three classes of descriptors: trajectories, body features
and directions. Each class of motion descriptor is then used
to train an independent SOM network. At detection time,
new observations that deviate from the learned behavior
are reported as abnormal. We performed experiments in
two different tracking scenarios: (1) fixed depth sensor for
tracking multiple targets and (2) active tracking with a mobile
robot platform.

This paper is organized as follows. In Section II we present
the related work on SOM-based novelty detection. Section
III describes our study of human motion and the extraction
of 3D motion features. We describe the preprocessing stage
for the removal of outliers caused by tracking errors and the
encoding of motion descriptors. In Section IV we introduce
our hierarchical architecture for the unsupervised detection
of novelties. The experimental setups for motion acquisi-
tion and two different tracking scenarios are presented in
Section V. We discuss the achieved results and evaluate the
algorithm under different detection conditions in Section VI.
We present our concluding remarks in Section VII.
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II. RELATED WORK

Some previous approaches combine computer vision and
computational intelligence to learn extracted representations
of motion patterns. In this field, extensions of the SOM
network have shown to be a powerful tool in detecting
patterns not presented during the training. Hew et AL. (2004)
[15] propose a SOM model for learning patterns of vehicle
trajectories. The architecture consists of a hierarchical SOM
used for learning the distribution of normal patterns. Novel
patterns are then considered as anomalies. In [14], the authors
used a fuzzy self-organizing map (fuzzy SOM), where each
output neuron directly corresponds to a class of trajectories.
To obtain an accurate model of the scene, many neurons
are required. H. Al-Khateeb et al. (2011) [18] propose an
extended fuzzy SOM with a small number of nodes to detect
abnormal trajectories of pedestrians. In [19], the authors
train a SOM to recognize human actions from a sequence
of images. Most of these approaches extract motion from
2D color images. An important limitation is a substantial
computational effort for the extraction of features, which
in some cases does not allow the detection of abnormal
behaviors in real time. With the use of depth information, it is
possible to capture both spatial and temporal properties of 3D
motion. This approach allows a more flexible representation
of human motion and a better performance at detection time.

III. 3D HUMAN TRACKING

A human body can be modeled as a spatially extended
object with body parts connected by joints. The distribution
of the body masses will then change depending on the
posture. Cognitive evidence on motion tracking suggests the
heuristic estimation of a center of mass to represent the point
where all the masses of the body concentrate [6]. We will
now describe our model for 3D tracking of human bodies
and the preprocessing stage to address tracking errors.

A. Human Body Representation

We estimate the position of a moving target based on a 3D
model of the human skeleton. Each body joint is represented
as a point sequence of real-world coordinates C = (x, y, z).
We consider two centers of mass. The upper-centroid U
describes the position of the upper-body with respect to the
torso and the shoulders. The lower-centroid L describes the
position of the lower-body with respect to the torso and the
hips. The estimation of U and L is independent from the
rotation of the body, therefore the centroids are computed if
the tracked person is frontal to the sensor, turned on their side
or back. To describe the overall body orientation we estimate
the orientation of the torso T , expressed as the slope of the
segment between U and L with respect to the image plane,
i.e. the segment is vertical if the body is upright (see Fig. 1).

We define the body velocity Si as the difference in pixels
of the upper-centroid U between two consecutive frames i
and i − 1. We then encode Si as horizontal speed Hi and
vertical speed Vi with respect to the image plane. The former
refers to the target moving on the width and depth axis, i.e.

(a) (b)
Fig. 1. Body representation for 3D motion tracking of human actions. We
estimate two centers of mass: one for the upper-body (white dot) and one for
the lower-body (black dot). The torso orientation (green line) is estimated
as the slope of the segment between the two centers with respect to the
image plane. We show the orientation for a body in upright position (a) and
a body falling down (b).

closer, further, right, and left. The latter represents the speed
with respect to height, e.g. negative if the target is moving
down. Horizontal and vertical body speeds are expressed
respectively as Hi =

√
S2
i (x) + S2

i (z) and Vi = Si(y).
Finally, we estimate the relative direction of 3D motion in
space at time i as Di = {Si(x)/D, Si(y)/D, Si(z)/D}
with D =

√
S2
i .

For every tracked target at time i, we obtain a flow motion
vector

Mi = (Ui, Hi, Vi, Ti, Di) . (1)

Flow motion vectors as defined by Eq. 1 are able to
capture both spatial and temporal information of human
motion. On the one hand, their advantage is low computa-
tional complexity and a simple implementation. In our case,
measurements are stand-alone and time is not considered
as a feature. On the other hand, flow motion vectors are
susceptible to tracking errors, e.g. non-linearities of the
sensor. Depth sensors such as the Microsoft Kinect1 and
ASUS Xtion2 have the potential to be used in applications
for 3D tracking where the requirements for accuracy are less
strict. Therefore, systematic and random errors can occur
during tracking activities. Noisy observations can be caused
by tracked motion from highly occluded targets or tracking
in scenarios with a moving sensor, e.g. active tracking. In a
scenario with multiple users populating the scene, occlusion
errors may also occur because of often overlapping bodies.

As shown by our experiments, outliers in the training data
may lead to non-linear distortions of the subspace of normal
behaviors. Therefore, the detection and removal of outliers
must be addressed.

B. Preprocessing

The preprocessing stage consists of two sequential
operations: (1) the detection and removal of outliers from

1Kinect for Windows. http://www.microsoft.com/en-us/
kinectforwindows

2ASUS Xtion Pro Live. http://www.asus.com/Multimedia/
Motion_Sensor/Xtion_PRO_LIVE/
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extracted raw motion vectors and (2) the encoding of motion
descriptors.

An outlier is defined as an observation that does not follow
the pattern suggested by the majority of the observations
belonging to the same data cloud [16]. From a geometrical
perspective, outliers are to be found detached from the
dominating distribution of the subset for normal actions.
In our case, we assume that the behavior of a moving
target must be consistent over time. This means that it
will be concentrated to one or a couple of regions of the
feature space of the training observations [13]. Therefore,
we consider inconsistent changes in body velocity and torso
orientation to be caused by tracking errors rather than real
tracked motion.

To tackle the effect of noisy observations, we use a SOM-
based outlier detection that removes outliers from large
multi-dimensional data sets. After removing outliers from
the data cloud, preprocessed flow motion vectors are encoded
into three classes of motion descriptors:

1) Trajectories: sequences of target’s tracked positions for
visited areas in the scene

Tn = {U1, ..., Un}; (2)

2) Body features: sequences of body speeds (vertical and
horizontal) and torso orientations

Fn = {(H1, V1, T1), ..., (Hn, Vn, Tn)}; (3)

3) Directions: sequences of relative directions of motion

Rn = {D1, ..., Dn}. (4)

This representation with three different classes of
descriptors aims to adapt the detection of novel behavioral
patterns for different tracking scenarios and environments.

On the one hand, trajectories describe patterns on
geometrical properties of the environment, i.e. visited areas
in a room. On the other hand, body features and directions
are geometry-independent descriptors and are still relevant in
different environments and scenarios with a mobile sensor.

IV. SOM-BASED NOVELTY DETECTION

The self-organizing map (SOM) is a competitive neural
network introduced by Teuvo Kohonen [11]. The SOM
projects statistical relationships between high-dimensional
data items into a low-dimensional discretized representation
of the input space. The network learns by iteratively reading
each training vector. The training algorithm computes the
models so that they describe the domain of observations. It
adopts a neighborhood function to preserve the topological
properties of the training data [11].

For the detection of novelties, we propose a hybrid
neural-statistical architecture [13], which is extended towards
multiple layers for 3D posture recognition in real time. The
concept is to approximate the normal behavior with specific
trained SOM networks. This approach is unsupervised and
therefore no a priori information on class labels of training
data is necessary. Fig. 2 illustrates the flow chart for the

Trajectories Body features Directions

SOM-Based Preprocessing

Clustering with SOM networks

S1 S2 S3

Outlier 
Removal

Flow Motion 
Vectors

Competitive layer

Fig. 2. Hierarchical SOM-based architecture for the training stage.
A first SOM is used to detect and remove outliers from raw
extracted motion vectors. Preprocessed vectors are then encoded
into three classes of descriptors and fed to three independent SOM
networks as training observations.

learning stage. The proposed learning architecture consists
of four SOM networks. A first network So is used to detect
and remove outlier values from the extracted motion vectors.
Preprocessed vectors are then encoded into three classes of
motion descriptors. An independent SOM network for each
descriptor is trained. We denote the networks for trajectories,
body features and directions as S1, S2, and S3 respectively.

At detection time, new observations from tracked motion
are tested for novelty. Test observations are encoded and
each motion descriptor is processed in relation to the specific
trained network. Fig. 3 illustrates the flow chart for the
novelty detection phase.

We will now describe the hierarchical training algorithm
for learning a subset of normal actions and the detection
algorithm to test new observations for novelty.

A. Training Algorithm

A SOM network consists of an input layer and a
competitive layer. In the classical SOM, the number of units
and their topological relations are set from the beginning.
Every unit is connected to adjacent units by a neighborhood
relation that dictates the structure of the map.

For our hierarchical architecture we consider two-
dimensional networks with competitive units arranged on
a hexagonal lattice in the Euclidean space. The hexagonal
shape is generally preferred because all 6 neighbors of a
unit will then be at the same distance, instead of 8 neighbors
in a rectangular fashion. Each unit i has an associated d-
dimensional model vector mi = [mi1,mi2, ...,mid]. When
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Fig. 3. Neural-statistical architecture for novelty detection based on
trained SOM networks. For every test observation, novelty values
are calculated from each SOM.

an input vector x = (x1, ..., xd) is presented to the network,
the units compete and the best matching unit c for xj is
selected by the smallest Euclidean distance as

c = argmin
i
‖xj −mi‖. (5)

For an input vector xi, the quantization error qi is defined
as the distance from the best matching unit ci.

The number of units of each map is set to m = n/10
with n training vectors. As shown by our experiments with
different network configurations, this value represents a good
interplay between accuracy and generalization capabilities
of the mapping. At the initialization phase, the weights of
neurons are set to random values from the domain of the
input vectors.

Each network is trained with a batch variant of the SOM
algorithm. This approach requires fewer parameters and
converges much faster than the traditional stepwise recursive
algorithm [12]. In batch learning, the entire training set is
presented at once. Only afterwards is the map updated with
the network effect of all the samples. The updating is done
by replacing the model vector mi with a weighted average
over the samples, where the weighting factors are obtained
from the neighborhood function.

The update step for batch learning is formally defined as

mi(t+ 1) =

∑n
j=1 hic(j)(t)xj∑n
j=1 hic(j)(t)

, (6)

where c is the best matching unit as defined by Eq. 5,
hic(j) is the neighborhood function as defined by Eq. 7, and
n is the number of sample vectors.

As the neighborhood relation, we use the Gaussian
function

hj,i(x) = exp

(
−‖rc − ri‖2

2σ2(t)

)
, (7)

where rc is the location of unit c on the map grid and σ(t)
is the neighborhood radius at time t.

Input vectors for the first SOM consist of flow motion
vectors as defined by Eq. 1. The SOM networks for
trajectories, body features and directions use as input the
preprocessed motion descriptors as defined by Eq. 2, 3 and
4 respectively.

Before each training phase, input vectors are normalized
to avoid range-biased clustering. Scaling of variables is
of special importance since the SOM algorithm uses the
Euclidean distance to measure distances between vectors.
It is of our interest that variables with a different range
of values are equally important. A well-known approach
to achieve this is to linearly scale all variables so that the
variance of each is equal to one. Given a set of n multi-
dimensional training vectors, we perform a standard score
single-variable transformation.

B. Detection Algorithm

The goal of the detection algorithm is to test if the most
recent observation is novel or not. For this purpose, the
degree of novelty for every test observation is expressed with
the estimation of a P-value. If the P-value is smaller than
a given threshold, then the observation is considered to be
novel and reported.

For each new test observation xn+1 presented to the Si,
the algorithm is summarized as follows [13]:

1) Normalize xn+1 with respect to the training set Di.
2) Estimate q(n+1) with respect to Si.
3) Define B as the number of quantization errors

(q1, ..., qn) from Si greater than q(n+1).
4) Define the novelty P-value as P(n+1) = B/n.
In the case of So, observations with P-values under the

novelty threshold To are considered as outlier values and
therefore removed from the training set. For Si with i =
{1, 2, 3}, if P(n+1) is smaller than Ti, the test observation
xn+1 is considered as novel.

As an extension of the algorithm proposed in [13], a
different novelty threshold is estimated for each trained
network Si with i = {1, 2, 3}. The choice of convenient
threshold values that take into account the characteristics
of the distributions can have a significant impact on the
successful rates for novelty detection. We now empirically
define two different thresholds that consider the distribution
of the quantization errors from each trained SOM. For the
detection of outliers with So, we set

To =

√
Qo + σ(Qo) + max(Qo) + min(Qo) ∗ 0.5, (8)

where Qo is the set of quantization errors of So, Qo is the
mean value of Qo, and σ(Qo) is the deviation standard.

© 2013 IEEE. 
Reprinted, with permission, from Parisi, G., Wermter, S. Hierarchical SOM-Based Detection of Novel Behavior for 
3D Human Tracking, Proceedings of International Joint Conference on Neural Networks(IJCNN). pp. 1380–1387, Dallas, 2013.



0 2 4 6
−7

−6

−5

−4

−3

−2

−1

0

1

2

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1 1.5 2

−3

−2

−1

0

1

2

3

(a) (b)
Fig. 4. Effects of outliers in the clustering of training data. The first SOM (a) was trained with the full set of extracted motion vectors. As seen in the
zoomed area in (a), the presence of highly noisy observations decreased the sparcity of the feature map. The second SOM (b), which was trained after the
removal of outliers, gave a more representative clustering of the observations from tracked motion.

For Si with i = 1, 2, 3, the novelty threshold is set to

Ti =

[
Qi + σ(Qi)

max(Qi) + min(Qi)

]
∗ 0.1. (9)

Our experiments show that the novelty thresholds, as
defined by Eq. 8 and 9, represent a balanced trade-off to filter
outliers and tolerate observations outside the boundaries of
the dominating data cloud.

Fig. 4 illustrates the visual results of our hierarchical
learning stage to show the effects of outliers in the training
data. A first SOM was trained with the full set of extracted
flow motion vectors. As shown in Fig. 4.a, outliers in the
data decreased the sparcity of the feature map. These noisy
observations were detected by our algorithm and removed
from the training set. The second SOM was then trained
with the preprocessed motion descriptors. The removal of
outliers allowed a more representative clustering of the
motion vectors for normal activity (Fig. 4.b).

V. EXPERIMENTAL SETUPS

A. Motion Acquisition and Clustering

For the acquisition of the training data, we monitored
a home-like environment with a Kinect. The sensor was
installed on a platform 1,30 meters above the ground and
positioned parallel to the horizontal surface. Depth maps
were acquired with a VGA resolution of 640x480 and the
depth operation range was set from 0.8 to 3.5 meters.
The angular field of view was 57 degrees horizontally and
43 degrees vertically. Video sequences were sampled at a
constant frame rate of 30 Hz. For each point sequence of
real-world coordinates, we calculated the median value of
the last 3 measurements. This technique returns depth values
that are more robust to random noisy measurements from the
sensor.

The training sequences consisted of 20 minutes of
video with domestic actions. The actions were performed
by different actors and included walking around the

TABLE I
PARAMETERS FOR THE SOM TRAINING ALGORITHMS.

Parameter Value
Map grid Hexagonal lattice
Distance function Euclidean
Neighborhood function Gaussian
Initialization Random
Training algorithm Batch

(a) (b)
Fig. 5. Humanoid robot Nao with Xtion depth sensor for active tracking.
This approach allows to exploit Nao’s head motion capabilities to actively
track a moving person in the environment.

environment, sitting down, and picking up objects from the
ground. From the training sequences, a total of 35.062 flow
motion vectors were extracted. For the clustering, vectors
were considered independently. The parameters for the SOM
training algorithms are listed in Table I.

B. Detection Scenarios

At detection time, we performed experiments in two
different tracking scenarios. The first scenario consisted of a
fixed sensor 1,30 meters above the ground. The number of
actors temporarily in the scene varied from one to three.

In order to overcome the limitation on the reduced field
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(a)

(b)

(c)

Fig. 6. Novelty detection in depth video sequences: (a) falling down, (b)
fainting on a sofa, and (c) crawling. Red body area indicates novel behavior.

(a) (b) (c)
Fig. 7. Novel behaviors detected with fixed sensor: (a) jumping, (b) visiting
a novel area behind the sofa, and (c) fighting.

of view of the camera, we set a second scenario with a
mobile sensor. The human target was actively tracked around
the environment. For this purpose, we installed the depth
sensor on top of the humanoid robot Nao3. As shown in
Fig. 5, we extended the Nao with a new ASUS Xtion Pro
Live sensor. The device is based on the same technology as
Kinect, but smaller and lighter. As shown by our experiments,
the reduced weight of the Xtion did not affect the overall
stability of the Nao. The modified Nao could correctly turn
its head (pan, tilt angles) and walk without falling down.
The tracking framework was responsible for computing the
operations required to keep the target in the scene.

For both scenarios, experiments were performed in
different environments and light conditions. Detection of
novelties was tested from real time video streams and
recorded data sets. As an approach to reduce false positives
caused by tracking errors, the system reported a novel
behavior only if three consecutive P-values were below the
novelty threshold.

3Nao humanoid robot developed by Aldebaran Robotics. http://www.
aldebaran-robotics.com/

(a)

(b)

(c)
Fig. 8. P-values of motion descriptors for a falling down sequence:
trajectories (a), body features (b) and directions (c). P-values for novel
behavior lie under the novelty threshold (red line).

VI. RESULTS AND DISCUSSION

The system successfully detected behavioral patterns not
presented during the training. The first SOM network
detected and removed 502 outliers from the training vectors.
At detection time, the actions reported as abnormal included
video sequences with actors falling down, fainting, crawling,
jumping, visiting novel areas in the environment, and starting
to fight (Fig. 6 and 7). The system also reported novel
behavioral patterns for multiple users populating the scene
(Fig. 7.c). The expectation was that estimated P-values for
sequence frames with novel activity were under the novelty
threshold for the corresponding motion descriptor. As shown
in Fig. 8 for a fall sequence, P-values were under the
thresholds for trajectories, body features and directions. In
this case, the fall sequence led to a novel area visited in the
scene, increased body speed, novel torso orientation, and a
novel direction of motion towards the ground.

For the detection scenario with the humanoid Nao, the
moving target was successfully tracked around the room
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(a) (b)

(c) (d)

Fig. 9. Novel behavior detection with active tracking. The person moves
around the environment (a-c) and faints on a chair (d). For a better
visualization of the target, depth and color information were calibrated.

Fig. 10. Active tracking for novelty detection on a fainting sequence.
P-values for the novel behavior are below the novelty threshold (red line).

and the system reported abnormal behaviors in different
environments. At detection time, only P-values for body
features were considered, i.e. the novelty detection was
focused on the speed and posture, since the configuration of
the environment kept changing and the sensor was mobile.
Fig. 9 illustrates a target moving around the room and then
fainting while sitting on a chair. Different from a general
falling down sequence, the fainting sequence did not end
up on the ground. Furthermore, the body speed was not
necessarily increased with respect to other actions performed
during the training sequences. As shown in Fig. 10, P-values
for body features were under the threshold for action frames
with the target lying on the chair.

The processing of depth video sequences showed a
reduced computational effort in comparison with the use of
color information. This approach allowed to obtain same
accuracy rates with novelty detection in real time and
from recorded video sequences. These results could have
significant relevance in scenarios for ambient assisted living
[20] and learning robots for indoor human behavior [21].

A. Evaluation

We evaluated the detection algorithm using the standard
measurements defined in [22]:

TABLE II
RESULTS FOR THE EVALUATION OF OUR NOVELTY DETECTION

ALGORITHM FOR THE FIXED SENSOR SCENARIO.

Preprocessed Raw
TP TN FP FN TP TN FP FN

1 actor a 12 8 0 0 11 8 0 1
1 actor b 11 8 1 0 11 7 1 1
2 actors a 11 7 1 1 9 7 1 2
2 actors b 8 7 3 2 9 4 3 4

42 30 5 3 40 26 5 8

TABLE III
RESULTS FOR THE EVALUATION OF OUR NOVELTY DETECTION

ALGORITHM FOR THE ACTIVE TRACKING SCENARIO.

Preprocessed Raw
TP TN FP FN TP TN FP FN

Actor a 11 9 0 0 11 7 1 1
Actor b 11 6 2 1 10 5 3 2
Actor c 9 7 3 1 9 7 2 2
Actor d 10 7 1 2 9 6 3 2

41 29 6 4 39 25 9 7

Fig. 11. Evaluation of our detection algorithm under four different
conditions: fixed and moving sensor with and without the removal of outliers
from the training data. For both tracking scenarios, preprocessing before the
learning stage increased accuracy rates at detection time.

Recall =
TP

TP + FN
, (10)

Precision =
TP

TP + FP
, (11)

F-score = 2 ∗ Recall · Precision
Recall + Precision

, (12)

True negative rate =
TN

TN+ FP
, (13)

Accuracy =
TP+ TN

TP+ TN+ FP + FN
. (14)

A true positive (TP) was obtained if a novelty was detected
between the first and the last frame where the novel action
took place. True negatives (TN) refered to normal actions
not detected as novel. False positives (FP) and false negatives
(FN) refered respectively to normal actions reported as novel
and novel behaviors not reported by the system.

Actors performed 20 different normal and abnormal
actions several times. Normal actions included domestic
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activities such as walking, sitting down and standing up, and
picking up objects. Abnormal actions consisted in behavioral
patterns not presented during the training, e.g. falling
down, crawling, jumping, and visiting novel areas. Novelty
detection was performed for different tracking scenarios and
number of actors in the scene. The results for the evaluation
of our novelty detection algorithm are summarized in Tables
II and III.

The use of the SOM in the first layer of the hierarchical
architecture led to increased accuracy rates at detection time.
As shown by our experimental results, only a small number
of outliers in the training data caused a distortion of the
subspace of normal actions. The removal of outliers from
the training data increased accuracy rates for both scenarios
of 7% and 9% respectively. To provide a qualitative idea of
the improvement introduced by the use of the first SOM, Fig.
11 illustrates the accuracy rates for the detection scenarios
under different conditions.

VII. CONCLUSIONS

We presented a hierarchical SOM-based architecture
for the detection of novel human behavior in indoor
environments. Unlike other research presented in the field
of abnormal action detection [7][8], our approach did not
require prior scene analysis, e.g. the estimation of ground
surface. Experimental results showed the validity of the
proposed methodology for different tracking scenarios. The
removal of outliers from the training set represented an
important stage before the clustering with SOM networks.
The use of the SOM in the first layer of the hierarchical
architecture led to increased accuracy rates for novelty
detection. With the use of the humanoid Nao and a depth
sensor, it was possible to actively track a moving target in
the environment. This approach overcame the limitations of a
reduced field of view of fixed cameras and range sensors. The
system could detect novelties in real time and from recorded
data sets with the same detection performance.

There are different areas that can benefit from robust
vision-based human motion analysis, e.g. automatic
surveillance, ambient assisted living with learning robots
and human-robot interaction. Our representation of human
3D motion extracted relevant characteristics of human
activity expressed in terms of multi-dimensional vectors.
The hybrid neural-statistical architecture based on self-
organizing maps has substantial potential for clustering flow
motion vectors and detecting novelties.
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