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Abstract— The correct execution of well-defined movements
plays a crucial role in physical rehabilitation and sports. While
there is an extensive number of well-established approaches
for human action recognition, the task of assessing the quality
of actions and providing feedback for correcting inaccurate
movements has remained an open issue in the literature.
We present a learning-based method for efficiently providing
feedback on a set of training movements captured by a depth
sensor. We propose a novel recursive neural network that uses
growing self-organization for the efficient learning of body
motion sequences. The quality of actions is then computed
in terms of how much a performed movement matches the
correct continuation of a learned sequence. The proposed
system provides visual assistance to the person performing an
exercise by displaying real-time feedback, thus enabling the user
to correct inaccurate postures and motion intensity. We evaluate
our approach with a data set containing 3 powerlifting exercises
performed by 17 athletes. Experimental results show that our
novel architecture outperforms our previous approach for the
correct prediction of routines and the detection of mistakes both
in a single- and multiple-subject scenario.

I. INTRODUCTION

The analysis and assessment of human body motion

has recently attracted significant interest in the healthcare

community with many application areas such as physical

rehabilitation, diagnosis of pathologies, and assessment of

sport performance. In this context, the correctness of pos-

tural transitions is paramount during the execution of well-

defined physical routines, since inaccurate movements may

significantly reduce the overall efficiency of the movement

and increase the risk of injury [1]. For instance, in the case of

weight-lifting training, correct postures improve the mechan-

ical efficiency of the body and allow the athlete to achieve

higher effectiveness during training sessions. Similarly, in

the healthcare domain, the correct execution of physical

rehabilitation routines is crucial for patients to improve their

health condition [2].

Human proprioception may not be sufficient to spot move-

ment mistakes. Thus, expert trainers observing the movement

can give the trainee proficient feedback for timely improving

the quality of the performance and avoiding persistent inac-

curacies. However, it is not the case that a personal trainer is

always available to assess the quality of movements during

their execution. Therefore, there is a strong motivation to

develop automatic systems able to detect mistakes during the

performance of well-defined routines for providing feedback

in real time.
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A large number of learning-based models have been

proposed that address the classification of a set of train-

ing actions (e.g., [3]). However, while the aim of action

recognition is to categorize a set of distinct classes by

extrapolating inter-class spatiotemporal differences, action

assessment requires instead a model to capture intra-class

dissimilarities that allow to express a measurement on how

much an action follows its learned template. In this setting,

efficient approaches to learn spatiotemporal templates for

computing intra-class dissimilarities have remained an open

issue. Common computational bottlenecks are the robust

extraction of body features from video streams and the

definition of suitable metrics aimed to compare two actions in

terms of their spatiotemporal structure. The former issue has

been partly addressed with the use of depth sensors that allow

the efficient tracking of human motion and the estimation of

a 3D skeleton model. On the other hand, effective methods

for the computation of a similarity measure between two

actions still represent a major challenge.

In this work, we propose a novel neural architecture

that learns a set of actions from depth map videos. The

quality of actions is computed in terms of how much a

performed movement matches the correct continuation of a

training movement. The goal of the proposed system is to

provide visual assistance to the user performing an exercise

by displaying real-time feedback, thus enabling the person

to correct inaccurate postures and motion intensity. Our

learning architecture consists of two hierarchically arranged

layers with self-organizing networks that process posture

and motion sequences. The first layer comprises two self-

organizing networks that learn a dictionary of posture and

motion features. The second layer is composed of a novel

self-organizing network with recurrent connectivity that re-

ceives as input neuron activation patterns from the first layer

and learns the spatiotemporal structure of a sequence.

We compared our recursive neural model with previous

models of recursive self-organization on a regression task

and then evaluated our feedback system on a data set with 17

athletes performing 3 powerlifting exercises. Experimental

results show that our novel architecture outperforms our

previous approach for the prediction of correct body motion

and the detection of mistakes in both single-subject and

multiple-subject scenarios.

II. RELATED WORK

A. Human Motion Assessment

Automatic systems for the visual assessment of body

motion have been previously investigated for applications
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Fig. 1. Visual feedback for correct squat sequence (top), and a sequence
containing knees in mistake (bottom, joints and limbs in red) [9].

mainly focused on physical rehabilitation and sport training.

Chang et al. [4] proposed a physical rehabilitation system

for young patients with motor disabilities using a Kinect

sensor. The idea was to assist the users while performing

a set of simple movements necessary to improve their mo-

tor proficiency during the rehabilitation period. Users were

instructed by a therapist on how to perform the movements.

During the autonomous execution, visual hints were shown to

users to motivate the performance of the routines. Although

experimental results have shown improved motivation for

users using visual hints, only movements involving the

arms at constant speed were considered. Furthermore, the

estimation of real-time feedback in order to enable the user

to spot and correct mistakes was not considered.

Similarly, Su [5] proposed the estimation of feedback

for Kinect-based rehabilitation exercises by comparing per-

formed motion with a pre-recorded execution by the same

person. The comparison was carried out on sequences using

dynamic time warping (DTW) and fuzzy logic with the

Euclidean distance as a similarity measure. The evaluation of

the exercises was based on the degree of similarity between

the current sequence and a correct sequence. The system

provided qualitative feedback on the similarity of body joints

and execution speed, but it did not suggest the user how to

correct the movement.

Paeiment et al. [6] proposed a method for assessing

the quality of gait from sequences of people on stairs.

As a measure of quality, Kinect-based body poses were

compared to learned normal occurrences of a movement

from a statistical model. The likelihood of a model for

describing the current movement was computed frame-by-

frame over a sequence of postures and motion speed. The

system triggered an alarm if the current movement differed

from the correct movement template. For this purpose, a

proper threshold must be empirically chosen to decide the

degree of tolerance with respect to the template. Although

this method represents a useful application for detecting

abnormal behavioral patterns, it does not provide any hints

on how to correct motion mistakes.

Velloso et al. [7] investigated qualitative action recognition

with a Kinect sensor for specifying the correct execution

of movements, detecting mistakes, and providing feedback

to the user. A baseline was created by asking the users to

perform a routine ten times, from which individual repe-

titions were manually segmented. Hidden Markov Models

were trained with tuples containing the joint angles and

the timestamp for individual exercises. Similar to Chang

et al. [4] and Su [5], the system was tested only on arm

movements, in this case for dumbbell lifting. A strong

limitation of this approach is that the correct duration and

motion intensity of movements were computed by using the

timestamp from body joint estimation. Therefore, although

the system provides feedback to correct body posture in

terms of joint angles, it does not provide any robust feedback

on temporal discrepancies.

For the assessment of human motion in sports, Pirsiavash

et al. [8] predicted scores of performed movements from an-

notated footage. The system compared the gradient for each

body joint with a regression model from spatiotemporal pose

features to scores obtained from expert judges. Feedback is

provided in terms of which joints should be changed to obtain

the maximum score. Different from the previously discussed

approaches, this method extracts body features from RGB

sequences. Thus, the estimation of body joints is not as

robust as the 3D skeleton model using with a depth sensor.

Experimental results showed that the system predicted scores

better than non-expert humans but significantly worse than

expert judges.

In our previous work, we presented a neural architecture

for providing feedback on a set of learned movements cap-

tured with a Kinect sensor [9]. The system can predict a set

of learned sequences and then provide visual hints to correct

posture mistakes (Fig. 1). The architecture comprises a recur-

sive self-organizing network that learns the spatio-temporal

structure of input sequences and then estimates feedback

as the difference between the current input and the learned

template. The system has shown good results on a data set of

3 powerlifting exercises by showing the correct postures and

spotting mistakes. However, it did not account for learning

the motion intensity, which is crucial for exercises with

variations of speed or lockouts, e.g. in weightlifting routines.

Furthermore, the recursive model had a limited memory,

hindering the learning of longer sequences. In this work, we

will show how these two drawbacks can be addressed.

B. Recurrent Self-Organization

Different approaches have been proposed that implement

recurrent self-organizing networks for processing sequences.

The Temporal Kohonen Map (TKM) [12] is equipped with

recurrent neurons in terms of leaky integrators. The compu-

tation of the distance of a neuron wi from the input sequence

(x1, ..., xt) at time t with similarity measure dW is

d̃i(t) = α · dW (wi, xt) + (1− α) · d̃i(t− 1), (1)

where α ∈ (0; 1) controls the rate of signal decay, expressing

the quality of the representation of the current input and the

exponentially weighted past. However, in the TKM there is

no explicit back-reference to previous map activity, i.e. the

context is only implicitly represented by the weights.

Other models use less restricted recurrence. For instance,

in the RecSOM [13], the distance of a neuron from the input
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sequence at time t is computed as

di(t) = α · dW (wi, xt) + β · ‖ci −Rt−1‖, (2)

Rt−1 = (exp(−d̃1(t− 1)), ..., exp(−d̃N (t− 1))), (3)

where ci are the context descriptors of each neuron, Rt−1

is the context vector of the previous time step, N is the

number of neurons in the map, and ‖·‖ denotes the Euclidean

distance. This preserves the information available within the

activation at the last timestep. However, this is computation-

ally expensive due to the high-dimensional contexts attached

to each neuron. A more compact model was introduced by

the SOM-SD [14], where an additional context vector is used

for each neuron, but only the last winner index is stored as

information of the previous map state such that

d̃i(t) = α · dW (wi, xt) + β · dG(It−1 − ci), (4)

where It−1 denotes the index of the winner neuron at

t − 1 and dG is a the grid distance measure. However, this

recurrent activation cannot be used for arbitrary lattice shapes

since it relies on fixed grid distances to update the winning

neuron and its neighbours.

Different approaches with context learning have been pro-

posed that use compact reference representation for arbitrary

lattice topologies. The MergeSOM [15] combines a compact

back-reference with a weighted contribution of the current

input and the past. Each neuron is equipped with a weight

vector wi and a temporal context ci, the latter representing

the activation of the entire map in the previous timestep. The

recursive activation function of a sequence is given by the

linear combination

d̃i(t) = α · dW (wi, xt) + (1− α) · dW (ci,Ci), (5)

Ci = β · wI(t−1) + (1− β) · cI(t−1), (6)

where α, β ∈ (0, 1) are fixed parameters, Ci is a global

context vector, and I(t− 1) denotes the index of the winner

neuron at t− 1. This model converges to an efficient fractal

encoding of sequences with high temporal quantization accu-

racy. Furthermore, context learning can be applied not only

to lattices with arbitrary topology, but also to incremental

approaches that vary the number of neurons over time. For

instance, a Growing Neural Gas (GNG) model equipped

with context learning (MergeGNG, [17]) uses the activation

function defined by Eq. 5 and 6 to compute winner neurons

and creates new neurons with a temporal context. A general

approach for updating the weight and context vectors is

using the competitive Hebbian learning rule [10]. In the next

section, we describe how to implement context learning with

a special type of growing self-organizing network.

III. PROPOSED METHOD

Our architecture consists of two hierarchically arranged

layers with self-organizing networks processing posture and

motion sequences (Fig. 2). The first layer is composed of two

Growing When Required (GWR) networks, GP and GM ,

that learn a dictionary of posture and motion feature vectors

respectively. The second layer comprises a recursive GWR,

GI , that learns neuron activation patterns from GP and GM .

Self-organizing processing

G
M

G
P

G
I

Motion

Prediction

Feedback

Posture

1 2

Fig. 2. Multilayer learning architecture with incremental self-organizing
networks. In Layer 1, two GWR networks learn posture and motion features
respectively. In Layer 2, a recursive GWR learns spatiotemporal dynamics
of body motion. This mechanism allows to predict the ideal continuation
of a learned sequence and compute feedback as the difference between its
expected behavior and its current execution.

A. Posture-Motion Sequences

The Kinect’s skeleton model (Fig. 1), although not faithful

to human anatomy, provides reliable estimations of the joints’

position over time. This allows us to extract significant prop-

erties of postural dynamics. For our approach, we tracked

the position of a person based on a simplified 3D model

of the human skeleton using a set of K joint coordinates

ji = (xji , yji , zji), 1 ≤ i ≤ K, so that at each timestep t
the body posture is represented as the collection of K joints

p(t) = (ji(t), ..., jK(t)). We computed motion intensity from

posture sequences with the inter-frame difference between

consecutive joint pairs.

For our experiments, we used body motion with a Kinect

v2 sensor1 and estimated body joints using Kinect SDK 2.0

that provides a set of 25 joint coordinates at 30 frames per

second. We used the joints for head, neck, wrists, elbows,

shoulders, spine, hips, knees, and ankles, for a total of 13

3D-joints (39 dimensions). In order to obtain translation-

invariance, we subtracted the spine base joint (the center of

the hips) from all absolute joint coordinates.

B. Hierarchical, Growing Self-Organizing Processing

The GWR [11] is a growing self-organizing neural net-

work that learns prototype representations of the inputs

while preserving their topological properties. The network

is composed of a set of neurons and their associated weight

vectors wj linked by a set of edges. During the training,

the network starts with two neurons and then dynamically

changes its topological structure to better match the input

space using competitive Hebbian learning [10].

At each iteration, the network computes the activation

as the difference between the current input and its best-

matching prototype neuron. Additionally, a firing counter

is used to compute how much neurons have fired. This is

in favour of training existing neurons over creating new

ones, and then adding new neurons whenever the network

activity with respect to the input is smaller than a given

threshold. This mechanism allows the network to adapt to

1Microsoft Kinect 2.0 – microsoft.com/en-us/

kinectforwindows/develop/
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changing input distributions faster than other models of

growing self-organization, e.g. with respect to the Growing

Neural Gas [16] where new neurons are added at fixed

intervals. The learning algorithm will iterate over the training

set until a given stop criterion is met, e.g. a max number of

training epochs.

In the first layer of our architecture (Fig. 2), the GWR

networks GP and GM learn respectively a set of posture

and motion prototype vectors used to efficiently represent

the temporal structure of a sequence in the next layer. This

hierarchical scheme has the advantage of using a fixed set

of learned features to compose more complex patterns in

the second layer, where the recursive network GI is trained

with sequences of posture-motion activation patterns from

the first layer to learn the spatiotemporal structure of the

input. From a dataset X with n samples, we compute the

best-matching neuron of the input sequence with respect to

the trained network with N neurons, so that a sequence of

input activations from the training set is given by

Ω(X) = {wb(x1),wb(x2), ...,wb(xn)}, (7)

with b(xi) = argmini∈N ‖xi − wj‖ computing the index of

the neuron (or prototype vector) that minimizes the distance

to the current input. We denote the dataset of posture and

motion vectors as P and M respectively. The training dataset

for GI , I, is given by the horizontal concatenation of the set

of activations over P and M, i.e. I = {Ω(P)⌢Ω(M)}.

C. Recursive GWR

To learn the spatiotemporal structure of the input in GI ,

we extend the traditional GWR algorithm [11] for efficient

context learning [15]. We adopt the distance function

dn(t) = α · ‖xt − wn‖
2 + (1− α) · ‖Ct − ci‖

2, (8)

Ct = β · wbt−1
+ (1− β) · cbt−1

, (9)

where α and β are constant values that modulate the influ-

ence of the current input and the past. Specifically for our

recursive GWR model, the update functions of the weight

and context neurons become

∆wi = ǫi · η(i) · (xt − wi), (10)

∆ci = ǫi · η(i) · (Ct − ci), (11)

where ǫi is the learning rate and η(i) is the firing counter.

The complete training algorithm is as follows:

1) Start with a set of two random neurons A = {w1,w2}
with context vectors c1, c2

2) Initialize an empty set of connections E = ∅
3) Initialize the empty global context C1 = 0
4) At each iteration, generate an input sample xt
5) Select best and second-best matching neurons (Eq. 8):

b = argminn∈A dn(t) and s = argminn∈A/{b} dn(t)
6) Create a connection E = E ∪ {(b, s)} if it does not

exist and set its age to 0
7) If (exp(−‖xt − wb‖

2) < aT ) and (η(b) < fT ) then:

Add a new neuron r (A = A ∪ {wr}):

wr = 0.5 · (wb + xt), cr = 0.5 · (Ct + xt)
Update edges between neurons:

E = E ∪ {(r, b), (r, s)}, E = E/{(b, s)}
Increase by 1 the age of all the other edges

8) Update weight and context vectors of best-matching

neuron b and its neighbours:

∆wb = ǫb ·η(b)·(xt−wb), ∆wi = ǫn ·η(i)·(xt−wi),
∆cb = ǫb ·η(b) · (Ct−cb), ∆ci = ǫn ·η(i) · (Ct−ci)

9) Update global context Ct for next timestep (Eq. 9)

10) Reduce the firing counters of the best-matching neuron

and its neighbours i:
η(b) = η(b) + (τb · κ · (1− η(b))− τb),
η(i) = η(i) + (τi · κ · (1− η(i))− τb),
with τ , κ constants controlling the curve behaviour.

11) Remove all edges with age larger than amax and

remove neurons without edges

12) If the stop criterion is not met, go to Step 4

The recursive GWR architecture avoids the drawback of

our previous approach using a MSOM, where the number

of neurons of the networks had to be decided a priori.

Furthermore, since the GWR does not have a fixed lattice

topology, it can better represent the feature space.

D. Feedback from Prediction

The underlying idea for assessing the quality of a sequence

is to measure how much the current input sequence differs

from a learned template. In other words, provided that the

trained model GI is able to predict a training sequence

with a satisfactory degree of accuracy, it is then possible to

quantitatively compute how much a novel sequence follows

this expected pattern.

We define a function that computes the difference of a

current input sequence, Ωt , from its expected input, i.e. the

prediction of the next element of the sequence given Ωt−1:

fΩ(t) = ‖Ωt − p(Ωt−1)‖, (12)

p(Ωt−1) = wp with p = argmin
j∈N

‖cj − Ωt−1‖. (13)

Since the weight and context vectors of the prototype neurons

lie in the same feature space as the input (wi, ci ∈ R
|Ω|), it

is possible to provide joint-wise feedback computations. The

recursive prediction function p can be applied an arbitrary

number of timesteps into the future. Therefore, after the

training phase is completed, it is possible to compute fΩ(t)
in real time with linear computational complexity O(|A|),
which depends on the number of neurons of a trained model.

To compute feedback, we use the predictions estimated by

p as hints on how to perform a routine over 100 timesteps

into the future, and then use fΩ(t) to spot mistakes on

novel sequences that do not follow the expected pattern

for individual joint pairs. A mistake can then be detected

when fΩ(t) exceeds a given threshold fT over i timesteps.

Visual representations of these computations can then pro-

vide useful qualitative feedback to assist the user on the

correct performance of the routine and the correction of

mistakes (Fig. 1). Different from our previous model, our

current approach learns also motion intensity to better detect
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temporal discrepancies. Therefore, it is possible to provide

more accurate feedback on posture transitions and the correct

execution of lockouts.

IV. EXPERIMENTAL RESULTS

A. Time Series Analysis

We compared the performance of our MGWR on a time

series analysis task with other two well-established models of

recursive self-organization: Merge Neural Gas (MNG) [15]

and Merge Growing Neural Gas (MGNG) [17]. For the

analysis we used the Mackey Glass time series, a continuous

and chaotic function that has been used to evaluate the

temporal quantization of recursive models. It is defined by

the differential equation dx
dτ = bx(τ) + ax(τ−d)

1+x(τ−d)10 and

depending on the values of the parameters, it displays a range

of pseudo-periodic dynamics. For evaluation purposes, it is

generally used with a = 0.2, b = −0.1, and d = 17. Similar

to previous comparison schemes in the literature [13], all the

models were evaluated by their temporal quantization error

(TQE) for 30 steps in the past with 150,000 elements of the

series. The TQE for the map at time t is defined as:

e(t) =

N
∑

i=1





∑

j:I(j)=i

‖xj−t −
∑

j:I(j)=i

xj−t/γi‖
2/γi





1/2

/N,

(14)

where N is the number of neurons, γi is the number of

timesteps in which neuron i becomes the winner.

For MGWR learning, we used the following training

parameters: insertion threshold aT = 0.95, learning rates

ǫb = 0.01, and ǫn = 0.001, maximum age amax = 200,

firing counter parameters τb = 0.3, τi = 0.1, κ = 1.05,

firing threshold ηT = 0.1, and context learning parameters

α = 0.6, β = 0.7 with 100 training epochs. The training

parameters of MNG and MGNG were set according to

previously reported experiments [15], [17].

The TQE for the recursive models MSOM, MNG, MGNG

and our MGWR is reported in Fig. 3, showing how the four

models behave quite similar, with the MGWR slightly out-

performing the others. The average TQE over 30 timesteps

was MSOM= 0.0795, MNG= 0.0749, MGNG= 0.0721,

and MGWR= 0.0697. Although both the MSOM and MNG

are not growing methods, the latter performs better since the

topology of the MNG network is not fixed, thus yielding a

smaller quantization error.

B. Feedback on Powerlifting Routines

We used the dataset of 3 powerlifting exercises performed

by 17 volunteering athletes (9 male, 8 female) collected at

the Kinesiology Institute of the University of Hamburg [9]:

E1) High bar back squat: One repetition consists of

crouching with a loaded barbell behind the back

until the hips are lower than the knees and then

standing up;

E2) Deadlift: Lift a loaded barbell off the ground to the

hips, then lower back to the ground;

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Timesteps into past

0

0.02

0.04

0.06

0.08

0.1

0.12

T
Q

E

MSOM MNG MGNG MGWR

Fig. 3. Temporal quantization error over 30 timesteps into past for the
Mackey-Glass time series.

E3) Dumbbell lateral raise: Start with the arms at side

of the body, then raise the dumbbells sidewards

while keeping the elbows higher than the wrists.

To evaluate the system for the computation of feedback, we

also used a set of typical mistakes for each routine:

E1) Good morning (Horizontal back angle), Half squat,

Knees in;

E2) No lockout, Rounded back;

E3) Low elbows.

We evaluated our method for computing feedback with

individual and multiple subjects. We divided the correct body

motion data with 3-fold cross-validation into training and

test sets and trained the models with data containing correct

motion sequences. Each network was trained for 100 epochs.

For the test phase, both the correct and incorrect movements

were used with feedback threshold fT = 0.7 over 100 frames.

Our expectation was that the output of the feedback

function would be higher for sequences containing mis-

takes. We observed true positives (TP), false negatives (FN),

true negatives (TN), and false positives (FP) as well as

the measures true positive rate (TPR or sensitivity), true

negative rate (TPR or specificity), and positive predictive

value (PPV or precision). Results for single- and multiple-

subject data on E1, E2, and E3 routines are displayed in

Table I and II respectively, along with a comparison with

the best-performing feedback function fb from our previous

approach [9] that predicted the next input from a graph

containing the successor distances for all neurons.

The evaluation on single subjects shows that the system

successfully provides feedback on posture errors with high

accuracy. A drawback of our previous model was a limited

memory due to the number of neurons being fixed a priori

and a fixed network topology yielding a higher quantization

error. In our current approach, the MGWR networks grow

dynamically to better represent the spatiotemporal structure

of the sequences. This allows us to reduce the temporal

quantization error over longer timesteps (Fig. 3), so that

more accurate feedback can be computed and thus reduce

the number of false negatives and false positives (Table I and

II). Furthermore, since the networks can create new neurons

according to the distribution of the input, each network can
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TABLE I

SINGLE-SUBJECT EVALUATION.

TP FN TN FP TPR TNR PPV

E1 fb 35 10 33 0 0.77 1 1
fΩ 35 2 41 0 0.97 1 1

E2 fb 24 0 20 0 1 1 1
fΩ 24 0 20 0 1 1 1

E3 fb 63 0 26 0 1 1 1
fΩ 63 0 26 0 1 1 1

TABLE II

MULTI-SUBJECT EVALUATION.

TP FN TN FP TPR TNR PPV

E1 fb 326 1 7 151 0.99 0.04 0.68
fΩ 328 1 13 143 0.99 0.08 0.70

E2 fb 127 2 0 121 0.98 0 0.51
fΩ 139 0 0 111 1 0 0.56

E3 fb 123 0 8 41 1 0.16 0.75
fΩ 126 0 15 31 1 0.33 0.80

learn a larger number of possible executions of the same

routine, thus being more suitable for training sessions with

multiple subjects.

Tests with multiple-subject data shows a significantly

decreased performance, mostly due to a large number of false

positives. This is not necessarily a flaw linked to the learning

mechanism, but rather a consequence of the fact that people

have different body configurations and, therefore, different

ways to perform the same routine. A solution to attenuate this

issue is to set different values for the feedback threshold fT .

For larger values, the system would tolerate more variance

in the performance. On the other hand, one must consider

whether a higher degree of variance is desirable based on

the application domain; for instance, rehabilitation routines

may be tailored to a specific subject based on their specific

body configuration and health condition.

V. CONCLUSION

We presented a learning-based method that provides visual

assistance to the person performing an exercise by displaying

real-time feedback, thus enabling the user to correct inac-

curate body motion. The quality of actions is computed in

terms of how much a performed movement matches the

correct continuation of a learned sequence template. The

main contribution of our work is a novel recursive neural

network, the MGWR, that uses growing self-organization

for the efficient learning of input sequences. With respect to

our previous model [9], the current approach accounts also

for learning motion intensity to better predict and assess the

dynamics of actions. We evaluated our system with a data set

with 3 powerlifting exercises, showing that we outperform

our previous approach for the detection of mistakes, in

particular for the multiple-subject scenario.

Our experimental results encourage further work in the

direction of embedding our system in an assistive robot

companion which could interact with the user and motivate

the correct performance of physical rehabilitation routines

and sports training. This is supported by a number of studies

in which robots were used for motivating the users to perform

a set of health-related tasks [18], [19], [20]. Furthermore, the

assessment of motion plays a crucial rule not only for the

detection of mistakes on training sequences, but also in the

timely recognition of gait deterioration, e.g. linked to age-

related cognitive declines. In this context, growing learning

architectures are particularly suitable for this task, since they

may adapt to the user through longer periods of time while

still detecting significant changes in their motor skills.
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