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Abstract. The visual system processes the features and movement of an object in
separate pathways, called the ventral and dorsal streams. To integrate this princi-
ple in a functional model, a recurrent predictive network with a horizontal product
is introduced. Learned in an unsupervised manner, two sets of hidden units repre-
sent cells in the ventral and dorsal pathways, respectively. Experiments show that
the activity in the ventral-like units persists, given that the same feature appears in
the receptive field, whilst the activity in the dorsal-like units shows a fluctuating
pattern with different directions of object movements. Moreover, we show that
the position information predicts the input’s future position taking into account
its moving direction due to the direction-selective responses of the dorsal-like
units.

1 Introduction

1.1 Biological Evidence

Based on the argument by Livingstone and Hubel [10] that cells in the visual pathway
are organized in a hierarchical way with increasing receptive field size and higher vi-
sual abstraction from lower to higher layers, Ungerleider and Mishkin [12] established
a theory of two parallel visual pathways. The ‘dorsal pathway’ encodes spatial informa-
tion, invariant of object-specific properties, while the ‘ventral pathway’ encodes object
feature identity, invariant of positions and sizes, leading to generalization ability. Com-
monly, they are referred to as the ‘where’ and ‘what’ pathways.

Both pathways originate in the occipital lobe with the primary visual areas V1 and
V2, and are separate only in higher visual cortices. From recordings [14] in macaque
monkeys, however, a distinction of feature- and transformation movement encoding
cells is already evident in the diverse response properties of complex cells in V1: some
complex cells are direction- and speed-selective independent of spatial frequency, hence
resembling neurons in area MT of the dorsal pathway, which predict ‘where’ in addition
to the apparent direction of movement. Other complex cells are selective to spatial fre-
quency independent of speed, hence coding for feature identity (the ‘what’ pathway).
Interestingly, because of the delays from upstream and downstream neural transmis-
sion, the ‘where’ pathway should maintain a future position of an object. This can be
accounted for by the representation of movement direction and velocity in the dorsal
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pathway. The encoding of object location allows for motor-relevant representations in
the higher dorsal pathway [6], while the convergence of ventral and dorsal pathways
may also give rise to the understanding of object affordance and object manipulation
and its control, which is a function of the mirror neuron system [2].

1.2 Modeling Background

To distill object features regardless of transformations, networks were devised to learn
generalization over transformations, for example by encouraging the neurons to fire in-
variantly while transformations are performed in their input stimuli [4, 19]. Specifically,
by pooling the outputs of modeled simple cells, position-invariant responses as found
in V1 complex cells can be obtained by self-organization [5, 7]. Such principles can
be applied hierarchically to achieve larger-scale invariances (e.g. [15]). However, such
models lose the information about the specific transformations, which may be crucial
for certain behaviors.

In bilinear models of visual routing, a set of control neurons dynamically modifies
the weights of the ‘what’ pathway on a short time scale. The control units, encoding
the object’s position, thereby route the visual information from any retinal position to
an object-centered reference frame on the top-most level of the ‘what’ pathway [13, 3,
11]. Such control neurons have been hypothesized to reside in the pulvinar [1], or the
mediodorsal nucleus [16], of the thalamus.

Köster et al. [8] applied a horizontal product model with Independent Component
Analysis (ICA) to separate the location of image features from their identities. The out-
put is then generated by multiplying outputs from sub-models via the horizontal prod-
uct. The horizontal product model reduces computational effort: assuming that there are
I input units, considering T transformations and F features, a full bilinear model has
I ×T ×F connections, but only 2I × (T +F ) connections are needed in this network.

With the idea of solving the ‘what’ and ‘where’ problem jointly, here we propose a
method that can extract two or more components of information into separate pathways
from input data. Unlike previous approaches, our model encodes motion to predict its
future input: both pathways incorporate recurrent connections to capture the observed
response properties of complex cells.

We introduce the architecture and algorithm in section 2 and 3. A simulation ex-
periment based on artificial data is presented in section 4, followed by a discussion in
section 5.

2 Architecture

We specify a three-layer network with recurrent connections and a horizontal product
(see Fig. 1). The input layer corresponds to the simple cells in V1 (cortical layer IV),
while the hidden layer corresponds to complex cells in V1(cortical layer II and III).
The output layer is a feedback prediction of the input. The hidden layer contains two
independent sets of units representing dorsal-like ‘d’ and ventral-like ‘v’ neurons re-
spectively, inspired by the functional properties of dorsal and ventral pathways: (i) fast
responding dorsal-like units predict object position and hence encode movement; (ii)
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slow responding ventral-like units represent object identity. The recurrent connection
in the hidden layers helps to predict movement in layer d and maintain a persistent
representation of an object in layer v. The horizontal product brings both pathways
together again in the output layer with one-step ahead predictions. Let us denote the
output layer’s input from layer d and layer v as xd and xv , respectively. The network
output so is obtained via the horizontal product as

so = xd � xv (1)

where � indicates element-wise multiplication, so each pixel is defined by the product
of two independent parts, i.e. for output unit k it is sok = xdk · xvk.
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Fig. 1: Network architecture

3 Training Algorithm

We use sbi (t) to represent the activation of the input unit i at the t-th time-step. In some
of the following equations, we will omit the time-index t if all activations are in the
same time-step. The hidden units’ inputs yvj in the ventral pathway and ydj in the dorsal
pathway are defined as

yvj (t) =
∑
i

sbi (t)w
v
ji +

∑
i

sbi (t− 1)w̄v
ji +

∑
j′

svj (t− 1)vvjj′ (2)

ydl (t) =
∑
i

sbi (t)w
d
li +

∑
i

sbi (t− 1)w̄d
li +

∑
l′

sdl (t− 1)vdll′ (3)
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where wd
li/w

v
ji represent the weighting matrices between dorsal/ventral layers and the

input layer, w̄d
li / w̄v

ji represent the weighting matrices between a one-step delayed input
and the two hidden layers and vdll′ /v

v
jj′ indicate the recurrent weighting matrices within

the hidden layers. We expect that the incorporation of the time-delayed inputs directly
from sbi can introduce more stable input signals in both units regardless of the short-time
changes of object features.

The transfer functions in both hidden layers employ a logistic function and a soft-
max function:

zvj =
1

1 + exp(−ajyvj + bj)
; zdl =

1

1 + exp(−alydl + bl)
(4)

svj =
exp(zvj )∑

j′

exp(zvj′)
; sdl =

exp(zdl )∑
l′

exp(zdl′)
(5)

The logistic function has two local modifiable parameters a and b, leading to the in-
trinsic plasticity of neurons, which we will discuss in the following paragraphs. These
transfer functions lead to regular firing on the hidden layer.

The terms of the horizontal products of both pathways can be presented as follows:

xvk =
∑
j

svju
v
kj ; xdk =

∑
l

sdl u
d
kl (6)

The network output is described in Eq. 1.
The training progress is determined by a cost function:

C =
1

2

T∑
t

N∑
k

(sbk(t+ 1) − sok(t))2 (7)

where sbi (t + 1) is the one-step ahead input, as well as the desired output, sok(t) is the
current output, T is the total number of available time-step samples andN is the number
of output nodes, which equals the number of input nodes. Following gradient descent,
each weight update in the network is proportional to the negative gradient of the cost
with respect to the specific weight w that will be modified:

∆w = −η ∂C
∂w

(8)

The object identity and position information from the input data is distinguished
and extracted by the two pathways during training. The activations in layer v are first
determined by Eq. 4 and 5; after that, a constraint is set to the ventral-like units v
so that the states in the following time-steps are forced to be equal to the first time-
step as long as the identity of the object remains unchanged. That is, the ventral-like
units’ activations remain the same until the appearance of a new object. The dorsal-like
units, which do not have such a constraint, can update quickly according to the current
position of the object.
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The weights between input and hidden layers and between hidden layers and output
layer, are set to be non-negative. This non-negativity constraint makes the representation
purely additive (allowing no subtractions) and accounts for the non-negativity of the
data.

As mentioned in Eq. 4, the neurons’ intrinsic plasticity modeling [17], which is ap-
plied in the hidden layers, is based on the biological finding that a neuron can adjust
its intrinsic electrical properties following its neuronal or synaptic activity. Mathemat-
ically, it adjusts its function parameters, slope and threshold, so as to fit its output rate
to a sparse exponential regime. The update of parameters a and b is given by

∆ai = ηa(
1

ai
+ yi − 2yizi −

1

µ
yizi +

1

µ
yiz

2
i ) (9)

∆bi = ηb(1 − 2zi −
1

µ
zi +

1

µ
z2i ) (10)

where µ is the mean for the exponential defined over the positive half-axis. The learning
of parameters a and b leads to different shapes of the transfer function. Specifically, the
parameter a controls the gain of the input, changing the slope of the sigmoid function,
while the parameter b shifts the function, resembling a change of threshold.

4 Experiment

As a proof of concept, we present artificially generated input data to the network. These
data mimic moving objects, i.e. their positions change quickly but their identity changes
rarely. In this dataset, only one object appears at one unique position in any time-step.
The input space is of size 5 × 5 and 4 different objects at any position, which can be
represented on an input layer of total size 4×5×5 (see Fig. 2a). This minimalistic set up
sketches a hyper-column in V1 that processes oriented lines of 4 different orientations
at 5 × 5 possible positions.

The training data set comprises four directional movements horizontally and verti-
cally covering all of the possible sequences of all objects. For instance, the first data set
contains an activation in the first layer moving from coordinate (1, 1) to (1, 2), (1, 3), · · ·
and back to (1, 1) (Fig. 2a shows part of the input data moving rightwards). These move-
ments vary in different starting points and different objects. In the training process, the
target data is one time-step ahead of the input data.

In the following experiment, the maximum iteration is set to be 100, 000, learning
rates are ηa = 0.0001, ηb = 0.0001, η = 0.01. µv = 0.1 and µd = 0.01 are the
parameters of intrinsic plasticity µ in ventral- and dorsal-like units, respectively. In
order to learn movement appropriately, activation in both hidden layers is set to zero
when changes. The stopping criteria is that the error difference of consecutive iterations
is smaller than 10−7.

With the input sample in Fig. 2a, Fig. 2b shows the corresponding one-step ahead
prediction. We can generally observe that the output layer predicts the one-step ahead
movement. Note that the output is inactive in every first time-step since the recurrent
and time-delayed connections require the previous inputs which are not available in
the first time-step. As depicted in Fig. 3, activations in the corresponding activations of
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(a) Partial training samples while one object moving horizontally rightwards.

(b) The network output given the input above.

Fig. 2: Example of input and output data.

hidden layer v stay stable when one object appears, while we can distinguish various
patterns in the dorsal-like layer d representing perceptions of different positions. The
training error over the course of learning is depicted in Fig. 4. The stopping criterion
was achieved by around iteration 3100.
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Fig. 4: Output error through iterations.
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5 Discussion

This paper presents a new predictive architecture of emergent ‘what’ and ‘where’ pro-
cessing. The experimental results show that the information of object identity and posi-
tion have been successfully separated in an unsupervised manner: the activation of units
in ventral-like units v remains stable while presenting the same object, but different pat-
terns appear in the dorsal-like units d indicating the position and movement direction.
These results, especially the activation in the dorsal-like units, are analogous to the
recording of ‘direction-selective’ complex cells in V1 [14]. Though there has been ob-
served a continuum between identity-specific and motion-specific complex cells, in our
model we simplify this relationship and clearly discriminate between the two extremes
only.

This model also highlights the role of recurrent connections [9], which store previ-
ous movement information, and serve a predictive function. Prediction in the visual sys-
tem is apparent by neurophysiological findings of predictive receptive field shifts [16]
and behavioural findings of visual responsibility in movement prediction [18]. We be-
lieve that any cortical area should compensate its processing delays via prediction.

Due to its simplicity, the network cannot yet separate several objects in different
locations at the same time. Furthermore, the network does not predict the position of
an unlearned object. However, the network should be compared to the biological func-
tionality of a small patch of visual cortex circuitry that only distinguishes outlines of
different orientation from simple cells. In such a hyper-column, lateral inhibition limits
the concurrent representation of multiple orientations.

Our model successfully represents the visual information in separate pathways with
less hidden units (layers d and v) than inputs. Moreover, it learns to extract and encode
both ‘what’ and ‘where’, as well as movement directions. A hierarchical model, e.g.
a deep-learning architecture, can be further derived based on similar ideas to achieve
higher-order motion detection and generalization requirements.
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[4] Földiák, P.: Learning invariance from transformation sequences. Neural Computation 3,
194–200 (1991)

[5] Fukushima, K.: Self-organization of shift-invariant receptive fields. Neural Networks 12(6),
791–801 (1999)



8 J. Zhong, C. Weber and S. Wermter
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