
  
ABSTRACT 
Developing a model of aqueous corrosion of metal has 
proven to be a complex and intractable problem.  
Although the electro-chemistry of the exchange of 
electrons is well documented, the influence of other 
factors such as changes in water temperature, oxygen 
levels, and the levels of pH and alkalinity on the 
corrosion process are less well understood.  As yet 
there is no model which adequately explains this 
interaction, because of the extreme non-linearity of the 
problem.  One method of achieving this is through the 
use of artificial neural networks which are well 
established as a means of mapping complex non-linear 
relationships onto a desired output. However the best 
architecture for the extrapolation of data is very 
problem dependant. Because of the high dimensionality 
of the data sets, we have compared and contrasted two 
methods for eliminating highly correlated data sets.  
Our claim is that accurate regression modeling on such 
a complex problem can best be achieved using radial 
basis function networks, which have demonstrated a 
superiority over multi layer perceptrons for modeling 
highly non-linear problem surfaces, combined with 
genetic algorithms as an initial pre-processing step. 
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1. INTRODUCTION 
Corrosion monitoring is one of the basic functions 
required for safe and efficient industrial operations.   
Corrosion represents the reduction of the metal to its 
original ore, via an exchange of electrons between the 
metal and its surroundings.  Although the anodic and 
cathodic process which drives the electron exchange is 
well understood, and can be modelled by differential 
equations derived from circuit diagrams, the influence of 
other parameters such as changes in the temperature and 
level of oxygen, is less understood.  Neural networks 
provide a means of modelling the relationship between 
parameters known to influence the corrosion process. 
Previous studies have concentrated on the use of multi-

layer perceptrons (MLP’s) which are well documented in 
regression problems [1] [2] [3].  However comparative 
studies of other architectures are sparse. 
 
 
This paper is structured as follows.  Section 1 gives a 
brief overview of the problem, a consideration of the 
necessity for dimensionality reduction, and a brief 
discussion of the methods involved.  Section 2 discusses 
issues relating to regression problems.  Section 3 outlines 
the main neural network architectures used in this work, 
section 4 outlines the experimental method used, and 
sections 5 and 6 consider the results, and discuss the 
implications of our findings for others interested in 
applying neural networks to regression problems 
respectively. 
 
 
Our source data is taken from the domestic water supply 
in Finland.   Water towers process water intended for 
reservoir systems, which supply the west and eastern 
halves of Helsinki respectively.   Each water tower site 
carries out treatment and readings before forwarding the 
supply to a specific town or city.  The water treatment 
towers are particularly interested in values for the 
following parameters, pH, alkalinity, temperature, 
conductivity and chloride levels.  The inter-relationship of 
these parameters was examined by the use of a genetic 
algorithm which ensures superfluous data is eliminated 
from training sets presented to the neural networks.  The 
data provided for this study came in two formats, a 
spreadsheet of laboratory readings from the water 
treatment plants, containing pH, alkalinity, temperature, 
chloride and conductivity readings, and a second 
spreadsheet containing readings for corrosion, pH 
temperature and chloride. Figure 1 below shows that the 
corrosion readings appear to follow a linear pattern, but 
are prone to disturbances by a number of outliers.      
From this data we have attempted to create a means of 
predicting corrosion in cast iron water pipes, using data 
for temperature, and chloride recorded at the same time.  
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2. APPLICATION OF DIMENSIONALITY 
REDUCTION TECHNIQUES 
In real world scenarios of developing new algorithms the 
dimensionality the problem space is a crucial factor as 
stated by Bishop [5] and many techniques have been used 
to ensure that only parameters with a significant influence 
on the target output are retained.  These methods can 
range from simple linear techniques such as stepwise 
linear regression and principal components analysis [4] 
[13] to more exotic technologies such as genetic 
algorithms.  The latter has been used extensively on our 
data sets, and the results compared to stepwise linear 
regression which, in addition to being an effective 
regression technique, has been shown to be an effective 
technique for reducing data dimensionality. [4]   
 

 

 
Figure 1:  Typical corrosion readings from sample sites showing the 

influence of outliers 

3.  REGRESSION PROBLEMS 
In regression problems, the purpose of the neural network 
is to learn a mapping from the input variables to a 
continuous output variable, or variables. A network is 
successful at regression if it makes predictions more 
accurate than a simple estimate.  The simplest way to 
construct an estimate, given training data, is to calculate 

the mean of the training data, and use that mean as the 
predicted value for all previously unseen cases. The 
average expected error from this procedure is the standard 
deviation of the training data.  The aim in using a 
regression network is therefore to produce an estimate 
that has a lower prediction error standard deviation than 
the training data standard deviation.  A particularly 
important issue in regression are output scaling and 
extrapolation effects. The most common neural network 
architectures have outputs in a limited range (e.g., (0,1) 
for the logistic activation function).  This presents no 
difficulty for classification problems, where the desired 
output is in such a range.  However, for regression 
problems there clearly is an issue to be resolved, and 
some of the consequences are quite subtle.  This subject is 
discussed below. 
 
  
Using the example given in figure 1, the hope is to fit a 
curve allowing a value y to be predicted using a collection 
of data points x.  From the figure below, it is obvious that 
the extrapolation curve will fit the cases based upon the 
shape of the existing curve. However, what about a point 
well to the right of the data points?  There are two 
possible approaches to estimating y for this point.  First, 
we might decide to extrapolate: projecting the trend of the 
fitted curve onwards.  Second, we might decide that we 
do not really have sufficient evidence to assign any value, 
and therefore assign the mean output value (which is 
probably the best ). 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Obtaining the correct function to predict the next values in 
time series problems 

 

4. ARCHITECTURES FOR REGRESSION 
PROBLEMS 
We will now consider two neural network architectures 
for extrapolating data.  Multi layer perceptrons, and 
Radial basis function networks. 

Extrapolate 

Project



4.1. MULTI-LAYER PERCEPTRONS 
Using a scaling algorithms such as minimax is highly 
restrictive.  First, the curve is not extrapolated 
independent of how close to the training data we may be.  
Second, it does not estimate the mean either - it actually 
saturates at either the minimum or maximum, depending 
on whether the estimated curve was rising or falling when 
approaching this region. There are a number of 
approaches to correct this deficiency in a multi layer 
perceptron [15].   
 
 
First, we can replace the logistic output activation 
function with a linear activation function, which simply 
passes on the activation level unchanged (N.B. only the 
activation functions in the output layer are changed; the 
hidden layers still use logistic or hyperbolic activation 
functions).  The linear activation function does not 
saturate, and so can extrapolate further (the network will 
still saturate eventually as the hidden units saturate).  
Second, we can alter the target range for the minimax 
scaling function (for example, to [0.25,0.75]).  The 
training cases are then all mapped to levels which 
correspond to only the middle part of the output units' 
output range.   
 

4.2.  RADIAL BASIS FUNCTION 
NETWORKS 
Radial networks are inherently incapable of extrapolation.  
As the input case gets further from the points stored in the 
radial units, the activation of the radial units decays and 
(ultimately) the output of the network decays.  An input 
case located far from the radial centers will generate a 
zero output.  The tendency not to extrapolate may be 
regarded as good (depending on the problem-domain and 
viewpoint), but the tendency to decay to a zero output (at 
first sight) is not.  If we decide to ignore extrapolation, 
then what we would like to see reported at highly novel 
input points is the mean. This is achieved by using the 
mean/SD scaling function with radial networks in 
regression problems.  The training data is scaled so that 
its output mean corresponds to 0.0, with other values 
scaled according to the output standard deviation.  As 
input points are executed outside the range represented in 
the radial units, the output of the network tends back 
towards the mean. The performance of a regression 
network can be examined in a number of ways.  
 
 
First, the output of the network for each case can be 
submitted to the network.  If part of the data set, the 
residual error is also displayed.  Second, summary 
statistics can be generated.  These include the mean and 

standard deviation of both the training data values and the 
prediction error.  One would generally expect to see a 
prediction error mean extremely close to zero (it is, after 
all, possible to get a zero prediction error mean simply by 
estimating the mean training data value, without any 
recourse to the input variables or a neural network at all).  
The most significant value is the prediction error standard 
deviation.  If this is no better than the training data 
standard deviation, then the network has performed no 
better than a simple mean estimator.  
Thirdly, a view of the response surface can be generated.  
The network's actual response surface is, of course, 
constructed in N+1 dimensions, where N is the number of 
input units, and the last dimension plots the height.  It is 
clearly impossible to directly visualize this surface where 
N is anything greater than two (which it invariably is).  
Radial Basis Function networks [16] represent a means of 
producing a smooth interpolation function, in which the 
number of basis functions is determined by the 
complexity of the mapping to be represented rather than 
by the size of the data set.    
 
 
To ensure the accuracy of this mapping several 
modifications are required, specifically the number of 
basis functions is much less than the number of data 
points.  The centers of basis functions are now determined 
during the training process, and each basis function 
contains its own width parameter jσ .  With these changes 
the mapping function for the radial basis neural network 
mapping becomes:  
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The biases 0kw can be incorporated into the summation by 
including additional extra basis function 0φ  whose 
activation is set to 1.  For Gaussian basis functions this 
gives: 
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where x is the d-dimensional input with elements ix , and 

jµ  is the vector determining the center of basis 

function jφ and has elements jiu . Further improvements 
can be obtained via the use of kernal regression, a 



technique for estimating regression functions from noisy 
data.  If a mapping from input vector x, to output vector y 
is required, the statistical properties of the data generator 
is given by probability density ),( txp in the joint input-
target space.  This can then be modeled via parzen kernal 
estimator constructed from the data set, using Gaussian 
kernal functions the estimator looks as follows. 
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With d and c being the dimensionalities of the input and 
output spaces respectively 
 

5. EXPERIMENTAL METHOD  
The parameters were pre-processed using the genetic 
algorithm, after several experiments, a smoothing factor 
of 0.13 with 100 populations and 100 generations (this 
provides for 10000 matches on the search string).  This 
resulted in a suggested list of parameters which should be 
retained for training.  Specifically, chloride, alkalinity and 
temperature. Several neural network architectures were 
subsequently created using chloride, alkalinity and 
temperature as inputs, and the values for corrosion as 
output.  The criteria for effective learning was the 
standard deviation ratio, between the training, and the 
validation set.  Tables 1 and 2 gives the result for each 
architecture, the number of neurons used, and their 
respective standard deviation ratios. 
 

6. RESULTS 
Tables 1 and 2 show the results for each of the 
architectures considered, which include two types of 
multi-layer perceptrons, as well radial basis function, 
probabilistic and generalized regression networks.  The 
tables also show the results for multi-layer perceptrons 
and radial basis function networks which include the 24 
hour period which is an additional means of smoothing 
times series input. 
 
 
 
 
 
 

24 hour period inserted 24 hour period absent 

Network Standard 
Deviation 

Network Standard 
Deviation 

MLP (3-layer) 0.33 MLP (3-layer) 0.25 

MLP (4-layer) 0.35 MLP (4-layer) 0.25 

RBF 0.34 RBF 0.27 

PNN/GRNN 0.33 PNN/GRNN 0.27 

 
Table 1:  Results of neural networks with 24 hour period inserted and 

absent for Llamala data set 
 
 

24 hour period inserted 24 hour period absent 

Network Standard 
Deviation 

Network Standard 
Deviation 

MLP (3-layer) 0.93 MLP (3-layer) 0.85 

MLP(4-layer) 0.93 MLP (4-layer) 0.99 

RBF 0.94 RBF 0.99 

PNN/GRNN 0.96 PNN/GRNN 0.64 

 
Table 2:  Results of neural networks with 24 hour period inserted and 

absent  for Pitkakoski data set 
 
 
7. CONCLUSIONS 
We have focused on the important issues of whether it is 
better to attempt to model a response surface using either 
hyperplanes or hyperspheres.  This is heavily dependant 
upon the nature of the data set.  There are numerous 
advantages and disadvantages to each approach, but radial 
basis function networks do offer several advantages in 
regression modeling over multi layer perceptrons.  Our 
results suggest that performance is comparable between 
the architectures when the number of outliers is small, but 
deteriorates rapidly as outliers increase.  Certain 
architectures are assisted in their predictive ability by the 
use of a time smoothed seasonal component, but again 
this is dependant upon the number of outliers present.  
Crucially however, the question is raised “are multi layer 
perceptrons, better at extrapolating over the entire data set 
compared to radial basis networks?” Radial basis function 



networks, are less likely to extrapolate beyond the known 
data, by contrast a multi layer perceptron tends to become 
more reliable over the entirety of the data set.  This may 
not necessarily be an advantage if the data set contains a 
large number of outliers.  In this work we have 
demonstrated that the predictive abilities of RBF 
networks are at least as accurate as MLPs confronted with 
significant outlier data. 
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