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Abstract. We describe an associator neural network to localise a recog-
nised object within the visual field. The idea extends the use of lateral
connections within a single cortical area to their use between different
areas. Previously, intra-area lateral connections have been implemented
within V1 to endow the simple cells with biologically realistic orienta-
tion tuning curves as well as to generate complex cell properties. In this
paper we extend the lateral connections to also span an area laterally
connected to the simulated V1. Their training was done by the following
procedure: every image on the input contained an artificially generated
orange fruit at a particular location. This location was reflected — in a
supervised manner — as a Gaussian on the area laterally connected to V1.
Thus, the lateral weights are trained to associate the V1 representation
of the image to the location of the orange. After training, we present
an image with an orange of which we do not know its location. By the
means of pattern completion a Gaussian hill of activation emerges on
the correct location of the laterally connected area. Tests display a good
performance with real oranges under diverse lighting and backgrounds.
A further extension to include multi-modal input is discussed.

Introduction

Once that an object of interest appears in the visual field, it is necessary to lo-
calise its position within the visual field before moving the centre of sight toward
it and, eventually, to activate a grasping movement prototype [9]. We develop
a biologically inspired solution using a recurrent associator network which we
want to apply in a bio-mimetic mirror neuron-based robot, MirrorBot.

Our approach extends the framework of intrinsic lateral (horizontal) connec-
tions in the cortex toward object recognition and localisation. Horizontal con-
nections within one cortical area have a strong influence on cortical cell response
properties. In the visual area V1, for example, they may be responsible for sur-
round effects and for the non-linear response properties of simple and complex
cells [11]. This view is supported by connectionist neuron learning paradigms in
which lateral connections statistically de-correlate [10] or find correlation struc-
ture [1] within the activities of cells in an area. Both paradigms are in accordance
with the notion that the lateral connections form an attractor network. The ac-
tivation patterns which form its attractors correlate nearby cell’s activations



but de-correlate distant cell’s activations. The attractor activation pattern can
recover noisy input with maximum likelihood [2]. Such a theoretically derived
learning paradigm has successfully explained orientation tuning curves of V1
simple cells as well as complex cell’s response properties [13].

Here we apply the learning rule for lateral connections within a cortical area
to connections between different, but laterally organised cortical areas. This
is justified by the fact that lateral connections between areas — as opposed to
hierarchical connections — originate and terminate in the same cortical layers [3].
A different learning rule is applied to the hierarchical connections which form
the input to one of our two simulated laterally connected areas (see Fig. 1). This
is a rule which leads to feature extraction and can be any rule from the sparse
coding / ICA repository. Here we use a sparse coding Helmholtz machine for the
bottom-up connections, as previously described [13].

The two laterally connected areas of our model specialise on object recogni-
tion and localisation. As such they shall be regarded as exemplary areas within
the lateral “what” and the dorsal “where” pathway of the visual system. In the
actual implementation, however, in a model where every connection is trained
and which uses natural images as input, there are no high-level cortical areas.
Instead, our “what” area receives direct visual input, reminiscent of V1 while
our “where” area receives directly the representation of a location. Such a rep-
resentation may actually reside in the superior colliculus [5].

The problem of object localisation is intermixed with recognition: several
structures in different locations within the image may match to the object of in-
terest and the best matching location has to be found. For this purpose, saliency
maps can be produced [8] or the data may be generated from Bayesian priors
[12]. These approaches, however, are missing a neural description. An approach
involving shifter neurons [7] takes into consideration the derivative of an object
with respect to a shift within the image. It can handle small shifts of complex
objects but involves high dimensional neurons which each have an N x N ma-
trix to the IV input neurons. Our approach uses standard neurons with order V
connections and handles relatively large shifts. However, tests have been done
only with a very simple object, and an extension to general objects is discussed.

Theory and Methods

The architecture is depicted in Fig. 1 and consists of a “what” pathway on the
left, and a “where” pathway on the right. The “what” pathway consists of an in-
put area and a hidden area. The input area consists of three sub-layers to receive
the red, green and blue components of colour images. Its size of 24 x 16 pixels
which is minimal to demonstrate object localisation reflects the computational
demand of training. The hidden area of the “what” pathway consists of two
layers which we may loosely identify with the simple (lower layer) and complex
(upper layer) cells of V1. The lower layer receives bottom-up connections W%*
from the input. In the following we will assume that these have already been
trained such that the lower layer cells resemble the simple cells of V1 [13]. Since
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Fig. 1. Model architecture. Left, the pathway of the lower visual system, the retina
which receives the image and V1, which we refer to as the “what” area. Feature ex-
tracting, hierarchically organised weights are W°*, V' (green). On the right side, the
“where” area displays the location of the object of interest. Lateral association weights
are Vaa, Va3, Vag and Vs (red). The small numbers denote simulated area sizes.

colour images are used, a few cells have learnt to encode colour, while the major-
ity has become black-and-white edge detectors. The depicted top-down weights
V' were only used to train W%, but are not used further on. The upper layer of
the V1 cells receives a copy of the output of the lower layer cells. After it receives
this initial input, it functions as an attractor network which solely updates its
activations based on its previous activations. Each cell receives its input from
all other neurons via recurrent weights V2. In addition, input arrives from the
laterally connected area of the “where” pathway via weights Va3.

The “where” pathway on the right of Fig. 1 consists of just one area. Its size
of 24 x 16 neurons matches the size of the image input area of the “what” path,
because an interesting object within the image should have a representation as
an activation at the corresponding location on the “where” area. The “where”
neurons are fully connected via recurrent weights V33 and in addition receive
input from the highest “what” layer via V3o. In the following, we will refer to
all connections Vay, Vas, Vas and Vio collectively as V!%, because they always
receive the same treatment, during training as well as during activation update.

Activation Dynamics and Learning rule: The activation update of the “where”
and highest level “what” neurons is governed by the following equation:

ui(t +1) = f(Zvif w(t) (1)

Activation u; of neuron i develops through discrete time ¢ using the input via
lateral weights v!?* from the other I (“what” and “where”) neurons. The lateral
weights are not forced to be symmetric, i.e. v!f* # v!¢! in general.

The lateral weights are trained from the bottom-up input. Their purpose

is to memorise the incoming activities u;(t = 0) as activation patterns which



they maintain. Since they will not be capable of holding every pattern, they will
rather classify these into discrete attractors. In the original top-down generative
model [13] these patterns were recalled in a separate mode of operation (“sleep
phase”) in order to generate statistically correct input data.

Learning maximises the log-likelihood to generate the incoming data distri-
bution by the internal activations u;(t) if Eq. 1 is applied repeatedly:

Avipt m 30 (ui(t = 0) — ui(t)) wi(t —1). (2)

Transfer Function and Parameters: The transfer function of our continuous
rate-coding neurons is: Bh;

f(hi) = Fmm = pi(1) 3)

The function ranges from 0 to 1 and can be interpreted as the probability p;(1) of
a binary stochastic neuron 7 to be in active state 1. Parameters § = 2 scales the
slope of the function and n is the degeneracy of the O-state. Large n = 8 reduces
the probability of the 1-state and accounts for a sparse representation of the pat-
terns which are learned. The introduction of this sparse coding scheme was found
to be more robust than the alternative use of variable thresholds. The weights
Vet were initialized randomly, self-connections were constrained to v}t = 0.

Training Procedure: First, the weight matrices W and V?*¢ were trained on
small patches randomly cut out from 14 natural images, as in [13], but with a
3-fold enlarged input to separate the red, green and blue components of each
image patch. 200000 training steps had been done. Lateral weights V%' were
then trained in another 200000 training steps with W%* and V¢ fixed. Herefore,
within each data point (an image patch), an artificially generated orange fruit
was placed to a randomly chosen position. An orange consisted of a disc of 5
pixels in diameter which had a color randomly chosen from a range of orange fruit
photos. The mean of the pixel values was subtracted and the values normalised to
variance 1. The “where” area received a Gaussian hill of activity on the location
which corresponds to the one in the input where the orange is presented. The
standard deviation of the Gaussian hill was ¢ = 1.5 pixels, the height was 1.

The representation of the image with an orange obtained through W% on the
lower V1 cells was copied to the upper V1 cells. This together with the Gaussian
hill on the “where” area was used as initial activation w;(t = 0) to start the
relaxation procedure described in Eq. 1. It is also used as target training value.
Relaxtions were done for 0 < ¢ < 4 time steps.

Results

Anatomy: Fig. 2 a) shows a sample of weights W of our lower V1 cells. Many
have developed localized, Gabor function shaped, non color selective receptive
fields to the input. A few neurons have developed broader, color selective recep-
tive fields. Similar results have been obtained [4].

Fig. 2 b)-e) shows samples of the lateral connections V!¢, Inner-area connec-
tions are usually center-excitatory and surround inhibitory in the space of their
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Fig. 2. a) The receptive fields (rows of W) of 16 adjacent lower V1 (“simple”) cells.
Bright are positive, dark negative connection strengths to the red, green and blue visual
input. Receptive fields of color selective neurons appear colored, because the three
color components differ. b)-e) Samples of lateral weights V'**. Positive connections
are green, negative are red. b) Within-area lateral connections among the upper V1
(“complex”) cells. ¢) Lateral cross-area connections from the “where” area to upper V1
to the same 16 neurons (same indices) as depicted in a) and b). Connections V22 and
Va3 together form the total input to an upper V1 cell. d) Cross-area lateral connections
from upper V1 to the “where” area. e) Within-area lateral connections on the “where”
area to the same 16 neurons as depicted in d). Connections Va3 and Va2 together form
the total input to a “where”-area cell. Within-area connections are in general center-
excitatory and surround-inhibitory and they are small in the long range. Connections
Va3 establish a Gaussian-shaped hill of activations. Cross-area connections V32 influence
the position of the activation hill. Self-connections in V22 and V33 are set to zero.

functional features [13]. Cross-area connections are sparse and less topographic.
Strong connections are between the “where” cells and color selective “what”
cells, because for orange fruits, color is a salient identification feature.
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Fig. 3. Each row shows the network response to a color image which contains an
artificially generated orange fruit. From left to right: the image, the reconstruction of
the image using feedback weights V¢, the representation on the “what” area, the initial
zero activities on the “where” area at time ¢ = 0. Then the activations on the “what”
and “where” areas at time t = 1, then on both at time ¢ = 4 which is the relaxation
time used for training, and then after a longer relaxation of ¢ = 10 time steps.

The estimated position of the orange on the “where” area is correct in the upper 3
rows. In the difficult example below, at time ¢ = 1 activity on the “where” area is
distributed across many locations and later focuses on a wrong location.
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Fig. 4. Localisation on real images taken from the robot camera. The lower two rows
show the response on the “what” and the “where” area at iteration time ¢t = 4 to the
image in the upper row.

Physiology: Figs. 3 and 4 show the relaxation of the network activities after
initialization with sample stimuli. In all cases, the “where” area neuron’s activa-
tions were initialised to zero at time ¢ = 0. The relaxation procedure therefore
completes a pattern which spans both, the “what” and the “where” area, but
which is incomplete at time ¢ = 0, as can be seen in Fig. 3.

The activition on the “where” area may resemble a Gaussian already at time
t = 1, even though at this time, no effective input from the lateral weights V33
has arrived. A clearer Gaussian hill of activity evolves at later steps, but since no
new information is coming in, the competition may draw a wrong location as a
winner, if the representation is very fuzzy initially (Fig. 3, lowest row). Since the
attractor shares the “what” and the “where” area, the Gaussian on the “where”
area may remain distorted for quite a while.

All weights in the model have been trained on the basis of real images and
are therefore irregular. Localisation quality may vary at slightly different object
locations within the image. The 5th frame in Fig. 4, for example, leads to an un-
clean “where” representation. If information from the 4th frame would be taken
into account, this may be cleand up. However, for simplicity and consistency
with the training procedure, the algorithm processes only one frame at a time.

Fig. 5 shows how the network creates images, if there is no information but
the location of the orange fruit. The projection of the corresponding internal rep-
resentation onto the input creates images with predominantly blue background
and a large patch of orange/red color near the location of the imaginated orange.

reconst. what where reconst. what where reconst. what where

Fig. 5. Each row shows the network response purely from a Gaussian hill of activation
on the “where” area. At time ¢t = 0 the “what” area does not contain any activations
and the reconstructed image is empty. Later, the areas maintain stable activations.



Discussion and Future Work

The current model has been trained on one object type, orange fruits. The
cross-area lateral connections V3, originate predominantly at color selective V1
neurons, taking advantage of a feature specific to our chosen kind of object. For
general object localisation, the cross-area lateral connections V32 need to be un-
specific to object features. Then the object to localise would have to show up on
V1 as a region of increased activation (attention). Fig. 6 shows two conceptual
architectures which could achieve this. In both cases a third area, e.g. a language
area, connects to V1. If it currently represents a specific object (as an orange
in the figure) then it shall give an activation bias to those neurons on V1 which
represent that object. Then, the lateral connections V3, transfer the biased rep-
resentation to the “where” area, where intra-area connections V33 confine the
activations to a Gaussian hill on the corresponding position. Note that direct
connections between the language area and the “where” area would not make
any sense, because an object does not have a preferred position a priori. Training
would automatically lead to near-zero connections.

The question remains whether the language area should be connected later-
ally to the V1 area as in Fig. 6 a) or hierarchically as in Fig. 6 b). The weight
structure is the same, but their usage and training differs. In the lateral version a
full representation on all three upper areas has to be present during training. In
the hierarchical version the orange/apple features on the now highest level may
be extracted by unsupervised training. The latter version is more appealing, be-
cause we expect a more abstract object representation to be hierarchically higher
than a representation which still contains information on the object location.

Fig. 6. The model with a) a laterally and b) a vertically (hierarchically) connected
language area. If two trained fruit, like a red orange and a green apple, appear in
the visual input, below, then at both corresponding locations in the “where” area a
Gaussian may emerge, both competing. Input from another area, like the word “orange”
from a language area may then strengthen the corresponding representation on “V1”.



Both paradigms, however, are not necessarily contradicting: in the visual
system, hierarchical and lateral connection patterns coexist if the vertical hi-
erarchical level difference is small [3]. Two hierarchically arranged areas (with
asymmetric connectivity [3]) may therefore use their mutual lateral connections
(which are symmetric) for a “top-down” reconstruction. In addition, recent evi-
dence suggests that object representations are distributed across different areas
[6], potentially on different hierarchical levels. A model for a data driven ar-
rangement of areas in parallel or hierarchically has been presented [14].
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