
A Dynamic Adaptive Self-Organising Hybrid Model for Text Clustering

Chihli Hung and Stefan Wermter
Centre for Hybrid Intelligent Systems

 School of Computing and Technology, University of Sunderland, UK
[chihli.hung;stefan.wermter]@sunderland.ac.uk

Abstract

Clustering by document concepts is a powerful way of
retrieving information from a large number of documents.
This task in general does not make any assumption on the
data distribution. In this paper, for this task we propose a
new competitive Self-Organising (SOM) model, namely
the Dynamic Adaptive Self-Organising Hybrid model
(DASH). The features of DASH are a dynamic structure,
hierarchical clustering, non-stationary data learning and
parameter self-adjustment. All features are data-oriented:
DASH adjusts its behaviour not only by modifying its
parameters but also by an adaptive structure. The
hierarchical growing architecture is a useful facility for
such a competitive neural model which is designed for
text clustering. In this paper, we have presented a new
type of self-organising dynamic growing neural network
which can deal with the non-uniform data distribution
and the non-stationary data sets and represent the inner
data structure by a hierarchical view.

1. Introduction

Clustering by document concepts is useful to reduce
the search space for linking a query to relevant
information. One well-known project is WebSOM [1],
which employs a Self-Organising Map (SOM) for
clustering documents and presents them on a 2-
dimensional map. Documents with a similar concept are
grouped into the same cluster and clusters with similar
concepts are located nearby on a map. This is the main
difference between neural clustering and traditional
statistical cluster analysis, which only assigns objects to
clusters but ignores the relationship between clusters. The
Self-Organising Map (SOM) combines non-linear
projection, vector quantization (VQ), and data clustering
functions [2]. However, in terms of the clustering
algorithm, a SOM suffers from the following problems:
!"The network structure including the topology and the

number of units has to be set before training. Different
architectures lead to different results. The fixed
architecture is not ideal for non-uniform distributions.

This constraint causes an unnecessarily large vector
quantization error.

!"Using a large single map with a huge data set is not
ideal and so a hierarchical approach may be needed.

!"A SOM is not ideal for non-stationary information
environments. Real world knowledge, for example,
news stories, is changing over time. An algorithm
which handles non-stationary data sets will offer more
flexibility for a web-based project, such as WebSOM.
In this paper, we focus on a text clustering task and

propose an alternative model, the Dynamic Adaptive Self-
organising Hybrid model (DASH), to address the above
deficiencies. We use the new Reuters news Corpus,
RCV11, as our main test-bed and evaluate DASH based on
classification accuracy and average quantization error.

The remainder of this paper is organised as follows. In
Section 2, we give a general review of current related
competitive models. In section 3, we introduce the DASH
approach. In section 4, we test the features of the DASH
using two small data sets. Section 5 contains three
experiments using the new Reuters Corpus given under
different scenarios. Then a conclusion is presented in
section 6.

2. Related Unsupervised Competitive Models

Several related unsupervised neural learning models
have been proposed to enhance the practicability of the
SOM. Different modifications of the SOM suggest
different enhancements from different viewpoints. These
models can be divided into four groups, which are static
models, dynamic models, hierarchical models and non-
stationary learning models.

Static models, such as the pure competitive learning
(CL) [2,3] and Neural Gas (NG) [4], relax the constraint
of a fixed topological structure, i.e. a grid, of SOM.
Dynamic models, such as the Growing Grid (GG) [5] and
Growing SOM (GSOM) [6], try to define a model with no
need of prior knowledge for the number of output units by
an incremental growing architecture. Hierarchical models,

1The new version of the Reuters news corpus can be found at
http://about.reuters.com/researchandstandards/corpus/

such as the TreeGCS [7], Multilayered Self-Organising
Feature Maps (M-SOM) [8] and Growing Hierarchical
Self-Organizing Map (GHSOM) [9], offer a detailed view
for a complicated clustering task. Non-stationary learning
models, such as the Growing Cell Structure (GCS) [10],
Growing Neural Gas (GNG) [11], Incremental Grid
Growing (IGG) [12], Growing Neural Gas with Utility
criterion (GNG-U) [13], Plastic Self Organising Map
(PSOM) [14] and Grow When Required (GWR) [15],
contain unit-growing and unit-pruning functions which are
analogous to biological functions of remembering and
forgetting under a dynamic environment.

We focus on models which are able to handle a data set
with the nature of hierarchical relationships, non-uniform
distributions, or non-stationary varieties. For a neural
model to offer automatic hierarchical clustering, it may
need a function to further prune the map by removing
unsuitable units to form several partitions on a map.
Hodge and Austin [7] use this technique to produce
synonym clusters as an automatic thesaurus. However,
this unit-pruning function seriously depends on a pre-
defined constant threshold. Based on the unknown data
distribution, this threshold is very difficult to determine.
Second, the partition is formed because of the nature of
the input data. One should not foresee that a hierarchy
must be built by a competitive model with the unit-
pruning function. A proper policy may build such a
hierarchy by further developing a whole map from a unit
with many input data mapped to this unit or with higher
error information, e.g. [8] and [9]. We take advantage of
both concepts to build DASH as an automatic hierarchical
clustering model.

For the non-stationary data set, a trained unit or
training unit should be updated by a unit which is trained
with new input samples. This is performed by the unit-
pruning or connection-trimming function. A model with
the connection-trimming function should be based on a
global aged consideration. The reason is that a local age
variable of a connection does not grow when units of this
connection is not activated. That is, the aged connection
may be kept forever so that the capability of self-
adjustment for a model to new stimuli is diminished.
Thus, a model, such as the GNG and GWR, using the
connection-trimming function based on a local aged
consideration can be treated as an incomplete non-
stationary model only.

On the other hand, the stop criterion of models should
not be a time-dependent threshold, such as iteration or
epoch. However, this stop criterion is used for the models
in our survey. Moreover, an unsuitable constant unit-
pruning or a connection-trimming threshold may make the
model train forever but learn nothing. This constant value
can be very small or very large, which is totally dependent
on trial-and-error. Therefore, it is not a good idea to use
such a constant threshold for a big data set. Unfortunately,

the GCS, GNG, IGG, GNG-U, PSOM and GWR apply a
constant threshold for detection of unsuitable units. We
argue that a unit-pruning or a connection-trimming
threshold should be automatically adjusted to suit
different data sets during training.

3. Dynamic Adaptive Self-organising Hybrid
(DASH) Model

3.1. The Need for DASH

We start by inspecting the features of text clustering
for a real-world task. First, the quantity of text information
is continuously growing so the information is not static.
Therefore, a text clustering model should allow the
learning of growing knowledge. It implies that a clustering
model which contains a time-based decaying learning
function is not suitable for such a task. Second, text
information usually has some relationship with time, for
instance, news. Some specific events often occur during a
specific period. Thus, in this period, several news articles
with similar topics are presented repeatedly and the recent
information is more important. Therefore, a clustering
model should be able to handle dynamic knowledge
acquisition during this period. Third, clustering should use
a hierarchical concept to complement searching. A
hierarchical structure for a large set of data is not only
necessary to keep the elasticity of the query response but
also to analyse the contents easily. Due to this reason, a
text clustering model should explicitly offer hierarchical
learning for a large and complicated text set. However,
none of the existing models meet all the needs of the
features required for a text clustering task. This leads to
the development of the DASH.

3.2. Features of DASH

From the viewpoint of concept, the DASH is an
integrated model of the GNG and GHSOM, and contains
several unique features. The DASH is a growing self-
organising model which has characteristics of a dynamic
structure, hierarchical training, non-stationary data
learning and parameter self-adaptation. Three main
percentage-like parameters, which influence the style of
the DASH architecture, have to be defined. The first one
is τ , which has an impact on how well DASH represents
the current data set and a link to the size of a map. The
second one is Smin, a minimum number of input samples
which a map represents. This parameter affects the depth
of a DASH hierarchy. The third one is a connection-
trimming variable, β, which functions as a unit-pruning
threshold. However, the β variable is self-adjusted when
the current model does not grow continuously to meet the
requirement of a map quality, i.e. the AQE, which is

defined as the average distance between every input
vector and its Best Matching Unit (BMU) [16]. An
example of the DASH structure is given in (Figure 1).

Layer 3

Layer 2

Layer 1

Figure 1. The hierarchical structure of DASH

The flowchart of DASH is shown in (Figure 2), which

involves two main iterations and seven processes. The
inner iteration is a GNG-like learning procedure for each
map in a hierarchy. However, unlike the GNG, the DASH
applies a global connection-trimming function instead of a
local one to remove aged relationships between units and
therefore, the isolated units are pruned globally. The
GNG grows in every pre-defined cycle, which is
determined by trial-and-error. In contrast, this cycle is a
part of DASH, which is mutually decided by τ , Smin and
the number of input samples in the current map (see Eq. 5
in Appendix). Furthermore, the connection-trimming and
growing period are constants for GNG but they are self-
adjusted variables for DASH.

The outer iteration is a GHSOM-like recursive training
cycle. The GHSOM applies two constants, i.e. 1τ and 2τ ,
to define the size and the depth of GHSOM architecture,
respectively. The DASH uses τ , which is percentage-like
parameter, to decide the size of map but use Smin to decide
how detailed the data samples are represented by the
DASH. For training kernel, the GHSOM directly employs
the SOM training algorithm for each unit-growing
procedure. For example, a GHSOM with 3x3 units in a
map needs to employ 3 traditional SOM training cycles,
i.e. one for a 2x2 structure, one for 2x3 (or 3x2) structure
and one for 3x3 structure, using the same number of input
data. However, only the training for the final map, i.e. the
3x3 map, is necessary. This behaviour may not be suitable
for a real-world clustering task. The DASH applies a
modification of GNG training procedure. For training a
child map, the GHSOM applies a threshold based on the
AQE in top level. However this threshold is dependent on
the AQE in its direct parent level for DASH. This feature
makes the DASH enforce a distributed learning which
trains a whole input set by training several smaller input

sub-sets separately. Moreover, the GHSOM does not
contain a unit-pruning function. Once units grow, they
have no chance to be removed. Conversely, the DASH
contains unit-pruning and unit-growing functions, which
can deal with the non-stationary and non-uniform data set.
The detailed DASH algorithm is shown in the Appendix.

yes

1.Global
Initialisation

2.Local
initialisation

3.Learning
phase

4.Pruning
phase

5.Growing
phase

7.Self-
adjusting

phase

8.Put extra
training in

pool

END

no

yes

no

No
more training in

pool

Meet
Objective

AQE

6.

9.

Figure 2. The flow chart of the DASH algorithm

4. Initial Experiments

We design two small experiments to present how
DASH works. In the first experiment, we use a pre-
arranged four-corner data set to test how the model deals
with a non-uniform distribution. In the second experiment,
we use a jumping-corner data set to show the capability of
handling a non-stationary data set for the model.

4.1. Four Corners

A 4-corner data set is applied to test the ability of
competitive models for learning a non-uniform data
distribution. Each corner contains 30x30 2-D input
vectors. The results of the SOM and DASH are presented
and both models can faithfully represent the associated
input vectors on 4 corners. However while the SOM
contains many “dead units” and cannot represent data well
at the borders of corners (Figure 3), DASH successfully
removes the unsuitable connections to form 4 clusters
during learning (Figure 4).

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Figure 3. The convergence of SOM training at
initial, 1,000 and 10,000 iterations

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Figure 4. The convergence of DASH training at
initial, 1,000 and 10,000 iterations

4.2. A Jumping Corner

A jumping-corner data set is used to mimic the non-
stationary input data. A data set distributed in the bottom
left corner at the beginning moves to the top right corner
at iteration 5001. It can be seen that a new data set in the
top right corner substitutes for the existing data set in the
bottom left corner. The SOM learns well in the beginning
because the data set is a uniform distribution (Figure 5).
However, when the existing data set is replaced by the
new data set, some units of the SOM cannot be re-trained
since the learning rate is decayed. Thus, “dead units” are
inevitable for a SOM to train a non-stationary data set.
Conversely, DASH removes unsuitable existing units
when new input stimuli happen (Figure 6).

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Figure 5. The convergence of SOM training at
initial, 6,000 and 10,000 iterations

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Figure 6. The convergence of DASH training at
initial, 6,000 and 10,000 iterations

5. Experiments

5.1. Description of New Reuters Corpus and Data
Set

We evaluate our model by the classification accuracy
and AQE, which have also been used in the work of
Kohonen et al. [17]. Based on the classification accuracy
criterion, a pre-labelled corpus is necessary. We work
with the new version of the Reuters corpus, RCV1, since
this news corpus is a representative test for text
classification, a common benchmark and a fairly recent
comprehensive data source [18, 19]. This corpus is made
up of 984 Mbytes of news. The number of total news
articles is 806,791 which contain about two hundred
million word occurrences. One hundred and twenty six
topics are defined in this new corpus. Each news article is
pre-classified to 3.17 topics on average but 10,186 of
them are assigned to no topic.

In this paper, the 8 most dominant topics in the corpus
are considered initially. Because a news article can be pre-
classified as more than one topic, the multi-topic
combination is treated as a new topic in this research.
Thus, the 8 dominant topics are expanded into 40
combined topics for the first 10,000 news articles. Each
full-text document is represented using vector space
model (VSM) [20]. Due to the massive dimensionality of
vectors, we remove the stop words, confine to words
shown in WordNet [21] and lemmatise each word to its
base form. WordNet is a net of words which only contains
open-classed words, i.e. nouns, verbs, adjectives and
adverbs. After this pre-processing, there are 16,122
different words in the master word list. The 1,000 most
frequent words are picked from the master word list since
this method is as good as most dimensionality reduction
techniques [22].

5.2. Static Data Set

The first 10,000 full-text documents without title
information is used as our test-bed. The pre-processing
procedure mentioned in the previous section is used. We
apply a normalised TFxIDF as the vector representation
approach [23]. In this experiment, three different τ , i.e.
95%, 90% and 85% of DASH are applied. For
convenience, they are termed DASH95, DASH90 and

DASH85 in this paper. The Smin is 1% and the initial βis
95%. Please note β is an adjustable parameter during
training. These three parameters are the same for
following experiments. We compare the results with six
other models, i.e. the CL, SOM, NG, GG, GCS and GNG.
We use 15x15 = 225 units for each model, but this
number is only an estimate for dynamic models, i.e. the
GG, GCS and GNG. All learning rates of models are
initialised to 0.1. Such a learning rate is certainly decayed
in some models, such as the CL, SOM and NG. SOM
fine-tuning training starts with a 0.001 learning rate.
Other models, such as the GG, GCS, GNG and DASH,
also use an extra learning rate which is 0.001 for training
runner-up units of BMU. Except the DASH, we train all
models using 10,000 iterations. The DASH stop criterion
is defined by objective AQE. According to the results in
(Table 1), we notice that models with a sticker structures
have higher AQEs. For example, the SOM and GG
contain a grid-style topographic structure which may be
difference from the relationships between data. Thus,
their AQEs are higher than other models in this paper. The
performance of DASH85 is worse than that of DASH90,
which contains a smaller AQE and a higher accuracy. The
reason is that a lower τ , i.e. 85%, introduces a bigger
size of map which consists of 262 units in the first layer.
That is, the average number of units mapped to a unit is
only 38.17 (17.38262000,10 ≅÷) which is much
smaller than the stop criterion of Smin
(100%1000,10 =×). Thus, only 3 maps are in the
hierarchy of DASH85 but there are 21 maps in the
DASH90. However, the total training time of the
DASH85 is longer than that of the DASH90 training.

Table 1. A comparison of neural models for a

static data set

 CL SOM NG GG GCS
AQE 0.836 0.930 0.837 0.881 0.820

accuracy 65.49% 69.16% 69.54% 68.82% 68.18%

 GNG DASH95 DASH90 DASH85
AQE 0.823 0.818 0.790 0.802

Accuracy 68.60% 69.60% 70.42% 68.37%

5.3. Knowledge Acquisition

This section is to test the ability of models to handle
the non-stationary data set. The pre-processing and vector
representation approaches are the same as those in the
previous section. We treat the new data set as new
knowledge that complements the existing knowledge. The
first 5,000 full-text documents are applied as an existing
data set and the second 5,000 full-text documents as a new

data set. There are three scenarios, which evaluates the
relationships of models and non-stationary data sets. The
existing data set is used for all experiments in the
beginning. The new data set is introduced in scenario 1 at
iteration 10,000, scenario 2 at iteration 30,000 and
scenario 3 at iteration 50,000. SOM rough-training is
stopped at iteration 30,000 and its fine-tuning training is
stopped at 50,000 iterations. The stop criterion of DASH
is finding the objective AQE. According to our
experiments, the SOM does not suffer from the new data
set seriously, if the distribution of the new data set is
similar to that of the existing data set (Table 2). In this
case, the performance of the SOM is comparable to the
non-stationary model, i.e., the DASH.

Table 2. A comparison of SOM and DASH for

knowledge acquisition scenario

 10000iter 30000iter 50000iter
AQE 0.937 0.938 0.940 SOM

accuracy 69.06% 68.44% 69.08%
AQE 0.771 0.780 0.802 DASH

accuracy 72.23% 71.42% 70.39%

5.4. Knowledge Update

This section is to compare the performance of models
under a non-stationary environment where the existing
data set is treated as out-of-date knowledge and should be
updated by the new knowledge, i.e. the new data set. The
same pre-processing procedure mentioned above is used.
To mimic the non-stationary data set, the first 10,000 full-
text documents are transformed by using the normalized
TFxIDF vector representation as our new data set but by
using the non-normalized TFxIDF as the old data set. The
averaged weights of the existing set are much higher than
those of the new data set. Thus, the AQEs are also much
higher when models deal with the existing data set. We
also introduce the new data set at iteration 10,000 for the
scenario 1, iteration 30,000 for the scenario 2 and
iteration 50,000 for the scenario 3.

Some non-stationary competitive models such as GNG-
U and GWR have been tried in these experiments.
However, it is not possible to use their unit-pruning and
connection-trimming constant thresholds for both data sets.
When a proper threshold is set for the existing data set,
this threshold is always too large for the new data set.
Thus, models do not grow. Conversely, if a threshold is
suitable for the new data set, this threshold is always too
small for the existing data set. However, we should not
set such a threshold by presuming the distribution of the
new data set. Therefore, we only test our model and SOM
in these experiments.

According to our experiments, the SOM clearly suffers
from the decayed learning rate (Table 3). The new data
samples are not learnt completely, so the accuracy drops
while the AQE increases. On the other hand, DASH
removes all unsuitable trained units very fast and adjusts
its new objective AQE automatically. Thus, there is no
large difference between the performance at each point
when a new data set is introduced during training for
DASH.

Table 3. A comparison of SOM and DASH for
knowledge update scenario

 10000iter 30000iter 50000iter

AQE 0.948 1.352 2.513 SOM
accuracy 64.37% 21.52% 25.75%

AQE 0.784 0.776 0.793 DASH
accuracy 71.40% 72.25% 69.30%

6. Conclusion

Due to the features of a real-world text clustering task,
a neural model which can handle both static and non-
stationary datasets and represent the inner data structure
by a hierarchical view is necessary. This paper has
presented such a new type of self-organising dynamic
growing neural network, i.e. DASH. In terms of concept,
the DASH is a hybrid model of GHSOM and GNG but the
DASH contains several unique features, such as the
parameter self-adjustment, hierarchical training and
continuous learning. Based on these features, a real-world
document clustering task has been demonstrated in this
paper. Those existing models which are designed for the
non-stationary data sets may not be suitable for a real-
world clustering task. The main reason is the difficulty of
determining unit-pruning and connection-trimming
parameters. Furthermore, those non-stationary models
should not use a time-dependent stop criterion. For more
complex data sets, such as a document collection, a
hierarchical structure is preferable. The DASH is a
hierarchical neural approach which functions as a non-
stationary distributing learning facility.

7. Reference

[1] T. Honkela, S. Kaski, K. Lagus, and T. Kohonen,
“Newsgroup exploration with WEBSOM method and browsing
interface”, Report A32, Helsinki University of Technology,
1996.

[2] T. Kohonen, Self-organization and associative memory,
Springer-Verlag, Berlin, 1984.

[3] S. Grossberg, “Adaptive pattern classification and universal
recoding: I. Parallel development and coding of neural feature
detectors”, Biological Cybernetics, vol. 23, 1976, pp. 121-131.

[4] T. Martinetz and K. Schulten, “A ‘Neural-Gas’ network
learns topologies”, Artificial Neural Network, vol. I, 1991, pp.
397-402.

[5] B. Fritzke, “Growing grid-a self-organizing network with
constant neighborhood range and adaptation strength”, Neural
Processing Letters, vol. 2 no. 5, 1995, pp. 9-13.

[6] D. Alahakoon, S.K. Halgamuge and B. Srinivasan,
“Dynamic self-organizing maps with controlled growth for
knowledge discovery”, IEEE Tractions on Neural Networks, vol.
11, no. 3, 2000, pp. 601-614.

[7] V. Hodge and J. Austin, “Hierarchical growing cell
structures: TreeGCS”, Proceedings of the Fourth International
Conference on Knowledge-Based Intelligent Engineering
Systems, 2000.

[8] H. Chen, C. Schuffels and R. Orwig, “Internet categorization
and search: a self-organizing approach”, Journal of Visual
Communication and Image Representation, vol. 7, no. 1, March,
1996, pp. 88-102.

[9] A. Rauber, D. Merkl and M. Dittenbach, “The growing
hierarchical self-organizing maps: exploratory analysis of high-
dimensional data”, IEEE Transactions on Neural Networks, vol.
13, no. 6, 2002, pp.1331-1341.

[10] B. Fritzke, “Growing cell structures – a self-organizing
network for unsupervised and supervised learning”, Neural
Networks, vol. 7, no. 9, 1994, pp.1441-1460.

[11] B. Fritzke, “A growing neural gas network learns
topologies”, Advances in Neural Information Processing
Systems 7, G. Tesauro, D.S. Touretzky, and T.K. Leen, eds.,
MIT Press, Cambridge MA, 1995, pp. 625-632.

[12] J. Blackmore and R. Miikkulainen, “Incremental grid
growing: encoding high-dimensional structure into a two-
dimensional feature map”, Proceedings of the IEEE
International Conference on Neural Networks (ICNN’93), San
Francisco, CA, USA, 1993.

[13] B. Fritzke, “A self-organizing network that can follow non-
stationary distributions”, Proceedings of ICANN’97,
International Conference on Artificial Neural Networks,
Springer, 1997, pp. 613-618.

[14] R. Lang and K. Warwick, “The plastic self organising map”,
IEEE World Congress on Computational Intelligence, 2002.

[15] S. Marsland, J. Shapiro and U. Nehmzow, “A self-
organising network that grows when required”, Neural Networks,
vol. 15, 2002, pp. 1041-1058.

[16] T. Kohonen, Self-organizing maps, Springer-Verlag, 2001.

[17] T. Kohonen, S. Kaski, K. Lagus, J. Salojärvi, J. Honkela, V.
Paatero and A. Saarela, “Self organization of a massive
document collection”, IEEE Transactions on Neural Networks,
vol. 11, no. 3, 2000, pp. 574-585.

[18] S. Wermter and C. Hung, “Selforganising Classification on
the Reuters News Corpus”, The 19th International Conference
on Computational Linguistics (COLING2002), Taipei, Taiwan,
2002, pp.1086-1092.

[19] T.G. Rose, M. Stevenson and M. Whitehead, "The Reuters
Corpus Volume 1 - from Yesterday's News to Tomorrow's
Language Resources", Proceedings of the Third International
Conference on Language Resources and Evaluation, Las
Palmas de Gran Canaria, 2002, pp. 29-31.

[20] G. Salton, Automatic Text Processing: the Transformation,
Analysis, and Retrieval of Information by Computer, Addison-
Wesley, USA, 1989.

[21] G.A. Miller, “WordNet: a dictionary browser”,
Proceedings of the First International Conference on
Information in Data, University of Waterloo, Waterloo, 1985.

[22] S. Chakrabarti, “Data mining for hypertext: a tutorial
survey”, ACM SIGKDD Explorations, vol. 1, no. 2, 2000, pp. 1-
11.

[23] G. Salton, and C. Buckley, “Term-weighting approaches in
automatic text retrieval”, Information Processing &
Management, vol. 24, no. 5, 1988, pp. 513-523.

8. Appendix – DASH Algorithm

For convenience, we describe the main structure of the
model as follows. Let A={L1,L2,…Ll}, where A is the set of
sub-maps. Let L={U1,U2,…Uu}, where Ui is the unit i in
the map L. Each Ui has an error variable, erri. Let Cij be
the binary connection between Ui and Uj. Each Cij has a
variable, ageij, to store the connection age. Let the input
distribution be p(X) for the input set X. Let X={x1,x2,…xn},
where xi is the input sample i in the input set X. We
define the weight vectors for an input sample and for a
unit as xi and wi respectively. Then the precise processes
of the DASH algorithm are as below.
1) Global network initialisation

1.1) Define a map quality index, τ , where 10 ≤< τ .
τ decides the objective AQE for a child map. It
controls the extent of the size for a single map and
is also the stop criterion for the child map training.
A smaller τ builds a bigger map, which means that
a map contains a larger number of units. An
assumption is made before training that there is a
virtual map L0 above the first map L1. L0 contains
only one unit whose weight vector, w0, is the mean
value of the untrained input data set, X, which
contains N input samples.

∑
=

=
N

i
ix

N
w

1
0

1

(Eq. 1)

Thus, the AQE of L0 is:

∑
=

−=
N

i
i wx

N
AQE

1
00

1

(Eq. 2)

1.2) Define learning rates bα and sα for the Best
Matching Unit b, and its neighbours s, respectively,
where 0 < sα < bα <1.

1.3) Define an age threshold, β, for a connection Cij,
where 10 ≤< β . The β cooperates with the
current highest age of connection to decide whether
a connection is too old. A β adjusting parameter,

βJ , is defined as well, which is used to modulate
β based on the current data samples.

1.4) Define Smin, a minimum number of input samples
which a map represents. The default value is two
because the minimum number of units is two in a
map. Smin can also be set as a proportion of the size
of input data, where 0<Smin<1. In this case, Smin
will be found by Smin×N. Smin influences the depth
of a DASH hierarchy. A smaller Smin makes the
DASH expand deeper down a hierarchy.

1.5) Let Ol be a temporal maximum number of units in
a map for the layer l. It is defined by (Eq. 3). The
value of 3 is used as the minimum of Ol because a
sub-map of DASH starts with 2 units, which allows
the model with one spare unit to grow. The value
of 100 is applied in (Eq. 3) for two reasons. The
first is that the model is better if it can achieve the
quality requirement using a smaller map. The
model is forced to train properly rather than adding
units to pursue a smaller AQE. The second reason
is that a very large map is not preferred because it
is hard to analyse or visualise. Besides the
parameter, Ol, an γ adjusting parameter, γJ , is

also defined to modify Ol, where 10 ≤< rJ . Ol
will be modified in the self-adjusting phase, if a
map contains Ol units but does not meet the map
quality.










>×=

==

− 1)),
2

,
2

min(,3max(

1)),
2

,100min(,3max(

min
1

min

lwhereSOO

lwhereSO

ll

l

τ

(Eq. 3)

2) Local network initialisation
2.1) Determine an objective AQE based on the AQE in

the direct parent map.





>×=

=×=

−

−

1,

1,
2

1

1

lwhereAQEAQEobjective
lwhereAQEAQEobjective

ll

ll

τ
τ (Eq. 4)

2.2) Based on Ol, define how often the unit grows as
follows:

IterGrow=
1−l

l

O
N ,

where Nl is the number of current input
data.

(Eq. 5)

2.3) Create two units and initialise weights randomly
from p(X).

2.4) Re-order the current data set randomly.
3) Learning Phase

3.1) Generate a data sample xi for the model.
3.2) Calculate the Euclidean distance of each unit to xi

and decide the Best Matching Unit, b, and the
Second Best Matching Unit, s, by

niLn wxb −= ∈minarg and (Eq. 6)

nibln wxs −= ∈ }/{minarg (Eq. 7)

and connect them as Cbs, if it does not exist.
3.3) Update the weights to the BMU b, and other units

n, with a connection from b:
)()()1(bibbb wxtwtw −⋅+=+ α and (Eq. 8)

)()()1(nisnn wxtwtw −⋅+=+ α (Eq. 9)

3.4) Add 1 to the age variables for all connection C, but
zero to Cbs.





=
+=

0
1

bsage
ageage

 (Eq. 10)

3.5) Increase the error to the BMU error variable, errb:

bibb wxterrterr −+=+)()1((Eq. 11)
4) Pruning Phase: at each n IterGrow iteration, where n is

1≥ .
4.1) Find the maximum age of connections currently.

agemax=arg max(age) (Eq. 12)
4.2) Remove any connection whose age is larger than a

portion of the maximum age of connections
currently.
Remove Cij, if β>

maxage
ageij (Eq. 13)

This will be carried out if the number of units is
more than two.

4.3) Prune any unit without any connection but still
keep the minimum number of units, 2.

5) Growing Phase: at each IterGrow iteration, insert a new
unit as follows:
5.1) Find the unit q with maximum accumulated error:

)(maxarg errq Lu∈= (Eq. 14)
5.2) Find the unit f, the unit with the highest

accumulated error amongst the neighbours of q.
)(maxarg errf

qNeighboursu∈= (Eq. 15)
5.3) Insert a new unit r to a map and initialise its weight

by interpolating weight vectors q and f.

2
fq

r

ww
w

+
= (Eq. 16)

5.4) Set up the err variables for units q, f and r.

2
q

q

err
err =

(Eq. 17)

2
f

f

err
err =

(Eq. 18)

2
fq

r

errerr
err

+
=

(Eq. 19)

5.5) Connect unit r to unit q and f. Set up the age
variable for these two connections, i.e. Crq and Crf.

qfrfrq ageageage == (Eq. 20)
5.6) Remove the connection between unit q and unit f.

6) Check the condition whether the map AQE meets the
objective AQE at each IterGrow iteration.
6.1) Evaluate the AQE for a map l:

∑
=

−=
lN

i
ibi

l
l wx

N
AQE

1
)(

1 , (Eq. 21)

where wb(i) is the weight vector of BMU for input
sample i.

6.2) If ll AQEobjectiveAQE ≤ , then stop training for
this map, or go to the self-adjusting phase.

7) Self-adjusting Phase: at some IterGrow iteration,
modify some parameters to suit the object AQEl.
7.1) Increase the age threshold, β by the adjusting

parameter, Jβ, if units are not growing.
)2()()1(βββ Jtt −×=+ , (Eq. 22)

 where 15.0 ≤< βJ .
7.2) Decrease the age threshold, if the number of units

reach Ol, which is the reference number of units in
a map:

βββ Jtt ×=+)()1(, (Eq. 23)
7.3) Increase the reference number of units in a map, if

the number is reached.
)2()()1(rll JtOtO −×=+ , (Eq. 24)

 where 15.0 << rJ .
8) Put all units whose AQEs are greater than the objective

AQE in the same layer into the training pool if the
number of their associated input vectors is greater than
Smin.

9) Continue the hierarchical training until there are no
training requirements in the training pool.

