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Abstract 
 

Clustering by document concepts is a powerful way of 
retrieving information from a large number of documents.  
This task in general does not make any assumption on the 
data distribution.  In this paper, for this task we propose a 
new competitive Self-Organising (SOM) model, namely 
the Dynamic Adaptive Self-Organising Hybrid model 
(DASH).  The features of DASH are a dynamic structure, 
hierarchical clustering, non-stationary data learning and 
parameter self-adjustment.  All features are data-oriented:  
DASH adjusts its behaviour not only by modifying its 
parameters but also by an adaptive structure. The 
hierarchical growing architecture is a useful facility for 
such a competitive neural model which is designed for 
text clustering.  In this paper, we have presented a new 
type of self-organising dynamic growing neural network 
which can deal with the non-uniform data distribution 
and the non-stationary data sets and represent the inner 
data structure by a hierarchical view. 
 
 
1. Introduction 
 

Clustering by document concepts is useful to reduce 
the search space for linking a query to relevant 
information. One well-known project is WebSOM [1], 
which employs a Self-Organising Map (SOM) for 
clustering documents and presents them on a 2-
dimensional map.  Documents with a similar concept are 
grouped into the same cluster and clusters with similar 
concepts are located nearby on a map.  This is the main 
difference between neural clustering and traditional 
statistical cluster analysis, which only assigns objects to 
clusters but ignores the relationship between clusters. The 
Self-Organising Map (SOM) combines non-linear 
projection, vector quantization (VQ), and data clustering 
functions [2].  However, in terms of the clustering 
algorithm, a SOM suffers from the following problems: 
!"The network structure including the topology and the 

number of units has to be set before training.  Different 
architectures lead to different results.  The fixed 
architecture is not ideal for non-uniform distributions. 

This constraint causes an unnecessarily large vector 
quantization error.   

!"Using a large single map with a huge data set is not 
ideal and so a hierarchical approach may be needed. 

!"A SOM is not ideal for non-stationary information 
environments.  Real world knowledge, for example, 
news stories, is changing over time.  An algorithm 
which handles non-stationary data sets will offer more 
flexibility for a web-based project, such as WebSOM. 
In this paper, we focus on a text clustering task and 

propose an alternative model, the Dynamic Adaptive Self-
organising Hybrid model (DASH), to address the above 
deficiencies.  We use the new Reuters news Corpus, 
RCV11, as our main test-bed and evaluate DASH based on 
classification accuracy and average quantization error.  

The remainder of this paper is organised as follows.  In 
Section 2, we give a general review of current related 
competitive models.  In section 3, we introduce the DASH 
approach.  In section 4, we test the features of the DASH 
using two small data sets.  Section 5 contains three 
experiments using the new Reuters Corpus given under 
different scenarios.  Then a conclusion is presented in 
section 6. 
 
2. Related Unsupervised Competitive Models 
 

Several related unsupervised neural learning models 
have been proposed to enhance the practicability of the 
SOM.  Different modifications of the SOM suggest 
different enhancements from different viewpoints.  These 
models can be divided into four groups, which are static 
models, dynamic models, hierarchical models and non-
stationary learning models.   

Static models, such as the pure competitive learning 
(CL) [2,3] and Neural Gas (NG) [4], relax the constraint 
of a fixed topological structure, i.e. a grid, of SOM.  
Dynamic models, such as the Growing Grid (GG) [5] and 
Growing SOM (GSOM) [6], try to define a model with no 
need of prior knowledge for the number of output units by 
an incremental growing architecture.  Hierarchical models, 

                                                 
1The new version of the Reuters news corpus can be found at 
http://about.reuters.com/researchandstandards/corpus/ 



such as the TreeGCS [7], Multilayered Self-Organising 
Feature Maps (M-SOM) [8] and Growing Hierarchical 
Self-Organizing Map (GHSOM) [9], offer a detailed view 
for a complicated clustering task.  Non-stationary learning 
models, such as the Growing Cell Structure (GCS) [10], 
Growing Neural Gas (GNG) [11], Incremental Grid 
Growing (IGG) [12], Growing Neural Gas with Utility 
criterion (GNG-U) [13], Plastic Self Organising Map 
(PSOM) [14] and Grow When Required (GWR) [15], 
contain unit-growing and unit-pruning functions which are 
analogous to biological functions of remembering and 
forgetting under a dynamic environment. 

We focus on models which are able to handle a data set 
with the nature of hierarchical relationships, non-uniform 
distributions, or non-stationary varieties.  For a neural 
model to offer automatic hierarchical clustering, it may 
need a function to further prune the map by removing 
unsuitable units to form several partitions on a map.  
Hodge and Austin [7] use this technique to produce 
synonym clusters as an automatic thesaurus.  However, 
this unit-pruning function seriously depends on a pre-
defined constant threshold.  Based on the unknown data 
distribution, this threshold is very difficult to determine.  
Second, the partition is formed because of the nature of 
the input data.  One should not foresee that a hierarchy 
must be built by a competitive model with the unit-
pruning function.  A proper policy may build such a 
hierarchy by further developing a whole map from a unit 
with many input data mapped to this unit or with higher 
error information, e.g. [8] and [9].  We take advantage of 
both concepts to build DASH as an automatic hierarchical 
clustering model.   

For the non-stationary data set, a trained unit or 
training unit should be updated by a unit which is trained 
with new input samples.  This is performed by the unit-
pruning or connection-trimming function.  A model with 
the connection-trimming function should be based on a 
global aged consideration.  The reason is that a local age 
variable of a connection does not grow when units of this 
connection is not activated.  That is, the aged connection 
may be kept forever so that the capability of self-
adjustment for a model to new stimuli is diminished.  
Thus, a model, such as the GNG and GWR, using the 
connection-trimming function based on a local aged 
consideration can be treated as an incomplete non-
stationary model only.   

On the other hand, the stop criterion of models should 
not be a time-dependent threshold, such as iteration or 
epoch.  However, this stop criterion is used for the models 
in our survey.  Moreover, an unsuitable constant unit-
pruning or a connection-trimming threshold may make the 
model train forever but learn nothing.  This constant value 
can be very small or very large, which is totally dependent 
on trial-and-error.  Therefore, it is not a good idea to use 
such a constant threshold for a big data set.  Unfortunately, 

the GCS, GNG, IGG, GNG-U, PSOM and GWR apply a 
constant threshold for detection of unsuitable units.  We 
argue that a unit-pruning or a connection-trimming 
threshold should be automatically adjusted to suit 
different data sets during training. 

 
3. Dynamic Adaptive Self-organising Hybrid 
(DASH) Model 
 
3.1. The Need for DASH 
 

We start by inspecting the features of text clustering 
for a real-world task. First, the quantity of text information 
is continuously growing so the information is not static.  
Therefore, a text clustering model should allow the 
learning of growing knowledge. It implies that a clustering 
model which contains a time-based decaying learning 
function is not suitable for such a task.  Second, text 
information usually has some relationship with time, for 
instance, news. Some specific events often occur during a 
specific period. Thus, in this period, several news articles 
with similar topics are presented repeatedly and the recent 
information is more important. Therefore, a clustering 
model should be able to handle dynamic knowledge 
acquisition during this period. Third, clustering should use 
a hierarchical concept to complement searching. A 
hierarchical structure for a large set of data is not only 
necessary to keep the elasticity of the query response but 
also to analyse the contents easily. Due to this reason, a 
text clustering model should explicitly offer hierarchical 
learning for a large and complicated text set. However, 
none of the existing models meet all the needs of the 
features required for a text clustering task. This leads to 
the development of the DASH. 

 
3.2. Features of DASH 
 

From the viewpoint of concept, the DASH is an 
integrated model of the GNG and GHSOM, and contains 
several unique features. The DASH is a growing self-
organising model which has characteristics of a dynamic 
structure, hierarchical training, non-stationary data 
learning and parameter self-adaptation. Three main 
percentage-like parameters, which influence the style of 
the DASH architecture, have to be defined.  The first one 
is τ , which has an impact on how well DASH represents 
the current data set and a link to the size of a map. The 
second one is Smin, a minimum number of input samples 
which a map represents. This parameter affects the depth 
of a DASH hierarchy. The third one is a connection-
trimming variable, β, which functions as a unit-pruning 
threshold. However, the β variable is self-adjusted when 
the current model does not grow continuously to meet the 
requirement of a map quality, i.e. the AQE, which is 



defined as the average distance between every input 
vector and its Best Matching Unit (BMU) [16]. An 
example of the DASH structure is given in (Figure 1). 
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Figure 1. The hierarchical structure of DASH 
 
The flowchart of DASH is shown in (Figure 2), which 

involves two main iterations and seven processes. The 
inner iteration is a GNG-like learning procedure for each 
map in a hierarchy.  However, unlike the GNG, the DASH 
applies a global connection-trimming function instead of a 
local one to remove aged relationships between units and 
therefore, the isolated units are pruned globally.  The 
GNG grows in every pre-defined cycle, which is 
determined by trial-and-error.  In contrast, this cycle is a 
part of DASH, which is mutually decided by τ , Smin and 
the number of input samples in the current map (see Eq. 5 
in Appendix). Furthermore, the connection-trimming and 
growing period are constants for GNG but they are self-
adjusted variables for DASH. 

The outer iteration is a GHSOM-like recursive training 
cycle. The GHSOM applies two constants, i.e. 1τ and 2τ , 
to define the size and the depth of GHSOM architecture, 
respectively. The DASH uses τ , which is percentage-like 
parameter, to decide the size of map but use Smin to decide 
how detailed the data samples are represented by the 
DASH. For training kernel, the GHSOM directly employs 
the SOM training algorithm for each unit-growing 
procedure. For example, a GHSOM with 3x3 units in a 
map needs to employ 3 traditional SOM training cycles, 
i.e. one for a 2x2 structure, one for 2x3 (or 3x2) structure 
and one for 3x3 structure, using the same number of input 
data. However, only the training for the final map, i.e. the 
3x3 map, is necessary. This behaviour may not be suitable 
for a real-world clustering task. The DASH applies a 
modification of GNG training procedure. For training a 
child map, the GHSOM applies a threshold based on the 
AQE in top level. However this threshold is dependent on 
the AQE in its direct parent level for DASH. This feature 
makes the DASH enforce a distributed learning which 
trains a whole input set by training several smaller input 

sub-sets separately. Moreover, the GHSOM does not 
contain a unit-pruning function.  Once units grow, they 
have no chance to be removed. Conversely, the DASH 
contains unit-pruning and unit-growing functions, which 
can deal with the non-stationary and non-uniform data set. 
The detailed DASH algorithm is shown in the Appendix.    
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Figure 2. The flow chart of the DASH algorithm 
 

4.  Initial Experiments 
 

We design two small experiments to present how 
DASH works.  In the first experiment, we use a pre-
arranged four-corner data set to test how the model deals 
with a non-uniform distribution.  In the second experiment, 
we use a jumping-corner data set to show the capability of 
handling a non-stationary data set for the model. 

 



4.1. Four Corners 
 

A 4-corner data set is applied to test the ability of 
competitive models for learning a non-uniform data 
distribution. Each corner contains 30x30 2-D input 
vectors.  The results of the SOM and DASH are presented 
and both models can faithfully represent the associated 
input vectors on 4 corners.   However while the SOM 
contains many “dead units” and cannot represent data well 
at the borders of corners (Figure 3), DASH successfully  
removes the unsuitable connections to form 4 clusters 
during learning (Figure 4). 
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Figure 3. The convergence of SOM training at 
initial, 1,000 and 10,000 iterations 
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Figure 4. The convergence of DASH training at 
initial,  1,000 and 10,000 iterations 

 
4.2. A Jumping Corner 
 

A jumping-corner data set is used to mimic the non-
stationary input data.  A data set distributed in the bottom 
left corner at the beginning moves to the top right corner 
at iteration 5001.  It can be seen that a new data set in the 
top right corner substitutes for the existing data set in the 
bottom left corner.  The SOM learns well in the beginning 
because the data set is a uniform distribution (Figure 5).  
However, when the existing data set is replaced by the 
new data set, some units of the SOM cannot be re-trained 
since the learning rate is decayed.  Thus, “dead units” are 
inevitable for a SOM to train a non-stationary data set.  
Conversely, DASH removes unsuitable existing units 
when new input stimuli happen (Figure 6).      
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Figure 5. The convergence of SOM training at 
initial, 6,000 and 10,000 iterations 
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Figure 6. The convergence of DASH training at 
initial, 6,000 and 10,000 iterations 

 
5. Experiments 
 
5.1. Description of New Reuters Corpus and Data 
Set 
 

We evaluate our model by the classification accuracy 
and AQE, which have also been used in the work of 
Kohonen et al. [17]. Based on the classification accuracy 
criterion, a pre-labelled corpus is necessary. We work 
with the new version of the Reuters corpus, RCV1, since 
this news corpus is a representative test for text 
classification, a common benchmark and a fairly recent 
comprehensive data source [18, 19].  This corpus is made 
up of 984 Mbytes of news.  The number of total news 
articles is 806,791 which contain about two hundred 
million word occurrences.  One hundred and twenty six 
topics are defined in this new corpus.  Each news article is 
pre-classified to 3.17 topics on average but 10,186 of 
them are assigned to no topic. 

In this paper, the 8 most dominant topics in the corpus 
are considered initially. Because a news article can be pre-
classified as more than one topic, the multi-topic 
combination is treated as a new topic in this research.  
Thus, the 8 dominant topics are expanded into 40 
combined topics for the first 10,000 news articles. Each 
full-text document is represented using vector space 
model (VSM) [20]. Due to the massive dimensionality of 
vectors, we remove the stop words, confine to words 
shown in WordNet [21] and lemmatise each word to its 
base form. WordNet is a net of words which only contains 
open-classed words, i.e. nouns, verbs, adjectives and 
adverbs. After this pre-processing, there are 16,122 
different words in the master word list.  The 1,000 most 
frequent words are picked from the master word list since 
this method is as good as most dimensionality reduction 
techniques [22]. 

 
5.2. Static Data Set 
 

The first 10,000 full-text documents without title 
information is used as our test-bed.  The pre-processing 
procedure mentioned in the previous section is used.  We 
apply a normalised TFxIDF as the vector representation 
approach [23].  In this experiment, three different τ , i.e. 
95%, 90% and 85% of DASH are applied. For 
convenience, they are termed DASH95, DASH90 and 



DASH85 in this paper. The Smin is 1% and the initial βis 
95%.  Please note β is an adjustable parameter during 
training.  These three parameters are the same for 
following experiments. We compare the results with six 
other models, i.e. the CL, SOM, NG, GG, GCS and GNG.  
We use 15x15 = 225 units for each model, but this 
number is only an estimate for dynamic models, i.e. the 
GG, GCS and GNG.  All learning rates of models are 
initialised to 0.1.  Such a learning rate is certainly decayed 
in some models, such as the CL, SOM and NG.  SOM 
fine-tuning training starts with a 0.001 learning rate.  
Other models, such as the GG, GCS, GNG and DASH, 
also use an extra learning rate which is 0.001 for training 
runner-up units of BMU.  Except the DASH, we train all 
models using 10,000 iterations.  The DASH stop criterion 
is defined by objective AQE.  According to the results in 
(Table 1), we notice that models with a sticker structures 
have higher AQEs. For example, the SOM and GG 
contain a grid-style topographic structure which may be 
difference from the relationships between data.  Thus, 
their AQEs are higher than other models in this paper. The 
performance of DASH85 is worse than that of DASH90, 
which contains a smaller AQE and a higher accuracy. The 
reason is that a lower τ , i.e. 85%, introduces a bigger 
size of map which consists of 262 units in the first layer.  
That is, the average number of units mapped to a unit is 
only 38.17 ( 17.38262000,10 ≅÷ ) which is much 
smaller than the stop criterion of Smin 
( 100%1000,10 =× ). Thus, only 3 maps are in the 
hierarchy of DASH85 but there are 21 maps in the 
DASH90.  However, the total training time of the 
DASH85 is longer than that of the DASH90 training. 

 
Table 1. A comparison of neural models for a 

static data set 
 

 CL SOM NG GG GCS 
AQE 0.836 0.930 0.837 0.881 0.820 

accuracy 65.49% 69.16% 69.54% 68.82% 68.18% 
 

 GNG DASH95 DASH90 DASH85 
AQE 0.823 0.818 0.790 0.802 

Accuracy 68.60% 69.60% 70.42% 68.37% 
 
5.3. Knowledge Acquisition 
 

This section is to test the ability of models to handle 
the non-stationary data set. The pre-processing and vector 
representation approaches are the same as those in the 
previous section. We treat the new data set as new 
knowledge that complements the existing knowledge.  The 
first 5,000 full-text documents are applied as an existing 
data set and the second 5,000 full-text documents as a new 

data set.  There are three scenarios, which evaluates the 
relationships of models and non-stationary data sets. The 
existing data set is used for all experiments in the 
beginning.  The new data set is introduced in scenario 1 at 
iteration 10,000, scenario 2 at iteration 30,000 and 
scenario 3 at iteration 50,000.  SOM rough-training is 
stopped at iteration 30,000 and its fine-tuning training is 
stopped at 50,000 iterations.  The stop criterion of DASH 
is finding the objective AQE.  According to our 
experiments, the SOM does not suffer from the new data 
set seriously, if the distribution of the new data set is 
similar to that of the existing data set (Table 2).  In this 
case, the performance of the SOM is comparable to the 
non-stationary model, i.e., the DASH. 

 
Table 2. A comparison of SOM and DASH for 

knowledge acquisition scenario 
 

 10000iter 30000iter 50000iter 
AQE 0.937  0.938 0.940 SOM 

accuracy 69.06% 68.44% 69.08% 
AQE 0.771 0.780 0.802 DASH 

accuracy 72.23% 71.42% 70.39% 
 

5.4. Knowledge Update 
 

This section is to compare the performance of models 
under a non-stationary environment where the existing 
data set is treated as out-of-date knowledge and should be 
updated by the new knowledge, i.e. the new data set. The 
same pre-processing procedure mentioned above is used. 
To mimic the non-stationary data set, the first 10,000 full-
text documents are transformed by using the normalized 
TFxIDF vector representation as our new data set but by 
using the non-normalized TFxIDF as the old data set.  The 
averaged weights of the existing set are much higher than 
those of the new data set.  Thus, the AQEs are also much 
higher when models deal with the existing data set.  We 
also introduce the new data set at iteration 10,000 for the 
scenario 1, iteration 30,000 for the scenario 2 and 
iteration 50,000 for the scenario 3.   

Some non-stationary competitive models such as GNG-
U and GWR have been tried in these experiments.  
However, it is not possible to use their unit-pruning and 
connection-trimming constant thresholds for both data sets.  
When a proper threshold is set for the existing data set, 
this threshold is always too large for the new data set.  
Thus, models do not grow.  Conversely, if a threshold is 
suitable for the new data set, this threshold is always too 
small for the existing data set.  However, we should not 
set such a threshold by presuming the distribution of the 
new data set.  Therefore, we only test our model and SOM 
in these experiments. 



According to our experiments, the SOM clearly suffers 
from the decayed learning rate (Table 3).  The new data 
samples are not learnt completely, so the accuracy drops 
while the AQE increases.  On the other hand, DASH 
removes all unsuitable trained units very fast and adjusts 
its new objective AQE automatically.  Thus, there is no 
large difference between the performance at each point 
when a new data set is introduced during training for 
DASH.  
 

Table 3. A comparison of SOM and DASH for 
knowledge update scenario 

 
 10000iter 30000iter 50000iter 

AQE 0.948 1.352 2.513 SOM 
accuracy 64.37% 21.52% 25.75% 

AQE 0.784 0.776 0.793 DASH 
accuracy 71.40% 72.25% 69.30% 

 
6. Conclusion  
 

Due to the features of a real-world text clustering task, 
a neural model which can handle both static and non-
stationary datasets and represent the inner data structure 
by a hierarchical view is necessary.  This paper has 
presented such a new type of self-organising dynamic 
growing neural network, i.e. DASH.  In terms of concept, 
the DASH is a hybrid model of GHSOM and GNG but the 
DASH contains several unique features, such as the 
parameter self-adjustment, hierarchical training and 
continuous learning. Based on these features, a real-world 
document clustering task has been demonstrated in this 
paper.  Those existing models which are designed for the 
non-stationary data sets may not be suitable for a real-
world clustering task.  The main reason is the difficulty of 
determining unit-pruning and connection-trimming 
parameters. Furthermore, those non-stationary models 
should not use a time-dependent stop criterion.  For more 
complex data sets, such as a document collection, a 
hierarchical structure is preferable. The DASH is a 
hierarchical neural approach which functions as a non-
stationary distributing learning facility. 
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8. Appendix – DASH Algorithm 
 

For convenience, we describe the main structure of the 
model as follows. Let A={L1,L2,…Ll}, where A is the set of 
sub-maps.  Let L={U1,U2,…Uu}, where Ui is the unit i in 
the map L.  Each Ui has an error variable, erri.  Let Cij be 
the binary connection between Ui and Uj.  Each Cij has a 
variable, ageij, to store the connection age.  Let the input 
distribution be p(X) for the input set X.  Let X={x1,x2,…xn}, 
where xi is the input sample i in the input set X.  We 
define the weight vectors for an input sample and for a 
unit as xi and wi respectively.  Then the precise processes 
of the DASH algorithm are as below. 
1) Global network initialisation 

1.1) Define a map quality index, τ , where 10 ≤< τ .  
τ  decides the objective AQE for a child map.  It 
controls the extent of the size for a single map and 
is also the stop criterion for the child map training.  
A smaller τ  builds a bigger map, which means that 
a map contains a larger number of units.  An 
assumption is made before training that there is a 
virtual map L0 above the first map L1.  L0 contains 
only one unit whose weight vector, w0, is the mean 
value of the untrained input data set, X, which 
contains N input samples. 
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(Eq. 1) 

Thus, the AQE of L0 is: 
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(Eq. 2) 

1.2) Define learning rates bα  and sα  for the Best 
Matching Unit b, and its neighbours s, respectively, 
where 0 < sα < bα <1. 

1.3) Define an age threshold, β, for a connection Cij, 
where 10 ≤< β .  The β  cooperates with the 
current highest age of connection to decide whether 
a connection is too old.  A β adjusting parameter, 

βJ , is defined as well, which is used to modulate 
β based on the current data samples. 

1.4) Define Smin, a minimum number of input samples 
which a map represents.  The default value is two 
because the minimum number of units is two in a 
map.  Smin can also be set as a proportion of the size 
of input data, where 0<Smin<1.   In this case, Smin 
will be found by Smin×N.  Smin influences the depth 
of a DASH hierarchy.  A smaller Smin makes the 
DASH expand deeper down a hierarchy.   

1.5) Let Ol be a temporal maximum number of units in 
a map for the layer l.  It is defined by (Eq. 3).  The 
value of 3 is used as the minimum of Ol because a 
sub-map of DASH starts with 2 units, which allows 
the model with one spare unit to grow.  The value 
of 100 is applied in (Eq. 3) for two reasons.  The 
first is that the model is better if it can achieve the 
quality requirement using a smaller map.  The 
model is forced to train properly rather than adding 
units to pursue a smaller AQE.  The second reason 
is that a very large map is not preferred because it 
is hard to analyse or visualise.  Besides the 
parameter, Ol, an γ  adjusting parameter, γJ , is 

also defined to modify Ol, where 10 ≤< rJ .   Ol 
will be modified in the self-adjusting phase, if a 
map contains Ol units but does not meet the map 
quality.  
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(Eq. 3) 

2) Local network initialisation 
2.1) Determine an objective AQE based on the AQE in 

the direct parent map. 
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2.2) Based on Ol, define how often the unit grows as 
follows: 



IterGrow=
1−l

l

O
N ,  

where Nl is the number of current input 
data. 

(Eq. 5) 

2.3) Create two units and initialise weights randomly 
from p(X). 

2.4) Re-order the current data set randomly. 
3) Learning Phase 

3.1) Generate a data sample xi for the model. 
3.2) Calculate the Euclidean distance of each unit to xi 

and decide the Best Matching Unit, b, and the 
Second Best Matching Unit, s, by 

niLn wxb −= ∈minarg  and (Eq. 6) 

nibln wxs −= ∈ }/{minarg  (Eq. 7) 

and connect them as Cbs, if it does not exist.  
3.3) Update the weights to the BMU b, and other units 

n, with a connection from b: 
)()()1( bibbb wxtwtw −⋅+=+ α  and (Eq. 8) 

)()()1( nisnn wxtwtw −⋅+=+ α  (Eq. 9) 

3.4) Add 1 to the age variables for all connection C, but 
zero to Cbs. 
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 (Eq. 10) 

3.5) Increase the error to the BMU error variable, errb: 

bibb wxterrterr −+=+ )()1(  (Eq. 11) 
4) Pruning Phase: at each n IterGrow iteration, where n is 

1≥ . 
4.1) Find the maximum age of connections currently. 

agemax=arg max(age) (Eq. 12) 
4.2) Remove any connection whose age is larger than a 

portion of the maximum age of connections 
currently. 
Remove Cij, if β>

maxage
ageij  (Eq. 13) 

This will be carried out if the number of units is 
more than two. 

4.3) Prune any unit without any connection but still 
keep the minimum number of units, 2. 

5) Growing Phase: at each IterGrow iteration, insert a new 
unit as follows:  
5.1) Find the unit q with maximum accumulated error: 

)(maxarg errq Lu∈=  (Eq. 14) 
5.2) Find the unit f, the unit with the highest 

accumulated error amongst the neighbours of q. 
)(maxarg errf

qNeighboursu∈=  (Eq. 15) 
5.3) Insert a new unit r to a map and initialise its weight 

by interpolating weight vectors q and f. 
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5.4) Set up the err variables for units q, f and r. 
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5.5) Connect unit r to unit q and f.  Set up the age 
variable for these two connections, i.e. Crq and Crf. 

qfrfrq ageageage ==  (Eq. 20) 
5.6) Remove the connection between unit q and unit f. 

6) Check the condition whether the map AQE meets the 
objective AQE at each IterGrow iteration. 
6.1) Evaluate the AQE for a map l:  
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where wb(i) is the weight vector of BMU for input 
sample i.  

6.2) If ll AQEobjectiveAQE ≤ , then stop training for 
this map, or go to the self-adjusting phase. 

7) Self-adjusting Phase: at some IterGrow iteration, 
modify some parameters to suit the object AQEl. 
7.1) Increase the age threshold, β  by the adjusting 

parameter, Jβ, if units are not growing. 
)2()()1( βββ Jtt −×=+ , (Eq. 22) 

 where 15.0 ≤< βJ . 
7.2) Decrease the age threshold, if the number of units 

reach Ol, which is the reference number of units in 
a map: 

βββ Jtt ×=+ )()1( , (Eq. 23) 
7.3) Increase the reference number of units in a map, if 

the number is reached. 
)2()()1( rll JtOtO −×=+ , (Eq. 24) 

 where 15.0 << rJ . 
8) Put all units whose AQEs are greater than the objective 

AQE in the same layer into the training pool if the 
number of their associated input vectors is greater than 
Smin.  

9) Continue the hierarchical training until there are no 
training requirements in the training pool. 


