Effectiveness of Feature Extraction in Neural Network
Architectures for Novelty Detection

Jonathan Francis Dale Addison, Stefan Wermter, John Maclintyre
Centre for Adaptive Systems
School of Computing, Engineering and Technology
University of Sunderland
St Peters Campus, St Peters Way
Sunderland, SR6 0DD, UK

e-mail dale.addison@sunderland.ac.uk

Abstract

This paper examines the performance of seven neural
network architectures in classifying and detecting novel
events contained within data collected from turbine sensors.
Several different multi-layer perceptrons were built and
trained using back propagation, conjugate gradient and
Quasi-Newton training algorithms. In addition, Linear
networks, Radial Basis Function networks, Probabilistic
networks and Kohonen self organising feature maps were
also built and trained, with the objective of discovering the
most appropriate architecture. Because of the large input set
involved in practice, feature extraction is examined to reduce
the input features, the techniques considered being stepwise
linear regression and a genetic algorithm. The results of
these experiments have demonstrated an improvement in
classification performance for multi layer perceptrons,
Kohonen and probabilistic networks, using both genetic
algorithms and stepwise linear regression over other
architectures considered in this work. In addition, linear
regression also performed better than a genetic algorithm for
feature extraction. For classification problems involving a
clear two class structure we consider a synthesis of stepwise
linear regression with any of the architectures listed above to
offer demonstrable improvements in performance for
important real world tasks.

Introduction

Novelty detection is the task of observing changes of
state in a process. For novelty detection, a description
of normality is learnt by fitting a model to the set of
normal examples, and previously unseen patterns are
then tested by comparing their novelty score (as
defined by the model) against some threshold [1]. The
monitoring task under investigation has a normal
operating state, as well as several other abnormal states.
Typically, the causes of these abnormal states differ,
which means their performance characteristics can be
observed, classified and recorded for future study.

One approach to the problem has been to use rule-
based expert systems. Such systems become highly
unstable if they are confronted with new data which
does not correspond to anything contained within the

system’s rules or facts [2] [3]. Highly dynamic
systems, such as gas turbines or medical diagnosis
problems frequently contain aspects which make exact
classification of states difficult, and our problem
embodies all of them. In particular: i) The high
dimensionality of this problem, owing to the number of
input parameters. ii) The extremely dynamic nature of
the problem. Current modeling techniques involve the
use of extremely complex third order differential
equations. iii) The uncertainty regarding the interaction
between parameters and their inter-relationship with the
output values.

Recently there has been much interest in modeling
condition monitoring tasks using neural networks:
Chowdhury and Wang describe a fault
detector/classifier using a Kohonen network, using
current and voltage signals obtained from high voltage
electricity transmission lines [4]. Cirrincione et al
examine the use of a Kohonen network which acts as a
diagnostic system for small and medium sized
machines [5]. In contrast Kevyan et al describe a
prototype signal monitoring system which utilises
adaptive-resonance theory networks and a fault
identification database for fault detection in a fast
breeder nuclear reactor [6]. Wu Yan and Upadhyaya
investigate the use of data compression methods and
neural networks for eddy current inspection of steam
generator tubing, using non-destructive testing [7].

These researchers have considered in some depth the
use of neural networks for novelty or fault detection.
However, extensive comparisons between different
architectures have not yet been performed. This paper
considers seven different architectures in conjunction
with feature extraction methods. Furthermore, the role
of dimensionality reduction techniques has not been
covered by any of these authors, even though in some
cases the training sets contain as many as 50
dimensions. In our work we obtain comparable
classification performance by eliminating those input
features which do not contribute to the classification.

Also, there is a trend to work with data sets which have
been created by time series processing using either the
values at t-1 or t+1 as inputs to the neural networks,
which can better extract or amplify the error cases
contained in the data sets. In this work we investigate
the raw signals without the benefit of any
preprocessing.

Description of Task

This work aims at identifying a neural network
architecture which can most effectively distinguish
between normal and abnormal readings taken from a
gas turbine. Another goal is the determination of how
effectively dimensionality reduction of the input
features improves the networks ability to classify.
Existing rule-based expert systems have proven
ineffective in dealing with the dynamic nature of such a
problem, where the interaction between multiple
variables and the significance of each parameter to the
regressed value is not fully understood. An example of
such problems has been documented by Milne and
colleagues during the TIGER project [8].

Our problem domain allows the turbine to be in one of
two states: normal (defined here as a normal reading of
the electrical output produced by the turbine generating
shaft); or abnormal, which can be in either the electrical
output level or the two fuel/air sensors in the
combustion chamber. The sensors provide the data
used in the experiments. Examples of normal and
abnormal sensor readings can be found in Figure 1
which shows readings for the fuel induction rate sensor.
This figure demonstrates normal operating conditions,
signified by a straight line. The second reading begins
at a significantly lower reading and then develops a
fault at one minute and 46 seconds.

105

Normal
=== Abnormal

95 +

Fuel Flow

85 +

75

0 60 120 180 24
Reading number

Figure 1: Chart showing normal (top) and abnormal
(bottom) readings for gas turbine fuel flow.

The training set was organised as follows. The fault file
used for the output readings was collected from the
fuel/air ratio sensors. The input mappings were
established by using 18 thermal exhaust sensors,
combined with the readings for fuel, level of electrical
output, and level of turbine steam output. Each training
set consisted of 240 patterns in the following order: (1)
The input pattern set without any form of pre-
processing consists of 21 features and 240 patterns. (2)
Following the application of a genetic algorithm, the
training features are reduced slightly to 19 features. (3)
Following stepwise linear regression, six features are
retained in the 240 patterns.

Training Algorithms

The architectures used for these experiments are multi-
layer perceptrons, Kohonen self-organising mapping,
radial basis function networks, probabilistic networks
and linear networks. It is not intended to go into a
detailed exposition of each network here, but we will
focus on the most distinctive features.

Multi-Layer Perceptrons

Typically MLP networks [9] consist of a set of sensory
units (source node) constituting an input layer, one or
more hidden layers of computational nodes and an
output layer of computational nodes. The input signal
moves forward through the network, layer by layer.
The following three training algorithms can be used.

Back Propagation

Back propagation provides two passes through the node
structures [10]. In the forward pass, a pattern is
propagated through the network layer by layer,
producing a set of responses. In the backward pass, the
network weights are adjusted according to the value of
the error correction rule by subtracting the response
value from the actual target value in the output layer to
produce an error value. The weights are then adjusted
to make the actual response of the network move closer
to the desired response. Various training times were
used with back propagation, but the most effective
combination was found to be a small number of epochs
(100) combined with a very low learning rate (0.2).

Conjugate Gradient

Conjugate gradient descent works by constructing a
series of line searches across the error surface [11].
The direction of steepest descent is computed by
projecting a straight line in that direction, then locating

a minimum along this line. Further line searches are
conducted (one per epoch). The direction of the line
searches (the conjugate directions) are chosen to try to
ensure that the directions that have already been
minimized stay minimized.

Quasi-Newton

To assist the Quasi-Newton [12] algorithm in escaping
from local minima, it was decided to train in two
stages. First, back propagation using a small number of
epochs (20-30) was used to train the network. Then, a
longer period of Quasi-Newton was utilised (100
epochs).

Kohonen Networks

In Kohonen networks, the post-processing definition
always includes a single nominal output variable, with
one nominal value for each class [13]. The units in the
output layer are labeled to correspond to the classes;
when the network is executed, the winning node (i.e.
the one with the lowest activation, indicating greatest
proximity to the input case) is selected, and its label is
used to assign the class. Consequently, the Kohonen
network’s output layer is user-defined, and can have
any number of units. The Kohonen network was trained
in two phases. An initial short learning phase,
incorporating a high learning rate, and a large
neighbourhood. The second phase is longer, using
10000 epochs, a very small learning rate, and no
neighbourhoods.

Linear Networks

In terms of function approximation, the simplest model
is the linear model [14], where the fitted function is a
hyperplane. A linear model is typically represented
using an NxN matrix and an Nx1 bias vector. A linear
neural network has no hidden layers, but an output
layer with fully linear units (that is, linear units with
linear activation function). The weights correspond to
the matrix, and the thresholds to the bias vector. When
the network is executed, it effectively multiplies the
input by the weight matrix, then adds the bias vector.
For these experiments, the pseudo-inverse procedure
was used. This optimizes the last layer in any network,
assuming it is a linear layer. Not only does it guarantee
location of the absolute minimum error, it is also
relatively quick.

Radial Basis Function Networks (RBF)

A RBF network has a hidden layer of radial units, each
modeling a Gaussian response surface [15]. The hidden
radial unit outputs are blended into the network outputs
by using a linear combination of these outputs (i.e. a
weighted sum of the Gaussians). The RBF has an

output layer containing linear units with linear
activation function. Random sampling to assign the
kernel density functions was found to be just as
effective as k-nearest neighbours, which has been
utilised in the experiments performed so far. The
typical number of radial units is 24, which represents
approximately ten percent of the pattern set.

Probabilistic Neural Networks (PNN)

In the PNN, there are at least three layers: input, radial,
and output layers [16]. The radial units are copied
directly from the training data, one per case. Each unit
models a Gaussian function centered at the training
case. There is one output unit per class. Each is
connected to all the radial units belonging to its class,
without connections from all other radial units. Hence,
the output units simply add up the responses of the
units belonging to their own class. The outputs are
each proportional to the kernel-based estimates of the
probability density functions of the various classes, and
by normalizing these to sum to 1.0, estimates of class
probability are produced. The main issue here is
concerned with assigning a random sampling value to
determine the distribution of the Gaussian function.
The default smoothing constant used in our
experiments is 0.3.

Dimensionality Reduction Techniques

Later in the paper we will show our benchmark results
for the seven network architectures described above.
However, before that we would like to introduce our
synthesis of neural network architectures with two
different dimensionality reduction techniques. The
need for dimensionality reduction methods has been
stated by Bishop [17]. In our task, although many
parameters are known to influence the output of
electrical energy, their exact inter-relationship (and
more importantly the degree of importance of each) is
difficult to extract or understand. In addition, to avoid
issues related to the “curse of dimensionality”[17], it
was decided to utilise feature extraction techniques to
determine which parameters should be retained for the
neural nets, and which should be ignored. Two
techniques have been used here to create the network
training sets: genetic algorithms and stepwise linear
regression. Both will be described below.

Genetic Algorithms

Genetic algorithms are an optimisation technique based
upon the classical Holland algorithm [18] that can
search efficiently for binary strings. Reproduction takes
place when individual strings are copied according to
an objective function, which measures each string’s
fitness. These qualities will be passed to the next

generation during the breeding process. Reproduction
in these experiments is achieved by simulating a
roulette wheel biased in favour of those strings which
have the highest fitness value. After reproduction,
simple crossover takes place in two stages. First, the
strings are mated at random, then the integer position k
along the string is selected uniformly at random
between one and the string length less than one [1, I-1].
Two new strings are created by swapping all characters
between position k + 1 and | inclusively. Mutation
allows a bit to be changed from 0 to 1 and vice versa,
with a mutation probability pm to prevent premature
convergence [19].

Genetic algorithms are well-suited for feature selection
as they are very good at recognising subsets of inter-
related bits (in this case, correlated or mutually-
required inputs). The time requirements are high, but
are mostly unaffected by the number of variables,
whereas forward and backward selection have time
requirements proportional to the square of the number
of variables. There are a large number of parameters
that can be altered in a genetic algorithm.

Stepwise Linear Regression

Another technique for dimensionality reduction is the
use of stepwise linear regression. Here we are
attempting to regress two or more independent
variables on to a single dependent variable. The
formula used is:

Y'=a+b X, +b,X, +..b X, [1.1]

Here Y’ is the predicted value of Y, X are the input
variables, and a and b are parameters used in
determining the degree of correlation. This formula
makes several assumptions, particularly that all the Y
values are independent of each other, and Y is a linear
function of X. For any fixed combination of X values,
the variance of Y is fixed, and for any fixed
combination of X values, Y is normally distributed.
The maximum value of the correlation coefficient
between observed Y values and predicted Y” values will
be obtained if we find the values of a, by, b....b« that
minimise the sum of squared errors (SS) of prediction
of the residual sum of squares.

SS =

res

(Y —Y")? [1.2]

Given that there are 21 potential inputs, for the sake of
clarity and readability, we will explain the concept

using only two X variables. The required value of a is
given by the equation.

a=Y -b X, ~b,X, [L3]
Where "X and 'Y represent the mean values of the input
parameters X, and the regressed Y value.

By substituting this value in [1.1] we have:

Y':V+b1(X1—Y1)+b2(X2—X_2) [1.4]
or.
Y'=Y +bx +b,x, [1.5]

Then if the residual sum of squares is to be minimized,
the values of b, andb, (the slope of each independent
variable) must satisfy the following equations.

by X12 +h, XX, = Xy [1.6]
and:
b X% +h X = %y [L7]

These two equations with unknown values for b: and b:
can be solved in the following fashion. Multiplying

[1.5] by XX, we obtain [20].

(X)(Xzz)(X)(Xz)
B SR

Using a similar procedure we arrive at.

bz_(Xzy)(X12)_(X1Y)(Xlxz)

B A

Stepwise linear regression has not been used as a
feature extraction method for neural network
processing. An important benefit of the technique is
that it produces several useful statistics such as the
standard deviation and variance of the X values in
relation to Y, which helps in identifying those
parameters which should be retained for training. But
most importantly linear regression deals with multiple
correlation’s between the data in the input set and the
target regression value. Moreover by using the stepwise

x,” and [1.6] by

feature the user can observe which of the input features
should be retained, which makes creating the input sets
for the neural networks easier.

Experiments and Analysis
The experiments were carried out in three stages:

a) The entire training set was used to train the
networks without the benefit of any feature
selection being applied. This establishes a
benchmark of performance for each network.

b) A genetic algorithm was then applied to the input
parameters used in a). Those deemed unfit for
training were discarded, and a new input set was
produced.

c) Finally stepwise linear regression was applied to
the training set described in a) above and again
unfit parameters were discarded, and a new
training set built.

Architecture | Training | Verification | Test
MLP-BP 94 93 97
MLP-CG 100 97 100
MLP-QN 100 100 100
Kohonen 99 99 100

Linear 81 88 79
RBF 75 63 79
PNN 100 97 100

Table 2: Percentages of patterns correctly classified after
processing with a genetic algorithm.

Table 3 shows the classification performance of each
architecture after the application of stepwise linear
regression. The performance of linear and radial basis
function networks is improved on both verification and
test sets, while the performance of the Kohonen
network improves to 100%.

Architecture | Training | Verification | Test
Tables 1-3 show the network architectures which MLP-BP 95 93 97
performed best in terms of training, verification and MLP-CG 95 93 97
test set performance. Table 1 shows the benchmark MLP-QN 100 100 100
performance for the full input feature representation. Kohonen 100 100 100
Linear 88 90 95
Architecture | Training | Verification | Test RBF 96 92 90
MLP-BP 95 95 97 PNN 98 98 100
MLP-CG 100 98 100
MLP-QN 100 08 100 Table 3: Percentages of patterns correctly classified after
Kohonen 08 98 100 processing with stepwise linear regression.
I;rée; r 82 g? 18050 An intgresting point_ as a reSl_JI_t of_ this W_o_rk concerns
PNN 100 % 100 the slightly superior classification ability of the
In related work

Table 1: Percentage of patterns correctly classified for
training, verification and test sets.

The following acronyms are used here for different
training algorithms in conjunction with multi-layer
perceptrons: BP=back propagation, CG=Conjugate
gradients, QN=Quasi-Newton.

Table 2 shows the results of preprocessing with a
genetic algorithm. The most striking result is a decline
in performance for linear and radial basis function
networks. This is most noticeable in the test set figures
for both networks. The decline in performance is most
noticeable in the radial basis function network. The
elimination of one feature from the training set reduces
classification ability by nearly 23%, whilst the
verification set (used to verify the accuracy of the
training set predictions) is reduced by approximately
34%.

probabilistic network over MLPs.
using vibration time series with Bayesian neural
networks, they have proven highly effective [21]. But
using a classification system based upon density
estimation via a Gaussian kernel depends on selecting
the correct value of the width parameter (h value)
which acts as a smoothing parameter to enable an
approximation to the density function. With a large
kernel width the density function becomes too smooth,
resulting in a loss of the bimodal nature of the
distribution. Conversely too small a parameter allows
the estimated density to represent the properties of a
particular data set rather than the required distribution
structure. The most important observation from these
experiments is that combining neural network
architectures with linear regression reaches comparable
performance using 30% of the original input features
compared to the original neural network architectures
without linear regression

Conclusions

This work has evaluated seven neural network
architectures and training algorithms for novelty
detection. In addition two techniques for feature
extraction and dimensionality reduction have been
considered, as a means of improving classification
performance. The strength of this work lies in a clear
benchmark comparison for the real-world task of
condition monitoring. We argue that a synthesis of
various neural networks with linear regression provides
comparable performance while using only 30% of the
input features.

References

[1] Alexandre, N. T.; Corbett, C.; Ripley, R,
Townsend N. W.; and Tarassenko, T. 1997 Choosing
an Appropriate Model for Novelty Detection,
Proceedings of IEEE Fifth International Conference
on Artificial Neural Networks, 117-123.

[2] McGarry, K.; Wermter, S.; and Maclintyre, J. 1999
Hybrid Neural Systems: From Simple Coupling to
Integrated Neural Networks. Neural Computing Survey
2.; http:/lmww.icsi.berkelyedu/~jagota/NCS.

[3] Wermter, S.; and Sun, R. 1999 Hybrid Neural
Symbolic Systems. Springer, Heidelberg.; (to appear)

[4] Chowdhury, B. H.; and Wang, K. 1996 Fault
Classification using Kohonen Feature Mapping,
Electrical Engineering Department, University of
Wyoming.

[5] Cirrincione, G.; Cirrincione, M.; Vitale, G. 1994
A Kohonen Neural Network for the Diagnosis of
Incipient Faults in Induction Motors, International
Conference on Electrical Machines, 364-73

[6] Kevyan, S.; Durg, A.; and Nagaraj J. 1997
Application of Artificial Neural Networks for the
Development of a Signal Monitoring System, Nuclear
Engineering Department, University of Missouri-Rolla,
Experts Systems, 14(2):69-78.

[7] Yan, W.; and Upadhaya, R. 1996 An Integrated
Signal Processing and Neural Networks System for
Steam Generator Tubing Diagnostics using Eddy
Current Inspection, Annals Nuclear Energy, 23(10):
813-825.

[8] Massuyes, L. T.; and Milne, R. 1996 Diagnosis of
Dynamic Systems based on Explicit and Implicit
Behavioural Models: An Application to Gas Turbines
in Esprit project TIGER” Applied Artificial
Intelligence, 10(3): 257-277.

[91 Haykin, S.; 1995 Neural Networks - A
Comprehensive Foundation.; Maxwell Macmillan
International Publishing Company, 138.

[10] Rumelhart, D. E.; Hinton, G. E.; and Williams, R
J. 1986. Learning Internal Representations by Error
Propagation in Parallel Distributed Processing:
Explorations in the Microstructure of Cognition: 318-
362.

[11] Hestenes, M. R.; and Stiefel, E. 1952 Methods of
Conjugate Gradients for Solving Linear Systems.
Journal of Research of the National Bureau of
Standards 49(6): 409-436.

[12] Barnard, E.; 1992 Optimization for Training
Neural Nets. IEEE Transactions on Neural Networks
3(2), 232-240.

[13] Kohonen, T.; 1982 Self-organized Formation of
Topologically Correct Feature Maps. Biological
Cybernetics 43, 56-69.

[14] Golub, G.; and Kahan, W. 1965 Calculating the
singular values and pseudo-inverse of a matrix,

Numerical Analysis, B 2 (2): 205-224.

[15] Lowe, D.; 1995 Radial Basis Function Networks,
The Handbook of Brain Theory and Neural Networks,
Cambridge, MA: MIT Press.

[16] Specht, D. F.; 1990 Probabilistic Neural
Networks. Neural Networks 3 (1): 109-118.

[17] Bishop, C. M.; 1997 Neural Networks for Pattern
Recognition, Oxford University Press.

[18] Holland, J.; 1975 Adaptation in Natural and
Artificial systems. MIT Press.

[19] Goldberg, E.; 1989 Genetic Algorithms in Search
Optimization and Machine Learning. Addison-Wesley.

[20] Edwards, A. L.; 1976 An Introduction to Linear
Regression and Correlation, W. H. Freeman and
Company, San Francisco.

[21] Buntine, W.; 1991 Theory Refinement on
Bayesian Networks Proceedings of Uncertainty in
Artificial Intelligence,: 52-60.

