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Abstract

Extracting rules from RBFs is not a trivial task
because of nonlinear functions or high input di-
mensionality. In such cases, some of the hidden
units of the RBF network have a tendency to be
“shared” across several output classes or even may
not contribute to any output class. To address this
we have developed an algorithm called LREX (for
Local Rule EXtraction) which tackles these issues
by extracting rules at two levels:hREX extracts
rules by examining thehiddenunit to class assign-
ments whilemREX extracts rules based on the in-
put space to output spacemappings. The rules ex-
tracted by our algorithm are compared and con-
trasted against a competing local rule extraction
system. The central claim of this paper is that lo-
cal function networks such as radial basis function
(RBF) networks have a suitable architecture based
on Gaussian functions that is amenable to rule ex-
traction.

1 Introduction
Neural networks have been applied to many real-world, large-
scale problems of considerable complexity. They are useful
for pattern recognition and they are robust classifiers, with
the ability to generalize in making decisions about imprecise
input data[Bishop, 1995]. They offer robust solutions to a
variety of classification problems such as speech, character
and signal recognition, as well as functional prediction and
system modeling where the physical processes are not under-
stood or are highly nonlinear.

Although neural networks have gained acceptance in many
industrial and scientific fields they have not been widely used
by practitioners of mission critical applications such as those
engaged in aerospace, military and medical systems. This
is understandable since neural networks do not lend them-
selves to the normal software engineering development pro-
cess. Knowledge extraction by forming symbolic rules from

the internal parameters of neural networks is now becoming
an accepted technique for overcoming some of their limita-
tions[Shavlik, 1994; Sun, 2000].

In this paper we describe our method of extracting knowl-
edge from an RBF network which is classed as a local type
of neural network. That is, its internal parameters are limited
to responding to a limited subset of the input space. We also
compare and contrast our technique with a specialized local
type neural architecture. The extracted rules are examined
for comprehensibility, accuracy, number of rules generated
and the number of antecedents contained in a rule.

The paper is structured as follows: section two describes
the motivations for performing knowledge extraction. Sec-
tion three describes why the architecture of the radial basis
function network is particulary suitable for knowledge extrac-
tion. Section four outlines how our knowledge extraction al-
gorithm produces rules from RBF networks and section five
explains the results of the experimental work. Section six dis-
cusses the conclusions of the experimental work.

2 Knowledge Extraction
In this section we discuss motivations, techniques and
methodology for knowledge extraction from RBF networks.
RBF networks provide a localized solution[Moody and
Darken, 1989] that is amenable to extraction, which section
three discusses in more detail. It is possible to extract a se-
ries of IF..THEN rules that are able to state simply and ac-
curately the knowledge contained in the neural network. In
recent years there has been a great deal of interest in research-
ing techniques for extracting symbolic rules from neural net-
works. Rule extraction has been carried out upon a variety of
neural network types such as multi-layer perceptrons[Thrun,
1995], Kohonen networks and recurrent networks[Omlin and
Giles, 1994]. The advantages of extracting rules from neural
networks can be summarized as follows:
� The knowledge learned by a neural network is generally

difficult to understand by humans. The provision of a
mechanism that can interpret the networks input/output
mappings in the form of rules would be very useful.



� Deficiencies in the original training set may be identi-
fied, thus the generalization of the network may be im-
proved by the addition/enhancement of new classes. The
identification of superfluous network parameters for re-
moval would also enhance network performance.

� Analysis of previously unknown relationships in the
data. This feature has a huge potential for knowledge
discovery/data mining and possibilities may exist for
scientific induction[Craven and Shavlik, 1997].

In addition to providing an explanation facility, rule extrac-
tion is recognised as a powerful technique for neuro-symbolic
integration within hybrid systems[McGarryet al., 1999].
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Figure 1: Knowledge extraction system data flow and data
transformation

3 Radial Basis Function Networks
Radial basis function (RBF) neural networks are a model that
has functional similarities found in many biological neurons.
In biological nervous systems certain cells are responsive to a
narrow range of input stimuli, for example in the ear there are
cochlear stereocilla cells which are locally tuned to particular
frequencies of sound [Moody and Darken, 1989]. Figure 2
shows a network trained on a noisy Xor data set for illustra-
tion. This network has two input features, two output classes
and four hidden units.

The RBF network consists of a feedforward architecture
with an input layer, a hidden layer of RBF “pattern” units
and an output layer of linear units. The input layer simply
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Figure 2: Parameters for RBF network trained on noisy Xor

transfers the input vector to the hidden units, which form a
localized response to the input pattern. Learning is normally
undertaken as a two-stage process. The first stage consists
of an unsupervised process in which the RBF centres (hidden
units) are positioned and the optimum field widths are deter-
mined in relation to the training samples.

The second stage of learning involves the calculating the
hidden unit to output unit weights and is achieved quite easily
through a simple matrix transformation.

The radial basis functions in the hidden layer are imple-
mented by kernel functions, which operate over a localized
area of input space. The effective range of the kernels is
determined by the values allocated to the centre and width
of the radial basis function. The Gaussian function has a
response characteristic determined by equation 1.

Zj(x) = exp
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The response of the output units is calculated quite simply
using equation 2.

JX
j=l

WljZj(x) (2)

where:
W = weight matrix, Z = hidden unit activations,
x = input vector, � = n-dimensional parameter vector,
� = width of receptive field.

3.1 RBF training
The first stage was to train RBF networks to an acceptable
level of accuracy on all data sets. The specific level of accu-
racy varied with each data set, the literature was examined to



provide guidance on what accuracy levels could be achieved.
The accuracy levels stated in the tables are the best out of
up to 10 test runs. Training of the RBF networks required
the setting of three parameters, the global error, the spread or
width of the basis function and the maximum number of hid-
den units. The value assigned to the global error setting may
result in fewer hidden units being used than the maximum
value. If the error value is not reached, training will termi-
nate when the maximum number of hidden units has been
assigned. The training and test data for the construction of
the RBF networks were generally split 75/25.

3.2 Data Sets

In order to allow good benchmarking and comparison we
used a mixture of well known benchmark data as well as two
new vibration data sets for our tests. The data sets were se-
lected from various sources but mainly obtained from the col-
lection maintained by the University of California at Irvine
(UCI). The vibration data sets were produced as part of two
large projects which were concerned with the monitoring the
health of industrial machinery. The data sets represent a vari-
ety of synthetic and real world problems of varying complex-
ity (i.e. number of examples, input features and classes).

Table 1: Composition of data sets used in experimental work

Data Set Ex O/P I/P C D M
Xor(binary) 4 2 2 No Yes No
Xor(continuous) 100 2 2 Yes No No
Iris 150 3 4 Yes No No
Vowell(Peterson) 1520 10 5 Yes Yes No
Vowell(Deterding) 990 11 11 Yes Yes No
Protein(yeast) 1484 10 8 Yes No No
Protein(ecoli) 336 8 8 Yes No No
Credit(Japanese) 125 2 9 Yes Yes Yes
Credit(Australian) 690 2 15 Yes Yes Yes
Diabetes(Pima) 768 2 8 Yes No No
Monks1 556 2 6 No Yes No
Sonar 208 2 60 Yes No No
Vibration 1 1028 3 9 Yes No No
Vibration 2 1862 8 20 Yes No No

Table 1 gives details of the data sets. The columns indi-
cate the number of examples, the number of ouput features
or classes, the number of input features, whether the data set
contains continuous data or discrete data and the last column
indicates if any data is missing.

4 LREX: Rule Extraction Algorithm
The development of the LREX algorithm was motivated by
the local architecture of RBF networks which suggested that
rules with unique characteristics could be extracted. In addi-
tion, there was little published work on extracting rules from

ordinary RBF networks [Lowe, 1991]. Therefore our work
fills a substantial gap in rule extraction research.

The LREX algorithm is composed of two modules: the
mREX module extracts IF..THEN type rules based on the
premise that a hidden unit can be uniquely assigned to a spe-
cific output class. Therefore, by using the centre locations of
the hidden units an input vector could be directly mapped to
an output class. Experimental work performed on the sim-
pler data sets tended to reinforce this belief. However, hidden
unit sharing occurs within networks trained on non-linear or
complex data. This phenomena reduces rule accuracy as sev-
eral hidden units may be shared amongst several classes. The
second module, hREX was developed to identify which hid-
den units are shared between classes. Analysis of how each
hidden unit contributes provides information to determine a
class. The extracted rules are IF..THEN type rules where any
given hidden may appear across several classes. The next two
sections describe how the mREX and hREX modules provide
the user with complimentary types of extracted rules that ex-
plain the internal operation of the original RBF network.

4.1 mREX: Input-to-output mapping
The functionality of mREX algorithm is shown in figure 3.

Input:
Hidden weights � (centre positions)
Gaussian radius spread �
Output weights W2
Statistical measure S
Training patterns

Output:
One rule per hidden unit

Procedure:
Train RBF network on data set
Collate training pattern “hits” for each hidden unit
For each hidden unit

Use W2 correlation to determine Class label
Use “hits” to determine S
Select S format fmin;max; std;mean;medg
For each �i

Xlower = �i � �i � S
Xupper = �i + �i � S

Build rule by:
antecedent = [Xlower;Xupper]
Join antecedents with AND
Add Class label

Write rule to file

Figure 3: mREX rule-extraction algorithm

The first stage of the mREX algorithm is to use the W2
weight matrix (see figure 2) to identify the class allocation
of each hidden unit. The next stage is to calculate the lower
and upper bounds of each antecedent by adjusting the cen-



tre weights � using the Gaussian spread � . The lower and
upper limits are further adjusted using a statistical measure
S gained from the training patterns classified by each hidden
unit. S is used empirically to either contract or expand each
antecedents range in relation to the particular characteristics
of these training patterns.

The entire rule set for the Iris domain is presented in figure
4. Note that there are four extracted rules, one for each RBF
hidden unit.

Rule 1 :
IF (SepalLength � 4.1674 AND � 5.8326) AND
IF (SepalWidth � 2.6674 AND � 4.3326) AND
IF (PetalLength � 0.46745 AND � 2.1326) AND
IF (PetalWidth � 0.53255 AND � 1.1326)
THEN..Setosa

Rule 2 :
IF (SepalLength � 5.2674 AND � 6.9326) AND
IF (SepalWidth � 1.9674 AND � 3.6326) AND
IF (PetalLength � 3.1674 AND � 4.8326) AND
IF (PetalWidth � 0.46745 AND � 2.1326)
THEN..Versicolor

Rule 3 :
IF (SepalLength � 5.9674 AND � 7.6326) AND
IF (SepalWidth � 2.3674 AND � 4.0326) AND
IF (PetalLength � 5.0674 AND � 6.7326) AND
IF (PetalWidth � 1.4674 AND � 3.1326)
THEN..Virginica

Rule 4 :
IF (SepalLength � 4.8674 AND � 6.5326) AND
IF (SepalWidth � 1.6674 AND � 3.3326) AND
IF (PetalLength � 4.1674 AND � 5.8326) AND
IF (PetalWidth � 1.1674 AND � 2.8326)
THEN..Virginica

Figure 4: mREX extracted rules from Iris domain

4.2 hREX: Hidden unit analysis
A different approach to rule extraction is taken by the hREX
algorithm which uses quantization and clustering on the net-
work parameters (weights and activation levels) to form an
abstraction of its operation. The number of extracted rules is
determined by the user who can place an upper limit on the
rules extracted for each class. This is a useful feature since
it enables a tradeoff to be made between rule size and rule
comprehensibility. This is achieved by three important pa-
rameters:

� � which determines the minimum weight value (pos-
tive) to be quantized as a “one” , weights below this cut-
off point are quantized to �1 and do not participate in
rule extraction.

� � which determines the minimum hidden unit activation
level. Hidden units with activation levels below this cut-
off point will not be quantized and will play no further
part in rule extraction.

� N determines the maximum number of clusters that the
training set (for each class) is divided into. This pro-
cess abstracts the input space into a number of distinct
regions which will require a separate rule to identify.

These parameters are determined empirically for a satis-
factory arrangement. Figure 5 shows the algorithm in de-
tail. Note that valid rules consist of both a positive quantized
weight (QW2) and a positive quantized activation (AQZ)
level. A rule consists of one or more hidden units which must
all be active for the class lable to be satisified.

Input:
Output weights W2
Hidden unit activations Z (training data)
Output weights quantization modifier �
Hidden unit activation quantization modifier �
Maximum Cluster number N
Training patterns by sorted by class T

Intermediate information:
Quantized W2 weights QW2
Quantized hidden unit activations QZ
Average Quantized hidden unit activations AQZ

Output:
One rule per cluster

Procedure:
Quantize W2 weights with �
Quantize hidden unit activations Z with �
Separate training patterns by class T
For each class

Partition QZ up to NC Clusters
For each N Cluster

Identify Positive QZ activations
Calculate Average AQZ value for cluster
Identify Positive QW2 weights attached to QZ

Build rule by:
IF AQZ==Positive AND QW2 ==Positive

Hidden unit H belongs to rule
Join Hidden Units with AND
Add Class label

Write rule to file

Figure 5: hREX rule-extraction algorithm

Some hRules rules extracted from the ecoli domain are pre-
sented in figure 6. For instance, for Rule 4 to “fi re” , each an-
tecedent must be satisfied so hidden units 5, 19, 20, 24, 25,
26, 28 and 31 must all be active. It can be seen that hidden
unit 20 participates in both class 3 and class 4.

hREX rules are useful for identifying the internal struc-
tural relationships formed by the hidden units. This is demon-



Rule ]9 Class: 3
IF((H5 == TRUE) AND

(H19 == TRUE) AND
(H20 == TRUE) AND
(H24 == TRUE) AND
(H25 == TRUE) AND
(H26 == TRUE) AND
(H28 == TRUE) AND
(H31 == TRUE))

THEN
Class: 3

Rule ]10 Class: 4
IF((H12 == TRUE) AND

(H20 == TRUE) AND
(H22 == TRUE) AND
(H23 == TRUE) AND
(H32 == TRUE))

THEN
Class: 4

Figure 6: hREX extracted rules from ecoli domain

strated on those RBF networks that have a poor performance
on certain classes. These RBF networks produce hREX rules
which exhibit a large degree of hidden unit sharing or in the
worse cases fail to generate any hREX rules for these classes.

Figure 7 shows the accuracy of the hREX rules against the
rule size (comprehensibility) for RBF networks trained on the
Vibration 1, Monks and Sonar data sets. The Vibration shows
a steady increase in accuracy with each additional rule until
it levels off at a cluster size of 12. The rules extracted from
Sonar actually lose accuracy beyond a certain point before
the accuracy reaches a steady value. Generating additional
rules for the Monks after the optimum cluster size is reached
produces an oscillating effect where the accuracy does not
level off.

5 Analysis of Results
The performance of the RBF rule extraction algorithm was
compared with a related system called MCRBP/RULEX
which was developed by Andrews and Geva [Andrews and
Geva, 1999]. MCRBP builds RBF-like networks with spe-
cialized activation functions. Once the networks are trained,
the RULEX algorithm can then be used to extract IF..THEN
rules with boundaries. The rules extracted by RULEX are
in a very similar format to those produced by the author’s
system. Table 2 shows the results of the experimental work.
The first column identifies the data set. The second column
presents the mREXaccuracy alongside the original RBF ac-
curacy. The third column details the hREX accuracy next to
the original RBF accuracy and the fourth column shows the
Rulex accuracy
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Figure 7: hREX rule size and complexity

Table 2: Comparison between RBF net, mREX, hREX and
Rulex accuracy

Data set mREX hREX Rulex
Xor(binary) 100/100 100/100 100
Xor(continuous) 96/100 100/100 100
Iris 93/96 93/96 100
Vowell(Peterson) 43/86 22/86 –
Vowell(Deterding) 9/62 20/62 38
Protein(yeast) 26/57 66/57 28
Protein(ecoli) 49/87 72/87 88
Credit(Japanese) 73/93 66/93 93
Credit(Australian) 66/71 64/71 88
Diabetes(Pima) 65/76 70/76 69
Monks1 79/83 60/83 72
Sonar 57/95 58/95 –
Vibration 1 56/73 69/73 61
Vibration 2 73/94 72/94 –

Table 3 shows the number of rules generated by the three
systems. The rule set size quoted for LREX is based on the
unmodified basic version.

RULEX extracts highly compact rule sets compared with
LREX. The majority of the domains can be represented with
as few as 3-5 rules. Unfortunately, RULEX completely failed
to generate rules for three of the domains. This problem was
tracked down to the initial MCRBP network, as it was unable
to form a viable classifier on the training data. Therefore, any
rules extracted would be invalid. RULEX also failed to pro-
vide rules to cover a specific class in the vibration 1 domain.
Training the MCRBP networks took fewer attempts to reach
acceptable accuracies than the equivalent RBF networks (typ-
ically 2-3 runs).

MCRBP/RULEX could not form a viable network on the
vowel, sonar and vibration 2 domains. It is likely that the
specialized architecture cannot cope with the large number of



Table 3: Comparison between rule set size of mREX, hREX
and Rulex

Data set mREX hREX Rulex
Xor(binary) 4 4 4
Xor(continuous) 4 4 4
Iris 4 4 5
Vowell(Peterson) 30 80 –
Vowell(Deterding) 200 110 11
Protein(yeast) 120 24 9
Protein(ecoli) 35 24 9
Credit(Japanese) 50 6 2
Credit(Australian) 50 20 5
Diabetes(Pima) 300 11 3
Monks1 20 24 3
Sonar 20 10 –
Vibration 1 30 25 2
Vibration 2 100 32 –

input features present in these data sets. However, by using
non-overlapping local functions the MCRBP/RULEX algo-
rithm can form a rule from each function that is specific to a
class. This requires fewer rules to form a classifier.

The hREX algorithm produces fewer rules than the mREX
algorithm and are generally more accurate. A smaller rule set
enables a better understanding of the internal operation of the
RBF network. further analysis of the hREX rules proved to
be interesting as several of the RBF networks have up to 35-
40% of their hidden units shared between the various output
classes. Such results tend to occur with those RBF networks
that have lower accuracies and may implie that the original
settings of the internal parameters during training were not
optimal e.g. a badly chosen value for the width of the basis
function can be a source of error.

6 Conclusions
The work described in this paper has tackled the difficult issue
of knowledge extraction from RBF networks which has been
avoided in the literature because of the problems with over-
lapping neurons. The rules extracted by the LREX algorithm
provide information about the original RBF network in two
forms; an input to output mapping and information regard-
ing those hidden units that participate in classification. The
knowledge extracted by the mREX algorithm transforms the
original RBF network into a rule based classifier. This makes
the input to output mapping of the RBF network transpar-
ent and open to scrutiny. However, the number of rules pro-
duced is dependent on the number of hidden units and there-
fore a large number of rules may obscure the comprehensibil-
ity. This problem is partially solved by the hREX algorithm
which can generate a maximum number of rules determined
in advance by the user. The tradeoff is rule size (and gen-
erally accuracy) versus comprehensibility. Some RBF net-
works may naturally be described by small rule sets that are

accurate but still allow a good understanding of their internal
structure. Other RBF networks may have modeled complex
functions and their hidden units are used by several classes,
in which case the hREX algorithm will provide useful infor-
mation regarding the extent of this activity.
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