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Abstract – Most current approaches for robot control do not 
make use of language and ignore neural learning.  However, 
our robot control approach uses language instruction and 
draws from the concepts of regional distributed modularity, 
mirror neuron theory and neural assemblies.  We describe a 
self-organising model that clusters action verbs into different 
locations of the output layer dependent on the body part they 
are associated with.  In doing so we build on our previous 
work by using actual sensor readings from the MIRA robot 
that incorporate semantic features of the action verbs.  
Furthermore, we outline a hierarchical computational model 
for a neurally inspired self-organising robot action control 
system using language for instruction.   
 

I.  INTRODUCTION 
 

Recently there has been growing interest in learning in 
robotics.  However these approaches rarely use neural 
networks or language instruction.  Furthermore, they are 
restricted in their general autonomous behaviour and only 
learn what has been pre-specified and coded.   Even the 
“Talking Heads” approach that incorporates the emergence 
of language in robots [18] gives little consideration to 
neuroscience-inspired learning in humans.   

 
Some robots like the tour-guide robot Rhino [5] have 

been quite robust in terms of their localization and 
navigation behaviour, however they do not interact via 
language.  Although the conversation office robot jjj-2 [1] 
can be instructed to navigate to certain landmarks and the 
Minerva tour-guide [19] interacts by using simply 
preprogrammed speech, they are restricted in their ability to 
learn.  Furthermore, the Kismet interactive robot [4] can 
recognise and represent emotions using a static 
sophisticated head but does not understand or generate real 
language.  

 
Our approach to robot control using language 

incorporates some neuroscience evidence related to the 
architectural and processing characteristics of the brain [20].  
In particular it focuses on the neurocognitive evidence on 
cortical assemblies of Pulvermüller et al., regional 
modularity in the brain and mirror neuron theory.  By 
building on our previous work this paper describes how 

these concepts are the basis of a robotic control system 
using language inputs. 

 
II. MODULARITY IN CELL ASSEMBLIES 

 
Regional distributed modularity in the brain is based on 

various distributed neural networks in diverse regions that 
carry out processing in a parallel distributed manner to 
perform specific cognitive functions [15].  The brain 
consists of a group of collaborating networks, none of 
which can deal with a complex task alone [20].  Brain 
imaging techniques have identified to a significant extent 
the distributed regional modularity organisation of language 
processing in the brain [9].  The early model of language 
processing based on two cortical regions linked via the 
arcuate fasciculus [2] has been extended to include 
additional brain regions.  For instance, speech 
comprehension and information recollection has been 
observed to involve four regions in the left hemisphere of 
the cerebral cortex [3] and semantic language operations 
involve the superior temporal sulcus, middle temporal 
gyrus, angular gyrus and lateral frontal lobe [7].  Recently, 
cortical assemblies have been identified in the cortex that 
activate in response to the performance of motor tasks at a 
semantic level [13, 16].  This evidence supports that these 
neurons are involved in actions, observing actions and 
communicating actions.   

 
The neurocognitive evidence of Pulvermüller, 1999 [13] 

and Pulvermüller, 2002 [12] supports that cell assemblies 
are activated in different regions of the brain dependent on 
the word type being processed.  This evidence offers the 
basis for our approach.  Pulvermüller, 1999 [13] noted that 
activation was found in both hemispheres of the brain for 
content words and for vision words in the perisylvian and in 
the parietal, temporal and/or occipital lobes.  For content 
words the cell assemblies that were activated depended on 
semantic features that come from various modalities and 
include the complexity of activity performed, the number of 
muscles used, the colour of the stimulus, the tool used, the 
smell or taste of the object, and whether the person can see 
herself doing this activity.   

 
Pulvermüller et al., 2000 [14] when examining the 

processing of action verbs that relate to the leg, face and 
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arm found that this was done in the brain by activating cell 
assemblies that are associated through semantic information 
with the appropriate body part.  They found that the 
average response times for lexical decisions was faster for 
face-associated words than for arm-associated words and 
the arm-associated were faster than leg ones.  There was a 
significant difference for the prefrontal region and occipital 
regions and above the motor and premotor cortex.  The 
prefrontal area was found to be associated mainly with arm 
verbs and the occipital visual areas for face verbs.  

 
With regards to the mirror neuron theory Rizzolatti and 

Arbib, 1998 [16] found that neurons located in the F5 area 
of a primate’s brain were activated by both the performance 
of the action and its observation.  The recognition of motor 
actions comes from the presence of a goal and so the motor 
system does not solely control movement [8].  The role of 
these mirror neurons is to depict actions so they are 
understood or can be imitated.  The mirror neuron system 
was a critical discovery as it shows the role played by the 
motor cortex in action depiction [17].    

 
III.  SELF-ORGANISING NETWORK 

 
Our robot control approach makes use of self-organising 

networks that offer an unsupervised associative memory 
approach.  Self-organising networks consist of an input and 
an output layer, with every input neuron linked to all the 
neurons in the output layer [10].  The output layer creates a 
topographical representation that clusters similar inputs 
together by creating patterns of activation (see Fig. 1).  
 
 
 
 
 
 
 
 
 
Fig. 1  A representation of the activity output layer of a self-organising 
network  - The darker the neuron the greater the activation. 

 
A typical self-organising network algorithm has an input 

vector represented as i .  The input vector is 
presented to every output unit of the network, the weights 
between the links in the network are provided by 

]i,i,i[= n21  ..., 

 
]w,,w,w[=w jn2j1jj ...          (1) 

 
where j identifies unit j in the output layer and n is the 

nth element of the input.  The output o  of unit j is 
established by determining the weighted sum of its inputs, 
given by: 

j

 

∑ i•w=iw=o jkjkj           (2) 
 

The weights are initalised randomly and hence a unit of 
the network will react more strongly than others to a 
specific input representation.  The weight vector of this unit 
as well as the eight neighbouring units are altered based on 
the following: 
 

kjk i(α=w∆  -  and w       (3) )w jk jkjkjk w∆+)t(w=)1+t(
 

where α is the learning rate parameter that is usually set 
between 0.2 and 0.5.   

 
IV.  SELF-ORGANISATION EXPERIMENT FOR 

ROBOT CONTROL 
 
Through our previous study [6] it was possible to 

identify that a self-organising network was able to recreate 
the findings of Pulvermüller et al. on action verb 
processing related to body parts.  However, this approach 
relied upon subjective interpretations as to the features that 
are applicable for the action verbs and their values.  In 
order to have greater objectivity and to allow the 
incorporation of self-organising maps into a robot control 
system, sensor readings were taken from the MIRA robot 
(see Fig. 2).  Such sensor readings incorporate semantic 
features to describe the action verbs such as the degree of 
motion and object manipulation.   
 

 
 

Fig. 2  The MIRA Robot. 
 
A. Experimental Method 
 

The MIRA robot has a PC, microphone and speakers and 
a PC104 audio board.  Wireless communication between 
the robot and a computer is used. The robot has an 
adjustable camera, IR table sensors and a 2-degree gripper 



that contains break-beam sensors to detect objects.  MIRA 
can perform neural network based behaviour. 
This robot was programmed to perform various actions that 
are associated in humans with the leg, head or hand, and 
take sensor readings.  The leg verb actions were go, turn 
left, turn right, forward and backwards; head action verbs 
were head up, head down, head right and head left; and 
finally the hand verbs were pick, put, lift, drop and touch.  
For instance, the hand verb action ‘pick’ included the 
following subactions (i) slowly move forward to the table; 
(ii) tilt camera downwards to see table, (iii) lift gripper to 
table height; (iv) open gripper; (v) close gripper on object; 
(vi) stop forward motion; and (vii) lift gripper.   

 
In order to provide sufficient and varied action verb 

training and test data the actions were repeated 20 times 
under diverse conditions.  For instance, the speed the robot 
was traveling at, the height of the table the object was on 
and the angle that the camera was tilted or panned to were 
varied.  The sensor readings were taken 10 times a second 
while MIRA performed these actions including the state of 
the gripper, the velocity of the wheels and the angle that the 
robot’s camera was at.  The full list of the sensor readings 
taken that were to act as the semantic features of the action 
verbs are given in Table I.   
 

To reduce the size of the input to the self-organising 
network to a manageable level 10 sets of the readings were 
taken over time to represent the action verb.  This was 
achieved by taking the first, last and eight equi-distant sets 
of readings and combining them to create a single input for 
a sample.  Various preprocessing activities were performed 
on the data to make it suitable for introduction into the 
neural networks.  As self-organising networks require the 
input values to be represented numerically ‘yes’ was 
represented as 1 and ‘no’ 0.  The gripper break-beam state 
values were represented as ‘no beams broken’ 0.25, ‘inner 
broken’ 0.5, ‘outer broken’ 0.75 and ‘both broken’ 1.  In the 
case of gripper state ‘between open and closed’ was given 
the value 0.3, ‘gripper open’ 0.6 and ‘gripper closed’ 0.9. 

 
As self-organising networks typically perform better 

when input values are between 0 and 1 there was a need to 
normalise the sensor readings for such variables as velocity 
of left wheel, velocity of right wheel, x co-ordinate of 
robot, y co-ordinate of robot, and the pan and tilt of the 
camera.  In the case of x co-ordinates the values varied 
from –1235 and +1380.  Normalisation was done by taking 
the sensor readings for the specific feature for all samples 
across the ten sets of readings and positioning the value 
between 0 and 1 dependent on its relative size.  For 
example, the x co-ordinate values were normalised using 
the equation (4).   

min(x)- max(x)
 min(x) -x 

for all x   (4) 

 
TABLE I 

SENSOR READINGS TAKEN BY ROBOT DURING ACTIONS. 
 

Sensor Reading Value 
Velocity of left wheel Real number  
Velocity of right wheel Real number 
X co-ordinate of robot Real number 
Y co-ordinate of robot Real number   
Break-beam state of gripper No beams broken, inner broken, outer  

broken, both broken 
Gripper state Gripper fully open, closed, between open

 and closed 
Gripper at highest or lowest  
position 

No Yes   

Gripper moving upwards or  
downwards 

No Yes 

Table sensors activated No Yes 
Gripper opening or closing No Yes 
Pan of camera integer 
Tilt of camera integer 

 
B. Unsupervised Learning 
 

In the experiment the input layer to the self-organising 
networks had 120 units, one for each of the preprocessed 
sensor readings.  The output layers had various sizes (from 
8 by 8 units to 13 by 13 units) and the networks were 
trained for between 50 to 500 epochs at intervals of 50 
epochs.  Fig. 3 provides an example self-organising 
network showing the input and output for a ‘pick’ action 
verb training sample [11].  The number of training and test 
samples for each action were 15 and 5 respectively.  The 
location of each of the training and test samples on the self-
organising output layers were identified based on the units 
that had the highest activation.   
 

 
 

Fig. 3  Example self-organising network showing the input and output for 
a pick training sample. 



V. RESULTS AND DISCUSSION 
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Fig. 4  The units on the training data for a 12 by 12 network with a training 
time of 50 epochs that had 10% or more samples for specific action verbs 
whose activation is the greatest. 
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Fig. 5  The units on the test data for a 12 by 12 network with a training 
time of 50 epochs that had 10% or more samples for specific action verbs 
whose activation is the greatest. 
 
 
 

 

Leg 

Fig. 6  The units on the training data for a 12 by 12 units network with a 
training time of 50 epochs that had 5% or more samples for specific body 
parts whose activation value is the greatest. 

 
Fig. 7  The units on the test data for a 12 by 12 units network with a 
training time of 50 epochs that had 5% or more samples for specific body 
parts whose activation value is the greatest.   
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When considering self-organising networks with output 
layers of between 8 by 8 and 11 by 11 units the networks 
were only able to produce a split between hand action verbs 
and the other two classes.  These networks were not able to 
cluster the leg and head actions in different regions of the 
output layer.  However, it did indicate an ability to produce 
a split between simple actions such as ‘forward’ or ‘head 
right’, and more complex actions such as ‘put’ or ‘pick’.  It 
seems that these network output layers were too small to 
allow a clear split between the three body part classes. 

 
However, for the network architecture that has more 

memory with 12 by 12 units in the output layer at a training 
time of 50 epochs there was clear clustering into the three 
body parts (see Fig. 4 to 7).  The hand actions words such 
as ‘pick’, ‘touch’, ‘lift’ were at the bottom of the training 
and test output layers in the hand body part region, with the 
head action verbs like ‘head up’ and ‘head down’ slightly 
below and to the right of the leg region containing action 
verbs such as ‘turn right’ and ‘go’.  Although one unit 
within the head region contained both head and leg action 
verb samples with the highest activation, the percentage for 
head samples was much higher on both test and training 
data.  For the training and test data the percentage of head 
verb samples with the highest activation for that unit was 
75% and 85% respectively compared with 11% and 8%.   

 
For the training data 100% of the hand and head fell in 

the appropriate region and 89% of the leg data.  For test 
data the percentage was even better with 100% for hand 
and head and 91% for leg.  It is interesting to note that 
within the hand verb region there was a good division into 
the actual action verb classes.  From Figs 5 and 6 ‘pick’ 
was located in the lower right of the region, ‘put’ in the 
lower left, ‘drop’ in the unit above ‘pick’, ‘touch’ at the top 
of the hand region and most of the ‘lift’ samples were 
located in a unit just below ‘touch’.   

 
Hence a network of this size can in principle realise the 

findings on Pulvermüller et al. on the processing of action 
verbs with different cell assemblies representing the 
specific body parts.  The network was able to identify the 
semantic features from the actual sensor readings for the 
individual action verb classes that were specific to the 
appropriate body part.  For such an architecture on both 
training and test data the clusters were in very similar 
position on the output layer, which points to the ability of 
the network to generalise on data it has not seen before.  
When considering the percentage of test data that fell in the 
regions identified by the training data the percentages were 
very good.  For the hand action verbs 100%, leg for 95% 
and head for 88% of the test data fell into the appropriate 
training region.  Therefore, if the self-organising network 
was used in the control of a robot it may perform 
successfully in an on-line manner clustering semantic 

features of the action to the appropriate region of the output 
layer. 

 
V1.  FUTURE WORK 

 
The experiment performed supports that self-organising 

networks cluster action verbs using semantic features that 
come from objective sensor readings with the appropriate 
body part as suggested by Pulvermüller et al.  Self-
organising networks seem suitable for incorporation into a 
robot control system that uses language that combines 
brain-inspired modularity, the neurocognitive evidence on 
action verb processing and mirror neuron theory.  This is to 
be achieved by a hierarchical structure of self-organising 
networks that learns to associate the semantic features that 
represent the action verbs with a representation of the word 
form.   

 
As can be seen from Fig. 8 the approach firstly uses a 

self-organising network to associate the action verbs with 
the appropriate body part by clustering the verbs in different 
regions of the output layer.  In the next processing level 
there is a self-organising network for each of the body parts 
that uses the input sensor reading vectors to associate the 
actual action verbs with different regions.  Also at this level 
the word forms that are represented using a random number 
approach based on the phonemes in the words are clustered 
in a self-organising network.  In the upper-most level self-
organising network the action verbs and their appropriate 
word form are associated by using the clustering patterns 
from the networks of the previous level.  Hence the 
association means we can give the robot the action verb 
semantic representation and get the robot to associate this 
with the word form and so state what the action is or give it 
the word form and get it to perform the action.   

 
Hence, if we wanted the robot to tell us the required 

action is ‘put’, the ‘put’ action verb sensor reading 
representation would be introduced into the trained body 
part network, which would locate it in the hand region of 
the output layer.  The hand self-organising network would 
then position the input in the ‘put’ region of the output 
layer.  As the robot is determining the word form there 
would be no input from the word form self-organising 
network into the action and word form association self-
organising network.  However, as the network has learned 
to associate this action with the appropriate word form the 
‘put’ region of the network is activated.  The robot will then 
state that the action semantic features provided are those for 
‘put’. 

 
This approach offers some brain-inspired regional 

modularity by having multiple self-organising networks 
each performing a subtask of the overall task.  These 
networks are linked in a distributed overall memory 
organization.  The approach also takes into account the 



neurocognitive evidence of Pulvermüller et al. in that cell 
assemblies in different regions are associated with specific 
action verbs as a functional unit, with the association being 
based on the action verbs relationship with the appropriate 
body part.  Furthermore, by using the sensor readings as 
input the mirror neuron concept is included through the 
understanding of the action by gaining the representation 
that could come from either performing the action or a 
stored representation linked to observation that creates the 
same activation pattern in units.   
 

 
Fig. 8  Hierarchical model for robot control system using language. 
 

VII.  CONCLUSION 
 

A model for a robot control system based on language 
instructions has been described that considers that cell 
assemblies in different regions of the brain are used to 
process action verbs based on their association with 
appropriate body parts.  In doing so we expanded on 
previous work by including more objective sensor readings 
that incorporate semantic features to the process.  
Furthermore, this paper describes an hierarchical self-
organising approach that controls a robot using language 
based on distributed regional modularity in the brain, mirror 
neuron theory and neurocognitive evidence on clustering 
action verbs.   
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