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A Biomimetic Spiking Neural Network of the Auditory Midbrain for

Mobile Robot Sound Localisation in Reverberant Environments

Jindong Liu, David Perez-Gonzalez, Adrian Rees, Harry Erwin and Stefan Wermter

Abstract— This paper proposes a spiking neural network
(SNN) of the mammalian auditory midbrain to achieve binaural
sound source localisation with a mobile robot. The network
is inspired by neurophysiological studies on the organisation
of binaural processing in the medial superior olive (MSO),
lateral superior olive (LSO) and the inferior colliculus (IC)
to achieve a sharp azimuthal localisation of sound source
over a wide frequency range in situations where there is
auditory clutter and reverberation. Three groups of artificial
neurons are constructed to represent the neurons in the MSO,
LSO and IC that are sensitive to interaural time difference
(ITD), interaural level difference (ILD) and azimuth angle
respectively. The ITD and ILD cues are combined in the IC
using Bayes’s theorem to estimate the azimuthal direction of a
sound source. Two of known IC cells, onset and sustained-
regular are modelled. The azimuth estimations at different
robot positions are then used to calculate the sound source
position by a triangulation method using an environment map
constructed by a laser scanner. The experimental results show
that the addition of ILD information significantly increases
sound localisation performance at frequencies above 1 kHz. The
mobile robot is able to localise a sound source in an acoustically
cluttered and reverberant environment.

Index Terms— Spiking neural network, sound localisation,
inferior colliculus, interaural time difference, interaural level
difference, mobile robotics

I. INTRODUCTION

Humans and other animals show a remarkable ability to lo-

calise sound sources using the disparities in the sound waves

received by the ears. This has inspired researchers to develop

new computational auditory models to help understand the

biological mechanisms that underlie sound localisation in the

brain. The project discussed in this paper aims to explore

sound processing in the mammalian brain and to build a

computational model that can be tested on biomimetic mobile

robots to validate and refine models for focused hearing.

During the last decades, the structure and function of path-

ways in the auditory brainstem for sound localisation have

been extensively studied and better elucidated [1]. Binaural

sound localisation systems take advantage of two important

cues derived from the sound signals arriving at the ears:

(i) interaural time difference (ITD), and (ii) interaural level
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difference (ILD) [2] . Using these two cues sound source

direction can be estimated in the horizontal or azimuthal

plane.

The ranges over which these cues operate depend on

head size. In humans the ITD cue is effective for localising

low frequency sounds (20 Hz ∼1.5 kHz) [3], however, the

information it provides becomes ambiguous for frequencies

above ∼1 kHz. In contrast, the ILD cue has limited utility

for localising sounds below 1 kHz, but is more efficient than

the ITD cue for mid- and high- frequency (>1.5 kHz) sound

localisation [3]. The ITD and ILD cues are extracted in the

medial and lateral nuclei of the superior olivary complex

(MSO and LSO), which project to the inferior colliculus (IC)

in the midbrain. In the IC these cues are combined to produce

an estimation of the azimuth of the sound [1].

Several hypotheses for ITD and ILD processing have been

proposed [2][4][5], with the most influential being a model

advanced by Jeffress [2]. In his model, ITDs are extracted

by a mechanism in which neural activity triggered by sound

from each ear travels through a number of parallel delay

lines, each one of which introduces a different delay into the

signal and connects with a particular MSO cell. One of these

delays compensates for the interaural delay of the sound

waves, thus causing the signal from both ears to arrive coin-

cidentally at a neuron that fires maximally when it receives

simultaneous inputs. Smith et al [4] provided partial evidence

for Jeffress’s model in the cat with the description of axons

that resemble delay lines for the signal arriving at the MSO

from the contralateral ear, but they found no evidence for

delay lines for the MSO input from the ipsilateral side. More

recently an alternative to the delay-line hypothesis has been

proposed to explain ITD sensitivity based on evidence that

it is generated by inhibitory mechanisms [5], however the

precise mechanism underlying ITD sensitivity is beyond the

scope of this paper.

For ILDs, physiological evidence suggests this cue is en-

coded in the neuronal firing that results from the interaction

of an excitatory input from the side ipsilateral to the LSO,

and an inhibitory input driven by the sound reaching the

contralateral side. Thus, as the sound moves from the one

side to the other, the firing rate of the neurons decreases in

one LSO and increases in the other.

Modellers have taken different approaches to represent this

system. In an engineering study, Bhadkamkar [6] proposed a

system to process ITDs using a CMOS circuit, while Willert

[7] built a probabilistic model which separately measures

ITDs and ILDs at a number of frequencies for binaural sound

localisation. Recently, Voutsas and Adamy [8] built a multi
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delay-line model using spiking neural networks (SNN) incor-

porating realistic neuronal models. Their model only takes

into account ITDs and while it gives good results for low

frequency sounds, it is not effective for frequencies greater

than 1 kHz. Some models seek to incorporate multiple cues:

for example, Rodemann [9] applied three cues for sound

localisation, however this model did not take advantage of the

biological connections between the superior olivary complex

(SOC) and the IC. Willert [7] and Nix [10] implemented

a probabilistic model to estimate the position of the sound

sources, which includes models of the MSO, LSO and IC

and uses the Bayesian theorem to calculate the connections

between them. However, their model did not use spiking

neural network to simulate realistic neuronal processing.

This paper presents a model designed to identify sound

source direction by means of a SNN. It is the first to employ

an SNN that combines both ITD and ILD cues derived from

the SOC in a model of the IC to cover a wide frequency

range. To simulate the biological connection between the

MSO/LSO and the IC, we propose a model which applies

Bayes’s probability theorem to calculate the synaptic strength

of the connection between cells in these nuclei. This model

incorporates biological evidence on the inputs from the MSO

and LSO to the IC, and is able to build a sharp spatial

representation of a sound source. The model was tested in a

reverberant environment, using IC cells with two different

firing patterns: onset and sustained-regular. To verify our

model, it was used to direct a mobile robot to search for

a sound source in an acoustically cluttered environment.

The rest of this paper is organised as follows. Section

II presents the neurophysiological organisation of the mam-

malian auditory pathway as derived mainly from cat and

guinea pig. It also presents an IC model which takes into

account the projection from MSO and LSO. Section III

proposes a system model which simulates the mammalian

auditory pathway from the cochlea up to the IC. In Section

IV, experimental results are presented to show the feasibility

and performance of the sound localisation system. Finally,

conclusions and future work are considered in Section V.

II. BIOLOGICAL FUNDAMENTALS AND ASSUMPTIONS

When sound waves arrive at the ears they are trans-

duced by the cochlea into spikes in auditory nerve (AN)

fibres which transmit the encoded information to the central

nervous system. Each auditory nerve fibre is maximally

sensitive to a characteristic frequency (CF) [1]. This tono-

topic representation of frequency is maintained in subsequent

nuclei of the ascending auditory pathway. In addition to this

tonotopic representation, the AN fibres also encode temporal

information about the sound waveform. The probability of

AN fibre excitation is maximal during the peak phase of the

sound waveform. This phase locking occurs at frequencies of

20 Hz ∼5 kHz, and is an essential step in the later extraction

of ITDs because it represents the basis for comparing the

relative timing of the waveforms at the ears. Figure 1 shows

an example of spikes phase-locked to the peaks of the sound

waveform (tl1, tr1, tl2 and tr2).
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Fig. 1: An example of sound signals arriving at both ears

(left, continuous line; right, dashed line), and the phase-

locked spikes (tl1, tr1, tl2 and tr2) triggered by them. The signal

corresponding to the right ear is delayed and has smaller

amplitude than the left one, indicating that the origin of the

sound was on the left side of the head. p
l/r
i is the sound

pressure level when the spikes are generated.

For simplicity, in this paper we do not model the biological

details of the encoding of sound amplitude, but rather we use

the measured SPL (e.g. pl
i and pr

i in Figure 1) as the input

to the ILD processing.

After the temporal and amplitude information is encoded

and extracted, the spikes from each ear are transmitted to the

MSO and LSO in order to extract ITDs and ILDs respectively

[1]. The MSO on one side receives excitatory inputs from

both the ipsilateral and contralateral sides. An ITD-sensitive

cell in the MSO fires when the contralateral excitatory input

leads the ipsilateral by a specific time difference. According

to Jeffress’s original model, activation of these coincidence

detectors occurs when the contralateral delay line network

compensates for the time delay of the sound in the ipsilateral

ear, i.e. ITD. These ITD-sensitive cells in the MSO can be

idealised as a coincidence cell array where each cell receives

a delay-line input, and they are assumed to be distributed

along two dimensions: CF and ITD [11] (see Figure 2). The

output of the MSO cells is transmitted to the ipsilateral IC.

For ILD processing, cells in the LSO are excited by

sounds in a level dependent manner at the ipsilateral ear

and inhibited at the contralateral ear [1]. For instance, in

response to a sound on the left, the left LSO receives

excitation from the ipsilateral AVCN, but inhibition from

the contralateral side, meditated by the medial nucleus of

the trapezoid body (MNTB) which transforms excitation

from the contralateral AVCN to inhibition (Figure 3). In

contrast to the MSO, there is no evidence for delay lines

projecting to the LSO. Although the mechanisms of ILD

processing are not fully understood yet, we know the spike

rate of LSO neurons depends on the sound level difference

between both ears. In this paper, we represent the cells in the

LSO distributed across two dimensions, CF and ILD, in an

analogous manner to the MSO (Figure 3). The LSO sends

an excitatory output to the contralateral IC and an inhibitory

output to the ipsilateral IC.

The cells in the MSO and LSO operate over different

frequency ranges. For example, in cat the MSO is a low-

frequency structure with most of its neurons in the range

from 20 Hz to about 5 kHz [11], while the LSO is a high-

frequency structure with little representation below 1 kHz
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Fig. 2: Schematic diagram of the MSO model used in our

system. While all the spike trains from the ipsilateral AVCN

share the same delay, the ones originated in the contralateral

side are subjected to variable delays. The difference between

the ipsilateral and contralateral delays makes each cell in the

MSO model to be most sensitive to a given ITD. This array

of ITD-sensitive cells is repeated across frequency channels.

Our system could detect ITDs from -0.9 to 0.9 ms. The MSO

model contained neurons sensitive to frequencies between

200 Hz and 4 kHz.

[12]. The inferior colliculus (IC) is tonotopically organised,

and contains a series of iso-frequency laminae, which span

the whole range of frequencies perceived by the animal. In

this model, we assume for simplicity that there are only

connections between cells with the same CF. Consequently in

our model the laminae of the IC with low CF only receive

projections from the MSO, while the laminae with higher

frequencies (up to 4 kHz) receive projections from both the

MSO and LSO. The laminae with a CF above 4 kHz would

only receive inputs from the LSO, but our model does not

include that range of frequencies.

The cells in the IC can be classified into 6 physio-

logical types [13]: sustained-regular, rebound-regular, on-

set, rebound-adapting, pause/build and rebound-transient. We

tested two of these, the onset and sustained-regular cells in

our model. The sustained-regular cell fires with a constant

spike rate when driven by a constant inward excitatory

current (Figure 4-(a)) and thus provides a measure of the

presence of an ongoing sound. In contrast, the onset cell

(Figure 4-(b)) only generates a single spike in response to

the same inputs.

Taking into account this biological evidence, we propose

an IC model for sound source localisation as outlined in

Figure 5. It consists of different components according to the

frequency range: at low frequencies, as shown in Figure 5a,

only the ipsilateral MSO is involved in sound localisation;

while in the middle frequency range, shown in Figure 5b,

the ipsilateral MSO and both LSOs contribute inputs to the

IC. The cells in the IC receive excitatory inputs from the

ipsilateral MSO and contralateral LSO, and inhibitory inputs

from the ipsilateral LSO. The connection type between the

MSO and the IC is many-to-one and one-to-many, while the
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Fig. 3: Schematic diagram of the LSO model used in our

system. Similarly to Figure 2, we assume that there are

cells most sensitive to a given ILD and frequency. The

ILD sensitivity is caused by the interaction of excitatory

(ipsilateral) and inhibitory (contralateral) inputs. Our system

could detect ILDs from -3 to 3 dB. ( The LSO model

contained neurons sensitive to frequencies between ∼1 kHz

and 4 kHz.

(a) (b)

Fig. 4: Two IC cells modelled in this paper: (a) sustained-

regular cell (b) onset cell. The square wave at the bottom

of each figure indicates two kinds of input current: negative

and positive. The corresponding response of the cell is drawn

at the top of each figure. In this paper, we only modelled

the situation when the cell receives positive input. (Figures

adapted from [13].)

inhibitory input from the LSO is a one-to-all projection. The

input from the contralateral LSO is composed by excitatory

connections to the IC assumed to be mainly few-to-one. The

signs and patterns of these connections are based on the

available biological data as discussed above [14].

III. SYSTEM MODEL OF SOUND LOCALISATION

Inspired by the neurophysiological findings and the pro-

posed models presented in Section II, we designed our model

to employ spiking neural networks (SNNs) that explicitly

take into account the timing of inputs and mimic real

neurons. The cues used for sound localisation, such as time

and sound level, are encoded into spike-firing patterns that

propagate through the network to extract ITD and ILD and

calculate azimuth. Every neuron in the SNN is modelled with

a single compartment (soma) and several synapses which

connect the elements of the network.
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Fig. 5: Schematic diagram of the distribution of inputs to

our IC model. We assume there are no connections across

frequencies. (a) In the range 200 Hz to 1 kHz, the IC model

only receives inputs from the MSO model. (b) From 1 kHz

to 4 kHz, the IC model receives inputs from the MSO

model and both LSO. The distributions of the projections

were calculated using Bayesian statistics (see Section III for

details).

The postsynaptic current I(t) of a neuron, triggered by a

synaptic input (spike) at a time t = ts, can be modelled as

a constant square current with an amplitude (or weight) of

ws, starting at a delay or latency ls relative to the timing of

the incoming input, and lasting a time τs. The excitatory or

inhibitory effect of each input is modelled using a positive or

negative I(t), respectively. The response of the soma to the

synaptic inputs is modelled using a leaky integrate-and-fire

model [15]:

C du
dt =

∑
k

Ik(t) − C
τm

u

tf : u(tf ) = φ
(1)

where u(t)is the membrane potential of the neuron relative

to the resting potential which is initialised to 0, and τm is a

time constant, which will affect the temporal integration of

the inputs. In this paper, the value of τm is 1.6 ms based on

typical biological data. C is the capacitance which is charged

by
∑
k

Ik(t) from multiple inputs, in order to simulate the

postsynaptic current charging the soma. k is the index of

synaptic input. The action potential threshold ϕ controls the

firing time tf . When u(t) = ϕ, the soma fires a spike; then

u(t) is reset to 0. Afterwards, the soma enters a refractory

state for tr = 1 ms during which it is not responsive to any

synaptic input. After the refractory period, the soma returns

to its resting potential. The difference between the modelled

onset cells and the sustained regular cells in IC is the setting

of ϕ. For the sustained regular cell this value is constant,

while for the onset cell, after a spike is triggered, ϕ is set to

a positive infinite value to prevent further spiking until there

is no more synaptic input for a period ts=10 ms.

A schematic structure for the sound localisation procedure

is shown in Figure 6. The frequency separation occurring in

the cochlea is simulated by a bandpass filterbank consisting

of 16 discrete second-order Gammatone filters [16], which

produces 16 frequency bands between 200Hz and 4kHz.
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Fig. 6: Flowchart of the biologically inspired sound locali-

sation system. This example only shows one IC; note that

there is a symmetric model for the contralateral IC. MSOI,

ipsilateral MSO model; LSOI, ipsilateral LSO model; LSOC,

contralateral LSO model; GF, Gammatone filterbank; PL,

phase locking; LD, level detection; SR, sustained-regular and

AF, azimuth-frequency

After the Gammatone filterbank, the temporal information

in the waveform in each frequency channel is encoded into a

spike train by the phase locking module shown in Figure 6,

which simulates the halfwave rectified receptor potential of

the inner hair cells in the cochlea that leads to phase-locked

spikes in AN fibres. Every positive peak in the waveform

triggers a phase locked spike to feed into the MSO model.

Sound level at the peak phase is detected at the same time

(Figure 1) and then directed to the LSO model.

To calculate the ITD, the phase-locked spike trains are

then fed into the MSO model. A series of delays are added to

the spike trains of the contralateral ear to simulate the delay

lines ∆ti (see Figure 2). The spike train of the ipsilateral

ear reaches the MSO with a single fixed delay time ∆T .

The cells in the MSO are modelled with the parameters in

Table I.

The ILD pathway is not modelled directly using a leaky

integrate and fire model. Rather the sound levels previously

detected for each side are compared and the level difference

is calculated. The LSO model contains an array of cells

distributed along the dimensions of frequency and ILD

(Figure 3). When a specific level difference is detected at

a given frequency, the corresponding LSO cell fires a spike.

The level difference is calculated as ∆pj = log(pj
I/pj

C),
where pj

I and pj
C stand for the ipsilateral and contralateral

sound pressure level for the frequency channel j.

After the basic cues for sound localisation have been

extracted by the MSO and LSO models, the resulting ITD

and ILD spikes are fed into the IC model, as shown in Figure

6. The IC model merges the information to obtain a spatial

representation of the azimuth of the sound source. According

TABLE I: Parameters for the MSO and IC model

Synapse Soma ∆ti
∆ti

ls τs ws ϕ τm C step range

MSO/IC 2.1 0.08 0.1 8e-4 1.6 10 2.26e-2 [0 0.9]

*Note: ∆T = 0. The unit of ls, τs, ,τm and ∆ti
step/range,

is ms. The unit of C, ws and ϕ is mF, A, and V respectively.
There is one MSO and IC model for each side.
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to the model proposed in Section II, we need to define the

connection strength between the ITD-sensitive cells (mi) in

the MSO and the azimuth-sensitive cells (θj) in the IC, and

the connection between the ILD-sensitive cells (li) in the

LSO and θj . In a SNN, each of the inputs to a neuron (in

this case in the IC) produces a post-synaptic current I(t)
in the modelled cell. The post-synaptic currents of all the

inputs are integrated to calculate the response of the neuron.

To modify the weight of each input we assign a different

gain to the amplitude ws of the post-synaptic current I(t) (in

Equation 1) of each connection. Inspired by Willert’s work

[7], we used an approach based on conditional probability to

calculate these gains, as shown in the following functions:

emiθj
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ifp > 0.5 max
j

(p(θj |mi , f)) :

p(θj |mi , f)
otherwise :
0

(2)

eliθj
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ifp > 0.8 max
j

(p(θj |li , f)), f >= fb :

p(θj |li , f)
otherwise :
0

(3)

cliθj
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ifp < 0.6 max
j

(p(θj |li , f)), f >= fb :

1 − p(θj |li , f)
otherwise :
0

, (4)

where emiθj
and eliθj

represent the gain of the excitatory

synapse between the MSO and LSO respectively and the IC.

If emiθj
is 0, it is equivalent to no connection between mi

and θj . Similarly, eliθj
= 0 indicates no connection between

li and θj . The term fb is the frequency limit between the

low and middle frequency regions and is governed by the

separation of the ears and the dimensions of the head of the

“listener”. Based on the dimensions of the robot head used

in this study (see below), fb should be around 850Hz.

cliθj
represents the gain of the inhibitory synapse between

the LSO and the IC. f stands for the centre frequency of

each frequency band. p(∗) stands for a conditional proba-

bility, which can be calculated by Bayesian probability. For

example, p(θj |mi , f) is:

p(θj |mi , f) =
p(mi |θj , f)p(θj |f )

p(mi |f )
(5)

In a physical model, the conditional probability

p(mi |θj , f) is obtained from the statistics of sounds

with known azimuths. To obtain such data, we recorded a

1s-sample of white noise coming from 7 discrete azimuth

angles (from -90 to 90 degrees in 30 degree steps) using

a robot head. The head has dimensions similar to an adult

human head and included a pair of cardioid microphones

(Core Sound) placed at the position of the ears, 15 cm apart
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Fig. 7: Gain of the projection from the ipsilateral MSO to

the IC, at 449 Hz (a) and 2888 Hz (b) Each coordinate

represents the gain of the connection from each of the 89

MSO cells (characterised by their best ITD, abscissa) to a

given IC cell (characterised by its best azimuth, ordinate).

Dark areas indicate high gain values.
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Fig. 8: Gain of the projection from the contralateral (8a,

excitatory) and ipsilateral (8b, inhibitory) LSO to the IC,

at 2888 Hz. Each coordinate represents the gain of the

connection from each of the 22 LSO cells (characterised by

their best ILD, abscissa) to a given IC cell (characterised

by its best azimuth, ordinate). Dark areas indicate high gain

values.

from one another.1

These recordings were processed through our MSO model

to obtain an ITD distribution for each azimuth, which was

then used to calculate p(mi |θj , f). Finally, we applied

Equation 5 to Equation 2 to calculate the gain, emiθj
, of

the connection between the MSO cells and the IC cells.

These gains are further adjusted to leave only components

consistent with the known anatomy of the pathway, i.e. there

is no significant projection from the contralateral MSO to

the IC. Figure 7 shows the gain calculated for the MSO

projection at two different frequencies, (a) 449Hz and (b)

2888Hz.

A similar procedure is used to calculate the gains of the

LSO projection to the IC. Figure 8 shows the gains calculated

for this projection, at 2888Hz. Figure 8a shows the excitatory

1Sounds were recorded in a low noise environment (5 dB SPL background
noise). The distance of the sound source to the center of the robot head was
128 cm and the speakers adjusted to produce 90±5 dB SPL at 1 kHz.
Recordings were digitalised at a sample rate of 44100 Hz. Sound duration
was 1.5s, with 10 ms of silence at the beginning.
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contralateral projection, while Figure 8b shows the inhibitory

ipsilateral projection.

Equations 2, 3 and 4 used to calculated the gains for the

projections between the MSO or LSO and IC have two fea-

tures: (i) Equations 2 and 3 map the excitatory connections of

each MSO and LSO cell to the IC cells representing the most

likely azimuths, while Equation 4 maps the inhibitory LSO

projection to cells representing azimuths in the hemifield

opposite to the sound source. This inhibition counteracts the

effects of false ITD detection at high frequencies. (ii) The

equations also reflect the distribution of projections from

the MSO and LSO to the IC. For example, Equation 2

implies that there can be multiple mi that have an active

connection to a single IC cell θj . For example, in Figure 7 a

sound coming from a single azimuth (e.g. 30 degrees) causes

multiple MSO cells to respond, to different extents (e.g. cells

tuned at -0.54 to -0.09 ms ITD). Furthermore, Equation 3

defines a few-to-one projection from the contralateral LSO

to the IC (Figure 8a), while Equation 4 shows a one-to-all

projection from ipsilateral LSO to the IC (refer to Figure

8b).

The output of the IC model represents the azimuth within

each frequency band and this information would be directed

to the thalamocortical part of the auditory system which is

beyond the scope of this study.

IV. EXPERIMENTAL RESULTS

The model was tested in conjunction with a mobile robot

using real sounds. Two groups of experiments were designed:

(i) sound source azimuth detection with a stationary robot,

and (ii) sound source localisation with a moving robot.

A. Azimuth Detection by a Stationary Robot

In this experiment, four types of sound sources were

employed: clicks, white noise, pure tone and speech. They

were presented at different azimuths to the stationary robot.

The click was 0.04 ms in duration, and the pure tone sounds

was 1s and included 500, 1000, 1500, 2000 and 3000 Hz.

The speech sounds included five words in English: ”hello”,

”look”, ”fish”, ”coffee” and ”tea”. The robot head is equipped

with two omnidirectional microphones and half cones to

provide simple pinna.

Figure 9 shows the accuracy of sound source localisation

using a model with sustained-regular IC cells. The broadband

sound sources such as the click, white noise and speech are

generally well localised. In contrast, the localisation perfor-

mance of pure tones is less accurate. For sounds with more

complex spectra and time structures, reverberations are less

likely to coincide at the robot’s ear with the same frequency

as the sound taking the direct path, thus the echo interferes

less with the direct sound. With pure tones, however, the

frequency of the echo always has the same frequency as

the direct sound so resulting in greater interference. As a

consequence the sustained-regular cell, whose output reflects

the resultant signal does not give an accurate representation

of the sound’s location.
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Fig. 9: Accuracy of sound source localisation by a stationary

robot, using sustained-regular IC cells
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Fig. 10: Accuracy of sound source localisation by the sta-

tionary robot, using Onset IC cells. Note that the plot for

white noise, pure tones at 500 and 300 Hz, and all speech

sounds overlap (yellow line).

The results of localisation using a model that incorporates

onset cells are shown in Figure 11. Onset cells provide a

more accurate estimate of the location of a sound source than

sustained-regular cells for all the sounds tested. However, the

performance is poor for pure tones at 1000 and 2000 Hz;

possibly because these frequencies coincide with the resonant

frequencies of the robot pinnae.

B. Sound Source Location by a Mobile Robot

To test the performance of our model in a moving robot in

reverberant environment, we implemented it on a PeopleBot

mobile robot which is equipped with the same robot head as

in IV-A and a laser scanner. With the assistance of the laser,

the mobile robot is expected to localise not only the azimuth

but also the distance of the sound source. Figure 11 shows

the basic triangular relationship between one sound source

and two robot positions. In a 2-dimensional plane, we define

four states for the robot performing a sound localisation:

(x, y, α, θ), where x, y are the robot position, α is the robot

orientation and θ is the azimuth angle of the sound source

detected at this position and orientation. When the robot
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Fig. 11: Localisation of a sound source by a mobile robot. In

the figure, the robot moves from point a to b via a trajectory

ab. The robot measures the azimuth of the sound source (s)

at both points a and b.

moves from point a with status (x1, y1, α1, θ1) to point b

with status (x2, y2, α2, θ2), the sound source position (sx, sy)

can be estimated by triangulation as:

sx = (x1t1−x2t2)−(y1−y2)
t1−t2

sy = (x1−x2)t1t2−(y1t2−y2t1)
t1−t2

, (6)

where t1 = tan(α1 − θ1) and t2 = tan(α2 − θ2).
In order to update the position of the robot, we adapted

Ryde’s algorithm [17] using a laser scanner and assumed that

the sound source is inside the room and located on a tripod

at the height of the robot head. Currently, the model only

detects sound sources located in front of the robot (from -

90 degrees left to 90 degrees right). Therefore, if a sound

source position calculated from Equation 6 is at the back of

the robot the position is ignored. This position checking can

be done by calculating β = (sx−x) cos(α)+(sx−y) sin(α).
The calculated sound source position is in front of the

robot when β ≥ 0. Figure 12 shows the result of a roving

sound source localisation task, using a 3000 Hz pure tone

(1 second on, 1 second off). The model using onset cells

(green triangles) accurately reflects sound source location

(with 0.25m standard deviation) despite the effect of echoes,

which severely affect localisation when sustained-regular

cells are used in the model. (red circles). However, although

sustained-regular cells are poorer at localising sounds in this

reverberant environment, many of the failed localisations

coincide with the position of reverberating objects in the

room (compare with the positions detected by the laser, blue

crosses), such as the cabinet, wall and the window. In the

future, this information can be used as a feedback to detect

objects and the boundaries of the room, as well as to adapt

our model to localise sound sources outside of the room. In

the real auditory system it is likely that such information

might contribute to the impression of acoustic ambience that

we experience in spaces of different sizes and properties.

V. CONCLUSION AND FUTURE WORK

This paper describes the design and implementation of a

sound localisation model that uses a SNN inspired by the
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Fig. 12: Sound source localisation by a mobile robot. In

the figure, the robot moves from point A to E. Blue points

indicate the trajectory of the robot, blue crosses represent

the map built using the laser scanner; red circles indicate the

sound source localisation calculated using sustained-regular

IC cell in the model; and green triangles show the sound

source localisation using onset IC cells.

mammalian auditory system. In this system, both ITD and

ILD pathways were modelled based on neurophysiological

theories and data. Firing patterns representing ITD and ILD

information were computed in models of the MSO and

LSO respectively, and, in a similar manner to the biological

system, these were projected to the IC where they were

merged together to achieve broadband sound localisation.

Two types of IC cells were tested in the model. Onset cells

were particularly effective in minimising the errors arising

from reverberations. The experimental results show that our

system can localise a broadband sound source in the range

-90 to 90 degrees of azimuth, with sound frequencies in

the range 200 to 4000 Hz. Preliminary sound localisation

experiments with a mobile robot show that our model is not

limited to static situations. The performance of the model

suggests its potential application in situations where objects

can only be located by their sound, or where sound source

detection can offer advantages other methods such as vision,

for example in rescue operations in the dark.

In the future, models that incorporate other types of IC

cells will be investigated with the aim of implementing sound

segregation based on sound localisation to enhance signal

recognition in a cluttered environment.
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