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Abstract-Interaural Time Difference (ITD) is used in the 
mammalian auditory system to compute the angle of 
incidence of an acoustic sound-source on the horizontal plane.  
This paper describes how ITD can be incorporated into a 
robotic acoustic tracking system to enable the robot to locate 
and orient towards sound-sources within its environment.  
We describe a system compiled using cross-correlation and 
auditory cues that has a lot of potential for robot sound-
source localization. 
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I. INTRODUCTION 
With the increasing developments in robotics, robots 

are becoming more common in everyday surroundings [1].  
However for humans to better interact with robots they 
have to be able to communicate in the same way and to be 
accepted by humans robots have to become more sociable 
[2, 3].  It is therefore evident that acoustics plays a large 
role in robotics of today and the future. 

Tour guide robots are one example of such ‘sociable’ 
robots.  These tour guides are able to move around their 
environment whilst avoiding obstacles and they also have 
the ability to interact with the people they encounter by 
answering questions and also taking instructions.  One 
example of such a tour guide robot is PERSES which is 
being developed by Böhme et al. [1].  Sound-source 
localization is an important task for such robots in order to 
improve their speech understanding capabilities eventually. 

Researchers are drawing on many different areas in 
acoustics ranging from engineering to biological systems.   
Previously robotic navigation uses mainly range sensors 
(such as sonar) and tracking has relied predominately on 
vision [16].  This modality is widely used as a means for 
locating objects within the scene; however, as with humans 
and most animals, our field of view is restricted to less than 
180o as our eyes point forward.  This restriction can be 
overcome in vision with the use of a conical mirror [12]. 

  In the real world we also use our hearing which gives 
us a full 360o ‘field of view’.  This allows us to locate 
objects that may not be in our field of vision, i.e. obscured 
by objects or even located around a corner [8].  There are 
currently several acoustic tracking robots that have been 

developed.  These acoustic robots however, differ in the 
principles they utilize in order to localize sound-sources.  
Many approaches use arrays of four or more microphones 
[14, 15, 8] and engineering principles including specialized 
digital signal processors (DSP).  This paper describes our 
approach to the task of robotic acoustic tracking.  Our aim 
is to develop the system as close to the mammalian acoustic 
system as possible, i.e. using two microphones to represent 
the human ears and taking advantage of the cues and 
principles that exist within the mammalian auditory cortex 
(AC) [13] in order to locate and track a sound-source 
within the robots environment. 

Mammals are extremely efficient in the way in which 
they localize sound-sources with some animals reaching an 
accuracy of ±1o on the horizontal plane and ±5o with 
respect to elevation [7].  The areas of the mammalian AC 
that concern us are the regions that encode the various cues 
such as Interaural Time Difference (ITD) and Interaural 
Phase Difference (IPD).  These cues are found to be 
encoded in lower brainstem regions such as the medial 
superior olive (MSO) [10].  However, higher order regions 
have also been found to encode location specific 
information [6], such as the Inferior Colliculus (IC) and the 
Planum Temporale (PT).  These regions are also of interest 
to us, as it has been found that the PT specifically has 
properties that help towards maintaining an acoustic ‘track’ 
on an object. 

II. ACOUSTIC ROBOT LOCALIZATION 
In this section we describe the general idea of robot 

localization, specifically sound-source detection and its 
purpose in robotics.  Our research group is working 
towards building a robotic waiter system.  Sound 
localization is therefore understandably required on such a 
system.  For example, as shown in Fig. 1 a robot may be 
moving around the room when a person would like to gain 
the robot’s attention.  Logically this would be done via 
voice as this is the most common way of human 
communication, i.e. the guest saying something like 
“Robot”.  The robot in this case would therefore need to 
localize the person and orient itself in order to move up to 
them.  Fig. 14 shows the current acoustic robotic system 
that we are using to test our architecture. 
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Figure 1.    Robot sound localization scenario. 

We are using an ActiveMedia PeopleBOT (shown in 
Fig. 11) as our base for the acoustic tracking robot.  This 
robot contains a PC running the Linux Red Hat Operating 
System, a K6-2-500MHz processor and 128MB of RAM 
and sound card for the acoustic recordings.  The robot 
operates on the local wireless network where it has direct 
access to our Beowulf cluster.  The cluster consists of a 27 
node dual Pentium 4, 2GHz set-up which is available to the 
robot on the network for the processing of any intensive 
data.  This therefore provides additional computing power 
to increase the speed of computation.  For the sound 
processing we have two omni-directional mini electrets 
microphones that are amplified using two LM386 audio 
amplifiers [17] and connected to the robot’s sound card 
line-in port. 

III. METHOD FOR AZIMUTH CALCULATION 
In order to locate a sound-source within the 

environment we need to calculate its azimuth with respect 
to the robot.  The azimuth represents the angle from which 
the sound-source is located with respect to the robot’s 
internal frame of reference with 0o always being directly 
ahead of the robot irrespective of its direction as shown in 
Fig. 2.  This is achieved by computing the time delay of 
arrival (TDOA) of the wave front at the two microphones, 
which in biological terms is the equivalent of the Interaural 
Time Difference cue used in the auditory cortex of the 
mammalian brain [13, 11].  ITD is the time it takes for the 
sound to arrive at the contralateral ear once the ipsilateral 
ear has detected the sound.  Fig. 3 shows the ITD increment 
that is measured for two separately located sound sources. 

 
Figure 2.  The angle calculated to determine the azimuth. Left of 0o is 

negative, right of 0o is positive. 

 
Figure 3.  T2 shows the ITD increment. 

In order to determine the angle of incidence of the 
received wave form, we have to be able to detect the 
Interaural Phase Difference (IPD), i.e. the lag of the wave 
at a specific point received at both microphones.  When the 
first microphone detects the sound, we need to ensure that 
when we are calculating the TDOA, that we compute it 
between two identical points along the waveform in order 
to ensure we get an accurate measure of the ITD.  To carry 
out this task on our robot the system records a sample of 
sound in a time interval (initially this was a one second 
slice).  The stereo signal recorded at the microphones is 
then split into its left and right components.  This is passed 
to the cross-correlation function which is used to compare 
the left and right channels for similarity i.e. where the 
signals are most matched, as the example in Figs. 4-7.  

IV. CROSS-CORRELATION 
In order to calculate the azimuth of the sound-source we 

need to compute the point at which the independently 
received signals at the microphones g(t) and h(t) are at their 
maximum correlation i.e. the signals are at closest match 
when they are superimposed on each other.  The cross-
correlation function is defined in equation (1).  The 
correlation function Corr(g,h)(t) will be at its maximum 
value at some point in time (tn) when the function g(t) is 
shifted in time across the function h(t). 
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Cross-correlation in this instance is used to compare 
two vectors A and B (which contain the values for the 
signals g(t) and h(t) respectively) for similarity.  Cross-
correlation takes as its input the two vectors A and B which 
represent the audio signals recorded from the microphones.  
The signals are then slid across each other at all points to 
give a product vector C whose length is shown in equation 
(2). 

 length(C) = (length (A) + length (B))-1.  (2) 

The maximum value in the returned vector C represents 
the position of maximum correlation between the two 
signals g(t) and h(t) with a time delay σ.  As can be seen 
from the example in Fig 7 the maximum correlation value 
occurs at approximately position 20800 of vector C.  
Within the plot of vector C we have two axes; the y-axis 



represents the product of all the values within the two 
vectors A and B at any given delay σ.  The x-axis 
represents the current step within the cross-correlation 
algorithm i.e. the delay σ.  If g(t) and h(t) were not delayed 
(i.e. the signal was at 0o) then the maximum value would 
occur at the mid point of vector C as when the two vectors 
are aligned the signal will be matched. 

To compute the phase shift or delay of our two signals, 
we present the left and right channels as vectors A and B to 
the cross-correlation method.  These vectors contain the 
amplitude values of the signals with each location within 
the vector representing a sample point along the waveform 
with the amplitude varying between ±1.  The cross-
correlation method then starts by offsetting vector B to the 
far left and zero padding, i.e. the first location of A is lined 
up with the last location of B. 

As is shown in Figs 4 – 6, as one channel is slid across 
the other, the correlation vector is created with the length as 
calculated in equation (2).  As can be seen when the cross-
correlation starts, i.e. vectors A and B are at their highest 
offset, the product of the vectors will be at their lowest as 
shown in the left of the plot in Fig. 7.  This cross-
correlation product will increase as the vectors draw closer 
to highest similarity and will then again decrease as the 
vectors are slid past maximum correlation. 

 

 
Figure 4.  Beginning phase of the sliding window. 

 

 
Figure 5.  Middle (matched) phase of the sliding window. 

 
Figure 6.  Final phase of the Sliding window. 

 
Figure 7.  Shows the plot of cross-correlation product vs. vector location. 

V. ALGORITHM FOR LOCALIZATION USING 
CROSS-CORRELATION AND ITD 

Azimuth is calculated from the cross-correlation 
method by detecting the delay (σ) offset of the highest 
correlation point in vector C.  The delay offset of the 
maximum correlation point is found by moving to the mid-
point of C as this is 0o as discussed previously.  Then, 
counting the number of locations to the highest position 
gives the delay offset.  This offset is either negative (less 
than the mid-point) or positive (higher than the mid-point).  
This delay is then used to calculate the TDOA within the 
system.  To find the TDOA we first need to calculate 
several variables.  The first variable we need to determine 
is the time increment between sampling. 

 s53 102676.2101.44/1 −×=×=∆  (3) 

 

Figure 8.  Calculating the angle of sound-source. 



We assume that the sound arrives in parallel as shown 
by line ‘b’ in Fig. 8.  In order to calculate the angle of 
incidence of the sound-source we need to determine the 
unknown variables of the triangle in Fig. 8.  Using the basic 
trigometric functions of right angled triangles we can 
determine the angles Θ.  From trigonometry we have the 
following equations: 

 
c
aSin =Θ , 

c
bCos =Θ , 

b
cTan =Θ   (4) 
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Figure 9.  Geometric diagram of sin (x) and cos (x). 

However, in order to determine the angle Θ shown in 
Fig. 8 (note that both angles labeled Θ are the same as 
again using trigonometry we know that the angles of a 
triangle must equal 180o).  Before we can calculate the 
angle we need to find the length of at least two sides of the 
triangle.  We already know that side ‘c’ is 0.30 meters as 
this is the distance between the robots microphones.  The 
remaining sides to determine are ‘a’ and ‘b’ from these the 
side we can determine is ‘a’ which can be obtained from 
equation (6).  To determine distance we use Vsound x time.  
However, in order to determine the time for the sound to 
traverse line ‘a’ we need to use the following equations: 

 σ×∆=t  (5) 

Were ∆ = time between sound sampling, see equation 
(3), and σ = the number of delay samples returned from the 
cross-correlation function. Next, we determine the length of 
line ‘a’ by substituting equation (5) into the following: 

 ( ) soundsound VVtlength ××∆=×= σ  (6) 

Were speed of sound is taken to be, v = 384m/s at room 
temperature of 24o @ sea level.  We now have the length of 
sides ‘a’ and ‘c’ and referring to equation (4) can see that 
we require the sine rule.  However, we need to transpose 
this to find Θ. 
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In order to compute the azimuth we computed the cross-
correlation of the waveform and determined the delay 
between the two channels and then using equation (5-8) 
we can calculate the azimuth of the sound-source. 

VI. ACOUSTIC ARCHITECTURE 
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Figure 10.  Basic Acoustic Architecture 

Fig. 10 shows the basic acoustic system architecture 
that was initially developed for simple sound-source 
localization of single sounds.  The signals g(t) and h(t) 
arrive at the two microphones and are recorded and 
preprocessed by the ‘Sound Card Mixer’ stage, from here 
the vectors A and B containing the processed signals g(t) 
and h(t) are passed to the ‘Cross-Correlation’ stage to 
determine the IPD of the two independent signals.  Once 
the result has been obtained we calculate the azimuth and 
finally instruct the robot to move by the required angle 
determined in (8). 

VII. BASIC TRACKING SYSTEM 
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Figure 11.  Basic Two Process Tracking System. 

The second stage of our system was to enable the 
acoustic robot to ‘track’ that is follow a dynamic sound-
source.  If the sound of interest is moving around the 
environment then we need to be able to ‘track’ its 



movements.  The mammalian auditory cortex, along with 
the rest of the mammalian brain is a fully parallel system; 
we therefore looked at several parallel processing methods 
before deciding on the one shown in Fig 11. 

Here the system starts off with an initial single process 
normalizing the recording levels to the background level so 
that we do not to over saturate the system.  From here the 
first recording is made (we have reduced the time slice 
from 1 second to 200ms to improve speed and efficiency).  
The system then performs a ‘fork()’ command and creates a 
child process.   

The parent process uses the first recorded sound and 
computes the cross-correlation.  During this processing 
time, the child process begins to record the second sound 
sample.  As the parent process then calculates the angle and 
begins to move the robot to the desired angle the child 
process begins the cross-correlation from the sound sample 
it took.   The use of semaphores is employed to ensure the 
two processes do not conflict with each other and to ensure 
that they run concurrently but with the specific stages 
offset. 

Child 
Parent X-Corr 

X-Corr Rec Sound 
Rec Sound 
Move Robot

Move Robot 

TIME 

SEMAPHORES 
 

Figure 12.  Time progression of multi process system. 

Fig. 12 shows the parent and child processes with their 
order of execution of the functions enabling sound-source 
tracking.  The arrows represent the semaphores that are 
used to ensure the processes remain in sync. 

VIII. EXPERIMENTATION - LOCALIZATION 
The initial sets of experiments for the sound-source 

localization system were carried out on waveforms which 
had their phase manually altered using sound editing 
software; this enabled us to accurately measure and make 
changes to the phase delay and amplitude of the waveforms 
and therefore manipulate them so that we could effectively 
create any angles we wish for testing the system.  The 
second sets of experiments were carried out using 
prerecorded sound files which were recorded via the two 
amplified microphones, and finally we tested the full 
localization system on the robot itself.  

A. Simulated Waveforms 
To test our algorithm using Cross-Correlation to 

compute the TDOA of a waveform, we recorded the word 
‘LENA’ (the name of our robot).  This recording was made 
in mono, using a resolution of 8-Bits and a sampling rate of 
44.1 KHz.  This waveform was then converted into a stereo 
signal and three test cases were created to see if the delay of 
the signal could be calculated accurately using the cross-
correlation method. 

Firstly, the mono signal was added to both channels in a 
stereo file and both the phase delay and the amplitude of 
the signal were kept identical, this therefore simulated a 
sound originating from directly in front of the robot i.e. 0o 
due to their being no phase shift in the waveform as the 
wave front arrives at both microphones at the same time 
and therefore having a TDOA of zero. 

Secondly, the mono signal was again added to both 
channels.  This time the phase delay and amplitude of a 
specific channel were altered.  The phase of the LEFT 
channel was modified by creating a delay of 20ms and the 
amplitude was then decreased by 20%.  This therefore gave 
the impression that the signal was originating from the right 
of the robot as the signal arrives at the right microphone 
first. 

For the third test we swapped the channels over from 
‘test case 2’, so that the sound-source location appeared to 
be originating from the left side of the robot as the RIGHT 
channel was delayed in its arrival.   

Table I shows the details of each of the samples used to 
test our system giving details of delay and sampling.  We 
used these preconfigured waveforms to see if our algorithm 
of cross-correlation gave the same results as using algebraic 
calculations.  As we have preset the phase shift in our test 
samples (i.e. the real world variable) we can 
mathematically compute the number of delay samples that 
should be detected by cross-correlation. 

From equation (3) we know that each sample ∆ = 
2.2676x10-5 seconds, therefore using (9) we can show the 
delay in samples: 

 
∆

=
ξδ  (9) 

Where ξ is the phase delay in seconds of the 
contralateral signal, ∆ is the sample time and δ is the 
number of samples.  Table II shows the results in number 
of samples that were obtained from both the cross-
correlation function in equation (1) and also the 
mathematically calculated method in equation (9). 

B. Real-World Prerecorded Waveforms 
On simulated waveforms the cross-correlation method 

and the mathematical calculations based on (9) returned the 
same results to 100% accuracy.  This indicates that at this 
stage of our testing cross-correlation is a good and accurate 
measure of similarity for the localization of acoustic sound-
sources. 

With the next step of our experimentation we carried 
out the cross-correlation method on several real-world 
prerecorded sounds.  Here the sample rate of the recorded 
sound was known.  However unlike the manually altered 
sounds, the phase shift / delay time / lag was the unknown 
factor as this is what needed to be calculated in order to 
determine the azimuth.  Preliminarily we conducted tests at 
10 different angles using free field sound.  The tests were 
conducted by a person standing at a range of 1.5 meters 
from the center of the microphones at the 10 measured 



angles.  The angles recorded were –90o, –50o, -40o, -30o, 0o, 
+10o, +20o, +35o, +45o, +70o.  

Knowing these angles we can calculate mathematically 
how many delay samples there should be with respect to 
the current angle.  If we take the sine rule from equation (4) 
we know the angle Θ and the length of ‘c’ we can therefore 
transpose for ‘a’ giving: 

 cSina ×Θ=  (10) 

once we know ‘a’ we can then calculate the delay σ by 
transposing equation (6):  

 ( )∆×=
soundV

aσ  (11) 

These results were then confirmed with the use of the 
cross-correlation method.  Table III shows the comparisons 
between these two methods of cross-correlation and 
mathematical calculation. Each angle was recorded five 
times to test how resilient the system is to repeated 
recordings.  The system seemed to provide results that were 
within an average accuracy of ±1.5o. 

C. Robot Testing 
Finally, the remaining test for the sound-source 

localization architecture of Fig. 10 was to test on the robot 
itself.  Here we positioned the robot in the center of the 
robot lab and had a person stand 1m away from the center 
point of the robot.  We conducted 10 specific angle tests 
five times, then some random tests i.e. we moved to 
randomly chosen places to see if the robot would turn to 
face the speaker.  The 10 tests conducted were -90o, -50o, -
40o, -30o, 0o, +10o, +20o, +35o, +45o, +70o.  Table IV shows 
the results of the tests on the robot, the five repetitions of 
the 10 individual angle tests were averaged in the table.  
The accuracy of the results has also been given, as can be 
seen, the smaller the angle to localize to the higher effect of 
the accuracy the error has, this is due to the error value 
having a larger effect over a smaller angle. 

IX. EXPERIMENTATION – BASIC TRACKING 
The second sets of experiments were conducted to test 

the development of the sound-source ‘tracking’ system 
shown in Fig. 11. For this system the set of experiments 
were conducted on the robot only.  In order to see if the 
system was functioning correctly the microphones have to 
be able to rotate in order to follow the sound-source. 

To test the system we kept a distance of 1 meter from 
the center of the robot and walked around the robot in a 
circle to see if it would rotate with us.  We found the 
system was not fully ‘real-time’ but lagged behind us by 
approximately 1-2 seconds due to the time taken to 
compute the cross-correlation and start up the motors to 
move the robot’s wheels.  At present we are running our 
tracking system on a single processor on board the robot 
itself.  However, in further developments we aim to migrate 
our tracking architecture to our multiprocessor Beowulf 
cluster, which should speed up the system substantially. 

TABLE I.  MANUALLY CREATED WAVEFORMS 

Test Phase Lag Amplitude Bit KHz 
Sample 1 0 L, R = 100% 8 44.1 
Sample 2 L = 20ms L = 80% 8 44.1 
Sample 3 R = 20ms R = 80% 8 44.1 

TABLE II.  NUMBER OF DELAY SAMPLES 

Test Phase Lag Calculated Cross-correlation 
Sample 1 0 0 0 
Sample 2 L = 20ms 960 960 
Sample 3 R = 20ms 960 960 

TABLE III.  CROSS-CORRELATION VS MATHEMATICAL 
CALCULATION (DELAY SAMPLES) 

Sample Angle Cross-
Correlation 

Mathematically 
Calculated 

-90 39 37 
-50 27 26.4 
-40 23 22 
-30 17 17 
0 0 1 
10 5 5.98 
20 11 11.78 
35 20 19.76 
45 26 24.36 
70 33 32.38 

TABLE IV.  FINAL ANGLE TESTS ON ROBOT 

Test Actual  Angle Robot Position 
(Average) 

Accuracy 
% 

Test 1 -90 ±4 95.5 
Test 2 -50 ±2 96 
Test 3 -40 ±1 97.5 
Test 4 -30 ±0 100 
Test 5 0 ±2 98 
Test 6 +10 ±2 80 
Test 7 +20 ±1 95 
Test 8 +35 ±2 94.3 
Test 9 +45 ±2 95.6 
Test 10 +70 ±3 95.7 

TABLE V.  RESULTS OF TEST ANGLES 

Test Actual Angle Calculated 
Azimuth 

Accuracy  
% 

Test 1 -90 -90 100 
Test 2 -60 -55 94.44 
Test 3 -20 -22 97.78 
Test 4 0 2 97.78 
Test 5 +30 +34 95.56 
Test 6 +40 +45 94.44 
Test 7 +70 +70 100 
Test 8 +90 +90 100 

X. RESULTS & DISCUSSION 
Once we had conducted our experiments using cross-

correlation to see if we could perform a similarity measure 
to calculate the delay of the left and right signals and 
ultimately determine the location of the sound-source, we 
then conducted some random angle tests to see how well 
the system performed.  These results are shown in Table V 
with the calculated angle measured against the actual angle.  
Again each angle was recorded and tested five times to 
obtain an average and determine accuracy and robustness. 



As can be seen from the results presented in this paper, 
it is clear that using cross-correlation and ITD is an 
effective method of sound-source localization, the testing 
performed wielded some promising results, as can be seen 
from the above tables this system is capable of locating a 
sound-source within the environment to an average 
accuracy of ±1.5o which is comparable to its mammalian 
counterpart as is shown by Jens Blauert [18] to be 0.9o – 
1.5o for speech. 

The first and second stages (localization and tracking) 
of our acoustic system have now been prototyped.  The 
system developed using cross-correlation is able to locate 
sound-sources on the azimuthal plane with only a small 
time delay of approximately 1 second (on localization 
tasks).  The system is also capable of tracking a sound-
source within the environment, again with a time lag of 1-2 
seconds.  The system will undergo further development in 
order to increase the speed and accuracy of the localization 
and tracking.  Below are future additions to the robotic 
system to enable it to carry out sound localization and 
tracking to a higher standard (including system 
enhancements). 

In order to approach the functionality of the mammalian 
auditory cortex this system is required to be able to separate 
an incoming sound stream into its independent components.  
A common scenario is the ‘cocktail party effect’ [5, 9].  
This involves more than one person talking at the same 
time but still being able to understand what the person we 
are focused on is saying.  The next stage of our system is to 
be able to localize ‘specific’ sounds of interest.  This means 
that the robot would only orient itself to a sound it deemed 
interesting.   

We have carried out the bulk of our experiments within 
our robotics lab which has an ambient background level of 
52db.  This is fairly low and therefore, the next stage in our 
experimentation is to cover a range of background levels 
and see how well the current system can still detect 
azimuth.  One problem however that still exists at present is 
what we term the ‘mirror effect’; this is where the system 
has difficulty in determining whether the sound is 
originating from in front of or behind the robot, this is 
shown in Fig. 13.  This ambiguity also occurs in the 
mammalian auditory system [7].  In our robotic system, this 
phenomena is due to the current microphones being fully 
isotropic, that is, they receive with the same strength from 
their entire circumference and are not directional as in the 
mammalian ear.  This problem is partially overcome in the 
mammalian system by the use of non-isotropic pinnae as 
this makes changes to the spectral patterns of the received 
sound.  Combining this with the other available cues [7] 
overcomes this.   

One way that we can help to overcome this effect on 
our robot is by allowing it to turn several degrees left (this 
method is also used by mammalian’s) and taking another 
reading, therefore changing the interaural intensity 
difference (IID) of the sound received at the microphones.  
From this change we can then easily determine if the 
sound-source is in front of or behind the robot.  Another 
way to tackle this is from an engineering perspective and 

incorporating more microphones [8].  However this moves 
away from our goal of being biologically inspired. 

 

 
Figure 13.  Example of the ‘mirror effect’ caused by purely isotropic 

microphones. 

XI. CONCLUSIONS 
In this paper we have shown a robotic system for 

sound-source localization and basic tracking along the 
horizontal plane using cross-correlation to provide a 
similarity measure of the sound signals g(t) and h(t) 
arriving at the two microphones.  This is the first stage in 
creating our biologically inspired acoustic tracking robot.  
Showing how the cues that are available in the auditory 
cortex of the mammal can be incorporated into a robotic 
system to provide a similarly efficient model of sound-
source localization.  This paper has shown how combining 
cross-correlation with TDOA of the sound at the 
microphones does in fact enable us to locate the azimuth of 
the sound-source within the environment with acceptable 
accuracy. 

This paper also shows how creating a multiprocessing 
model of our sound-source localization architecture can be 
used to create a basic acoustic sound-source tracking 
system.  The use of cross-correlation has proved a 
successful method for the similarity measure of two sound 
signals (as a basis for further development). As can be seen 
from our results we are able to localize a sound-source to 
within an average of ±1.5o.  This is an accurate result which 
demonstrates the potential of cross-correlation as a basis for 
robotic sound-source localization. 

 
Figure 14.  Picture of the PeopleBOT used in the department with ears 

attached. 
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