
ISO/IEC JTC1/SC7
Software Engineering
Secretariat:  CANADA (SCC)

Address reply to:  ISO/IEC JTC1/SC7 Secretariat
Bell Canada - IT Procurement & Quality Engineering

2265 Roland Therrien, Room 226, Longueuil (Québec)  Canada J4N 1C5
Tel.: +1 (514) 448-5100  Fax: +1 (514) 647-3163

sc7@qc.bell.ca

ISO/IEC JTC1/SC7 N1947

1998-06-21

Document Type FCD Ballot

Title FCD15909 Information Technology - High Level Petri Net
Standard.

Source SC7 Secretariat

Project 07.19.03

Status Final CD Ballot

References N1851, N1946

Action  ID ACT

Due Date 1998-10-26

Mailing Date 1998-06-26

Distribution SC7_AG, JTC1 Sec.

Medium Encoded Acrobat

No. of Pages 42

Disk

Note



ISO/IEC JTC1/SC7 FCD 15909
Date

1998-06-21
Reference number
ISO/JTC 1/SC 7 N1947

Supersedes document
      N1793

THIS DOCUMENT IS STILL UNDER STUDY AND SUBJECT TO
CHANGE. IT SHOULD NOT BE USED FOR REFERENCE PURPOSES.

ISO/JTC 1/SC 7
Committee Title
Software Engineering

Secretariat:
Standards Council of Canada (SCC)

Circulated to P- and O-members, and to technical committees and
organizations in liaison for:

X voting by (P-members only)

1998-10-21

Please return all votes and comments in electronic form directly to
the SC 7 Secretariat by the due date indicated.

ISO/IEC  JTC1/SC7

Title: FCD15909 Information Technology - High Level Petri Net Standard.

Project: 07.19.03

Introductory note:  See page ii of the document

Medium: Encoded Acrobat

No. of pages:  46



Vote on FCD 15909
Date of circulation

1998-06-21

Closing date
1998-10-21

Reference number
ISO/JTC 1/SC 7 N1947

ISO/JTC 1/SC 7
Committee Title
Software Engineering

Secretariat:
Standards Council of Canada (SCC)

Circulated to P-members of the committee for voting

Please return all votes and comments in electronic form directly to
the SC 7 Secretariat by the due date indicated.

ISO/IEC  JTC1/SC7

Title: FCD15909 Information Technology - High Level Petri Net Standard.

Project: 07.19.03

Vote:

__ APPROVAL OF THE DRAFT AS PRESENTED

__ APPROVAL OF THE DRAFT WITH COMMENTS AS GIVEN ON THE ATTACHED

    __ general:

    __ technical:

    __ editorial:

__ DISAPPROVAL OF THE DRAFT FOR REASONS ON THE ATTACHED

    __ Acceptance of these reasons and appropriate changes in the text will change our vote to approval

__ ABSTENTION (FOR REASONS BELOW):

P-member voting:
National Body (Acronym)

Date:
YYYY-MM-DD

Submitted by:
Your Name

Note: do NOT send this form when voting by e-mail.  Simply cast your vote (with comments where appropriate)
into a normal email message and send to sc7@qc.bell.ca.



High-level Petri Nets - Concepts, De�nitions and Graphical

Notation

Final Committee Draft ISO/IEC 15909
June 19, 1998
Version 4.0

Editor's Foreword

Previous drafts of this standard have been discussed in WG11 meetings during 1995 and
1996. A Working Draft was circulated to SC7 national bodies in February 1997, and
the �rst Committee Draft was balloted in October 1997. The letter ballot summary is
recorded in SC7N1851. This document incorporates the comments agreed at an editing
meeting at the WG11 meeting in Johannesburg, 25-29 May 1998. The disposition of
comments on CD 15909 has been sent to the secretary of SC7 for circulation to National
Bodies.

National Bodies should send comments to the SC7 secretariat by email to sc7@QC.Bell.ca.
WG11 experts may send their comments to the WG11 secretary, Mr Tony Williamson, at
WILLIAMSONJA%AM5@mr.nawcad.navy.mil. It would be appreciated if all comments
could also be copied to the editor, Jonathan Billington, at j.billington@unisa.edu.au.

The major di�erences from CD15909 (2 October 1997) are:

1. The technical contents of Clause 4 has been moved to normative Annex A, on the
suggestion of the UK.

2. The subclass of Petri nets (without capacities) has been de�ned in normative Annex
B.

3. The symbols used in the de�nitions have been changed according to the editor's
foreword in CD15909, except that F has been retained for the 
ow relation (this is
very well accepted, and also A is already in use for arc annotation, and hence would
also need changing - not worth it.)

4. The introductory paragraph to clause 7 has been moved to clause 6, and replaced
by a more appropriate introduction.

5. Several technical improvements have been made to clause 4 (now Annex A), stim-
ulated by German comments.

1



6. The Conformance clause has been updated to re
ect the discussions at the last
editing meeting at Johannesburg.

7. I hope I have now removed all usage of 'we' in the document.

Jonathan Billington
Editor Project 1.7.19.3 Petri nets
Email: j.billington@unisa.edu.au

2



Contents

0 Introduction 6

1 Scope 7

1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Field of Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Normative References 8

3 Terms and De�nitions 8

3.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Conventions and Notation 11

5 Semantic Model for High-level Petri Nets 11

5.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.2 Marking of HLPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3 Enabling of Transition Modes . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.4 Transition Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Concepts Required for the High-level Petri Net Graph 13

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6.2 High-level Petri Net Graph components . . . . . . . . . . . . . . . . . . . . 13

6.3 Net execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.3.1 Enabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.3.2 Transition Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.4 Graphical Concepts and Notation . . . . . . . . . . . . . . . . . . . . . . . 15

6.5 Conditionals in Arc Expressions, and Parameters . . . . . . . . . . . . . . 16

7 De�nition of the High-level Petri Net Graph 18

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7.2 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7.3 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7.4 Enabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3



7.5 Transition Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8 Notation for High-level Petri Net Graphs 20

8.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.2 Places . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.3 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.4 Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8.5 Markings and Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

9 Semantics of HLPN Graph 21

10 Conformance 22

10.1 PN Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10.1.1 Level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10.1.2 Level 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10.2 HLPN Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10.2.1 Level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10.2.2 Level 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Annex A: Mathematical Conventions (normative) 24

A.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.2 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.2.1 Sum representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.2.2 Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.2.3 Empty multiset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.2.4 Cardinality and Finite Multiset . . . . . . . . . . . . . . . . . . . . 25

A.2.5 Multiset Equality and Comparison . . . . . . . . . . . . . . . . . . 25

A.2.6 Multiset Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.3 Concepts from Algebraic Speci�cation . . . . . . . . . . . . . . . . . . . . 25

A.3.1 Signatures with Variables . . . . . . . . . . . . . . . . . . . . . . . 25

A.3.2 Natural and Boolean Signatures . . . . . . . . . . . . . . . . . . . . 26

A.3.3 Terms of a Signature with Variables . . . . . . . . . . . . . . . . . . 26

A.3.4 Multiset Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A.3.5 Many-sorted Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 27

A.3.6 Assignment and Evaluation . . . . . . . . . . . . . . . . . . . . . . 28

4



Annex B: Net Classes (normative) 30

B.1 Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Annex C: Tutorial (informative) 32

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

C.2 Net Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

C.2.1 Places and tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

C.2.2 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

C.2.3 Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

C.2.4 The net graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

C.3 Transition conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

C.4 Net Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

C.5 A larger example: 
ow control . . . . . . . . . . . . . . . . . . . . . . . . . 38

Annex D: Analysis Techniques (informative) 40

Bibliography 41

5



0 Introduction

This International Standard provides a well-de�ned graphical technique for the speci�-
cation and analysis of systems. The technique, High-level Petri nets, is mathematically
de�ned, and may thus be used to provide unambiguous speci�cations and descriptions
of applications. It is also an executable technique, allowing speci�cation prototypes to
be developed to test ideas at the earliest and cheapest opportunity. Speci�cations writ-
ten in the technique may be subjected to analysis methods to prove properties about the
speci�cations, before implementation commences, thus saving on testing and maintenance
time.

Petri nets have been used to describe a wide range of systems since their invention in
1962. A problem with Petri nets is the explosion of the number of elements of their
graphical form when they are used to describe complex systems. High-level Petri nets
were developed to overcome this problem by introducing higher-level concepts, such as
the use of complex structured data as tokens, and using algebraic expressions to annotate
net elements. The use of high-level to describe these Petri nets is analogous to the use of
high-level in high-level programming languages (as opposed to assemly languages), and is
the usual term used in the Petri net community. Two of the early forms of high-level net
that this standard builds on are Predicate-Transition nets and Coloured Petri nets, that
were �rst introduced in 1979 and have been developed during the 1980s. It is believed
that this standard captures the spirit of these earlier developments (see bibliography).

The technique promises to have multiple uses. For example it may be used to de�ne the
semantics of data 
ow diagrams or directly to specify systems. The technique is particu-
larly suited to parallel and distributed systems development as it supports concurrency.

This standard may be cited in contracts for the supply of software services, or used by
application developers or Petri net tool vendors or users.

This International Standard provides an abstract mathematical syntax and a formal se-
mantics for the technique. Conformance to the standard is possible at several levels. The
level of conformance depends on the class of high-level net supported, and also the degree
to which the syntax is supported. The basic level of conformance is to the semantic model.

Clause 1 describes the scope, areas of application and the intended audience of this In-
ternational Standard. Clause 2 provides normative references (none at present), while
clause 3 provides a glossary of terms and de�nes abbreviations. The main mathematical
apparatus required for de�ning the standard is developed in a normative Annex A, and
referred to in clause 4. The basic semantic model for High-level Petri Nets is given in
clause 5, while the main concepts behind the graphical form are informally introduced
in clause 6. Clause 7 de�nes the High-level Petri Net Graph, the form of the standard
intended for industrial use. Clause 8 further describes syntactical conventions. Clause 9
relates the graphical form to the basic semantic model. The conformance clause is given
in clause 10. Normative Annex B de�nes Petri nets (without capacities) as a restriction of
the de�nition of Clause 7. Two informative annexes are provided: Annex C is a tutorial
on the High-level Petri Net Graph; and Annex D provides pointers to analysis techniques
for High-level Petri Nets. A bibliography concludes the standard.

6



1 Scope

1.1 Purpose

This International Standard de�nes a Petri net technique, called High-level Petri nets,
including its syntax and semantics. It provides a reference de�nition that can be used both
within and between organisations, to ensure a common understanding of the technique
and of the speci�cations written using the technique. The standard will also facilitate the
development and interoperability of Petri net computer support tools.

This International Standard, de�nes a mathematical semantic model, an abstract math-
ematical syntax and a graphical notation for High-level Petri nets.

This International Standard does not provide a concrete syntax nor a transfer syntax
and it does not address techniques for modularity (such as hierarchies), augmentation of
high-level Petri nets with time, and methods for analysis which may become the subject
of future standardisation e�orts.

1.2 Field of Application

This International Standard is applicable to a wide variety of concurrent discrete event
systems and in particular distributed systems. Generic �elds of application include:

� Requirements analysis;

� Development of speci�cations, designs and test suites;

� Descriptions of existing systems prior to re-engineering;

� Modelling business and software processes;

� Providing the semantics for concurrent languages;

� Simulation of systems to increase con�dence;

� Formal analysis of the behaviour of critical systems; and

� Development of Petri net support tools

The standard may be applied to a broad range of systems, including information systems,
operating systems, databases, communication protocols, computer hardware architec-
tures, security systems, control systems, fault-tolerant systems, manufacturing systems,
defence command and control, business processes, banking systems, chemical processes,
nuclear waste systems and telecommunications.

1.3 Audience

The standard is written as a reference for systems analysts, designers, developers, main-
tainers and procurers, and for Petri net tool developers and standards developers.

7



2 Normative References

None.

3 Terms and De�nitions

3.1 Glossary

3.1.1 Arc: A directed edge of a net which may connect a place to a transition or a
transition to a place. Normally represented by an arrow.

3.1.1.1 Input Arc (of a transition): An arc directed from a place to the transition.

3.1.1.2 Output Arc (of a transition): An arc directed from the transition to a place.

3.1.1.3 Arc annotation: An expression that may involve constants, variables and op-
erators used to annotate an arc of a net. The expression must evaluate (on variable
substitution) to be a multiset over the type of the arc's associated place.

3.1.2 Arity: The input sorts and output sort for an operator.

3.1.3 Assignment: For a set of variables, the association of a value (of correct type) to
each variable.

3.1.4 Basis set: The set of objects used to create a multiset.

3.1.5 Binding: see assignment

3.1.6 Carrier: A set of a many-sorted algebra.

3.1.7 Concurrency: see Step

3.1.8 Declarations: A set of statements which de�ne the sets, constants, parameter
values, typed variables and functions required for de�ning the inscriptions on a high-level
net graph.

3.1.9 Enabling (a transition): A transition is enabled in a particular mode and net
marking, when the following conditions are met:

The marking of each input place of the transition satis�es the demand placed on it by its
arc annotation evaluated for the particular transition mode. The demand is satis�ed when
the place's marking contains (at least) the multiset of tokens indicated by the evaluated
arc annotation.

Note: The determination of transition modes guarantees that the Transition Condition is
satis�ed (see Transition Mode).

3.1.10 Concurrent Enabling (of transition modes): A multiset of transition modes
is concurrently enabled if all the involved input places contain enough tokens to satisfy
the sum of all of the demands placed on them by each input arc annotation evaluated for
each transition mode in the multiset.

3.1.11 High-level Net (High-level Petri Net): An algebraic structure comprising: a
set of places; a set of transitions; a set of types; a function associating types to places,

8



and modes (types) to transitions; Pre function determining token demands (multisets
of tokens) on places for each transition mode; Post function determining output tokens
(multisets of tokens) for places for each transition mode; and an initial marking.

3.1.12 High-level Petri Net Graph: A net graph and its associated annotations com-
prising Place Types, Arc Annotations, Transition Conditions, and their corresponding
de�nitions in a set of Declarations, and an Initial Marking of the net.

3.1.13Many-sorted Algebra: A mathematical structure comprising a set of sets and a
set of functions taking these sets as domains and co-domains.

3.1.14 Marking (of a net): The set of the place markings for all places of the net.

3.1.14.1 Initial Marking (of the net): The set of initial place markings given with
the high-level net de�nition.

3.1.14.2 Initial Marking of a Place: A special marking of a place, de�ned with the
high-level net.

3.1.14.3 Marking of a place: A multiset of tokens associated with (`residing in') the
place.

3.1.14.4 Reachable Marking: Any marking of the net that can be reached from the
initial marking by the occurrence of transitions.

3.1.14.5 Reachability Set: The set of reachable markings of the net, including the
initial marking.

3.1.15 Multiset: A collection of items where repetition of items is allowed.

3.1.15.1 Multiplicity: A natural number (ie non-negative integer) which describes the
number of repetitions of a set element in a corresponding multiset.

3.1.15.2 Multiset cardinality: The cardinality of a multiset, is the sum of the multi-
plicities of each of the members of the multiset.

3.1.16 Net graph: A directed graph comprising a set of nodes of two di�erent kinds,
called places and transitions, and their interconnection by directed edges, such that only
places can be connected to transitions, and transitions to places, but never transitions to
transitions, nor places to places.

3.1.16.1 Node (of a net): A vertex of the net graph.

3.1.17 Operator: A symbol representing the name of a function.

3.1.18 Parameter: A symbol that can take a range of values de�ned by a set. It is
instatiated as a constant.

3.1.19 Parameterized High-level Net Graph: A high-level net graph that contains
parameters in its de�nition.

3.1.20 Place: A node of a net, taken from the place kind, normally represented by an
ellipse in the net graph. A place is typed.

3.1.20.1 Input Place (of a transition): A place connected to the transition by an
input arc.

9



3.1.20.2 Output Place (of a transition): A place connected to the transition by an
output arc.

3.1.20.3 Place Type: A non-empty set of data items associated with a place. (This set
can describe an arbitrarily complex data structure.)

3.1.21 Reachability Graph: A directed graph of nodes and edges, where the nodes
correspond to reachable markings, and the edges correspond to transition occurrences.

3.1.22 Signature/Many-sorted signature: An mathematical structure comprising a
set of sorts and a set of operators.

3.1.22.1 Boolean signature: A signature where one of the sorts is Boolean, and one of
the constants is trueBool.

3.1.22.2 Natural signature: A signature where one of the sorts corresponds to the
Natural numbers, and at least one natural constant is included.

3.1.22.3 Signature with Variables: A signature that includes a set of variable names,
as well as the set of sorts and the set of operators.

3.1.23 Sort: A symbol representing the name of a set.

3.1.23.1 Argument sort: The sort of an argument of an operator.

3.1.23.2 Input sort: the same an argument sort

3.1.23.3 Output sort: The sort of an output of an operator.

3.1.23.4 Range sort: the same as an output sort

3.1.24 Term: An expression built from a signature and comprising constants, variables
and operators.

3.1.24.1 Closed term: A term comprising constants and operators but no variables.

3.1.24.2 Term evaluation: The result obtained after the binding of variables in the
term, the computation of the results of the associated functions, and their reduction to
simplest form.

3.1.25 Token: A data item associated with a place and chosen from the place's type.

3.1.26 Transition: A node of a net, taken from the transition kind, represented by a
rectangle in the net graph.

3.1.26.1 Transition condition: A boolean expression (one that evaluates to true or
false) associated with a transition.

3.1.26.2 Transition mode: an assignment of values to the transition's variables that
satis�es the transition condition.

3.1.26.3 Transition occurrence (Transition rule): If a transition is enabled in a
mode, it may occur in that mode. On the occurrence of the transition, the following
actions occur indivisibly:

1. For each input place of the transition: the enabling tokens of the input arc with respect
to that mode are subtracted from the input place's marking, and

10



2. For each output place of the transition: the multiset of tokens of the evaluated output
arc expression is added to the marking of the output place.

Note: A place may be both an input place and an output place of the same transition.

3.1.26.4 Step: The simultaneous occurrence of a multiset of transition modes that are
concurrently enabled in a marking.

3.1.26.5 Transition Variables: All the variables that occur in the expressions associated
with the transition. These are the transition condition, and the annotations of arcs
surrounding the transition.

3.2 Abbreviations

3.2.1 HLPN: High-level Petri Net

3.2.2 HLPNG: High-level Petri Net Graph

3.2.3 PN: Petri Net

3.2.4 PNG: Petri Net Graph

4 Conventions and Notation

This International Standard uses the notation for sets, multisets and universal algebra
de�ned in Annex A. The notion of multisets is required for clauses 5, 6, 7, 8 and 9.
An understanding of many-sorted signatures with variables and many-sorted algebras
provided in Annex A is required for clauses 7 and 9.

Note: For notions of basic set theory including sets, functions, relations and for � ex-
pressions, see the book by Truss in the Bibliography.

The graphical notation used in clause 6.3 is that de�ned in clause 8.

5 Semantic Model for High-level Petri Nets

This clause provides the basic semantic model for High-level Petri nets (HLPN).

5.1 De�nition

A HLPN is a structure HLPN = (P; T;D;Type; Pre; Post;M0) where

� P is a �nite set of elements called Places.

� T is a �nite set of elements called Transitions disjoint from P (P \ T = ;).

� D is a non-empty �nite set of domains where each element of D is called a type.

11



� Type : P [ T �! D is a function used to assign types to places and to determine
transition modes.

� Pre; Post : TRANS �! �PLACE are the pre and post mappings with

TRANS = f(t;m) j t 2 T;m 2 Type(t)g

PLACE = f(p; g) j p 2 P; g 2 Type(p)g

� M0 2 �PLACE is a multiset called the initial marking of the net.

5.2 Marking of HLPN

A Marking of the HLPN is a multiset, M 2 �PLACE.

5.3 Enabling of Transition Modes

A �nite multiset of transition modes, T� 2 �TRANS, is enabled at a marking M i�

Pre(T�) �M

where the linear extension of Pre is given by

Pre(T�) =
X

tr2TRANS

T�(tr)Pre(tr):

Thus a multiset of transition modes is enabled if there are enough tokens on the input
places to satisfy the linear combination of the pre maps for each transition mode in T�.

5.4 Transition Rule

Given that a multiset of transition modes, T�, is enabled at a marking M , then a step
may occur resulting in a new marking M 0 given by

M 0 =M � Pre(T�) + Post(T�):

where the linear extension of Post is used.

A step is denoted by M [T�iM
0 or M

T�
�!M 0.

Note: A step may comprise the occurrence of a single transition mode, or any number
of concurrently enabled transition modes (up to the maximum).

12



6 Concepts Required for the High-level Petri Net

Graph

6.1 Introduction

High-level Petri nets can be de�ned in a number of ways. Clause 5 provides the de�nition
of the basic mathematical semantic model. The basic semantic model is not what is used
by practitioners. High-level Petri nets are normally represented using a graphical form
which allows visualisation of system dynamics (
ows of data and control). This approach
is taken, as it is the graphical form of HLPNs that is most appropriate for industrial use.
The graphical form is referred to as a High-level Petri net graph (HLPNG). It provides a
graphical notation for places and transitions and their relationships, and a mathematical
syntax for inscribing the graphical elements. The HLPNG is an abstract syntactical
representation for HLPNs.

This clause introduces the concepts that are needed in the de�nition of the High-level
Petri net graph. The concepts of enabling and transition rule are also introduced at this
syntactical level to demonstrate how the net may be executed to show system dynamics.
Readers interested in a tutorial exposition on High-level Petri net graphs are referred to
Annex C.

6.2 High-level Petri Net Graph components

A High-level Petri net graph (HLPNG) comprises:

� A Net Graph, consisting of sets of nodes of two di�erent kinds, called places and
transitions, and arcs connecting places to transitions, and transitions to places.

� Place Types. These are non-empty sets. One type is associated with each place.

� Place Marking. A collection of elements (data items) chosen from the place's type
and associated with the place. Repetition of items is allowed. The items associated
with places are called tokens.

� Arc Annotations: Arcs are inscribed with expressions which may comprise constants,
variables and function images (eg f(x)). The variables are typed. The expressions
are evaluated by substituting values for the variables. When an arc's expression is
evaluated, it must result in a collection of items taken from the type of the arc's
place. The collection may have repetitions.

� Transition Condition: A boolean expression (eg x < y) inscribing a transition.

� Declarations: comprising de�nitions of Place Types, typing of variables, and func-
tion de�nitions.

Note: A collection of items which allows repetitions is known in mathematics as a mul-
tiset.

13



6.3 Net execution

HLPNGs are executable, allowing the 
ow of tokens around the net to be visualised.
This can illustrate 
ow of control and 
ow of data within the same model. Key concepts
governing this execution are enabling of transitions and the occurrence of transitions
de�ned by the Transition Rule.

6.3.1 Enabling

A transition is enabled with respect to a net marking. A net marking comprises the set
of all place markings of the net.

A transition is also enabled in a particular transition mode. A transition mode is an
assignment or substitution of values for the transition's variables, that satis�es the tran-
sition condition (ie the transition condition is true). The transition's variables are all
those variables that occur in the expressions associated with the transition. These are the
transition condition, and the annotations of arcs involving the transition.

Enabling a transition involves the marking of its input places. An input place of a tran-
sition is a place which is connected to the transition by an arc leading from that place to
the transition. An arc that leads from an input place to a transition is called an input
arc of the transition.

A transition is enabled in a speci�c mode, for a particular net marking. Each input arc
expression is evaluated for the transition mode, resulting in a multiset of tokens of the
same type as that of the input place. If each input place's marking contains at least its
input arc's multiset of tokens (resulting from the evaluation of the input arc's expression
in the speci�c mode), then the transition is enabled in that mode.

An example is given in subclause 6.4.

The input arc's multiset of tokens resulting from the evaluation of the input arc's ex-
pression in a speci�c mode is called the input arc's enabling tokens, with respect to that
mode.

Two transition modes are concurrently enabled for a particular marking, if for the asso-
ciated transitions, each input place's marking contains at least the sum of the enabling
tokens (with respect to both modes) of each input arc associated with that input place.

6.3.2 Transition Rule

Single Transition Mode

Enabled transitions can occur. When a transition occurs, tokens are removed from its
input places, and tokens are added to its output places. An output place of a transition is
a place which is connected to the transition by an arc directed from the transition to the
place. An arc that leads from a transition to a place (an output place of the transition)
is called an output arc of the transition.

14



Declarations

A = f1; 2; 3; 4g
B = f3; 4; 5; 7g
<: Z � Z ! Boolean arithmetic `less than'
x : A; y : B

Graph

x < y&%
'$

&%
'$

- -

t1

p1

A

1 + 2(3) p2

B

x y

Figure 1: HLPN-Graph with a Transition Condition

If a transition is enabled in a mode, it may occur in that mode. On the occurrence of the
transition in a speci�c mode, the following actions occur atomically:

1. For each input place of the transition: the enabling tokens of the input arc with respect
to that mode are subtracted from the input place's marking, and

2. For each output place of the transition: the multiset of tokens, resulting from the
evaluation of the output arc expression for the mode, is added to the marking of the
output place.

Note: A place may be both an input place and an output place of the same transition.

Step of Concurrently enabled Transition Modes

Several concurrently enabled transition modes may occur in one step, that is in one atomic
action. The change to the marking of the net when a step occurs is given by the sum of
all the changes that occur for each transition mode, as described above.

An example is given in the next subclause.

6.4 Graphical Concepts and Notation

The graphical representation of the net graph is introduced by the simple example of a
HLPNG given in �gure 1.

This example comprises two places, named p1 and p2, one transition, t1, and arcs from
p1 to t1, and t1 to p2. The places are represented by ellipses (in this case, circles), the
transition by a square (more generally by a rectangle), and the arcs by arrows.

15



The declarations de�ne two types, A and B, that are di�erent subsets of the positive inte-
gers. Variable x is of type A, and variable y is of type B. The transition is inscribed with
the boolean expression x < y, where the less than operator is de�ned in the declarations.
Arc (p1; t1) is annotated with the variable x, while arc (t1; p2) is annotated with y.

Place p1 is typed by A and has an initial marking M0(p1) = 1 + 2(3), using the sum
representation of multisets of clause A.2.1. This states that associated with the place p1
are the value 1 and two instances of the value 3. Place p2 is typed by B, and is empty
representing the empty multiset, M0(p2) = ;.

In the initial marking, t1 can be enabled in the following modes

f(1; 3); (1; 4); (1; 5); (1; 7); (3; 4); (3; 5); (3; 7)g

where the �rst element of each pair represents a substitution for x, and the second, a
substitution for y which satis�es x < y.

It can be seen that the multiset of modes, (1; 3)+2(3; 5), is concurrently enabled. Another
example of the concurrent enabling of modes is the multiset (1; 5)+(3; 4) and yet another
is (1; 7) + (3; 5) + (3; 7).

If transition t1 occurred in mode (3,5), then the resultant marking would be:

M(p1) = 1 + 3
M(p2) = 5.

Alternatively, if the multiset of modes (1; 3)+2(3; 5) occurred concurrently, the resultant
marking would be

M(p1) = ;
M(p2) = 3 + 2(5).

6.5 Conditionals in Arc Expressions, and Parameters

The HLPN graph of �gure 2 uses a variant of the readers/writers problem to illustrate
many of the features of a HLPN graph including the use of parameters and conditionals
in arc expressions.

A number (N) of agents (processes) wish to access a shared resource (such as a �le).
Access can be in one of two modes: shared (s), where up to L agents may have access at
the same time (e.g. reading); and exclusive (e), where only one agent may have access
(e.g. writing). No assumptions are made regarding scheduling. An HLPN graph model
of �gure 2 illustrates the use of two parameters, L and N, both of which are positive
integers. This is therefore a parameterized HLPNG, which represents in�nitely many
readers/writers systems. Each instantiation of N and L would produce a HLPNG, which
could then be executed.

It has been assumed that the initial state is when all the agents are waiting to gain access
to the shared resource (with no queueing discipline assumed). In this example, the initial
markings are given in the declaration. Place Wait is marked with all agents; the Control
place contains L ordinary tokens (represented by a dot �) and Access is empty. The
marking of place Wait is given by the set A, which is interpreted to be a multiset over A,

16



Declarations

Set of Agents:A = fa1; : : : ; aNg
Set of Access Modes:M = fs,eg
Control: C = f�g
Positive integer constants: N,L
Variables x:A ; m:M
Function [ ]:Bool! f0; 1g where
[true] = 1 and [false] = 0
M0(Wait) =A
M0(Control) =L�
M0(Access) = ;

Graph

��
��?

?

��
��

��
���

�
�
�
�
�
���

@
@
@

@
@

@
@@I

�
�
�
�
�
�
���

@
@
@
@
@
@
@@I

Wait

A

AccessA�M

Control

C

Enter

Leave

x

x

(x,m)

(x,m)

� + [m=e](L�1)�

� + [m=e](L�1)�

Figure 2: HLPN Graph of Resource Management

17



where each of the multiplicities of the agents is one. An agent can obtain access in one
of two modes: if shared (m=s), then a single token is removed from Control (as m=e is
false, and [m=e]=0, and thus the arc expression evaluates to �) when enter occurs in a
single mode; if exclusive (m=e), then all L tokens are removed preventing further access
until the resource is released (transition Leave). Shared access is limited to a maximum
of L agents as transition enter is disabled whenControl is empty.

Out�x notation has been used for the function []: Bool! f0; 1g. This is the notation for
conditionals in arc expressions. It is assumed that integer addition and subtraction, the
equality predicate and a tupling operator are primitive and do not need to be de�ned in
the Declaration.

7 De�nition of the High-level Petri Net Graph

7.1 Introduction

This clause provides a formal de�nition for the graphical form of high-level nets. It
provides an abstract mathematical syntax for inscribing the graphical elements. The
concepts of marking, enabling and transition rule are also formally de�ned at this level.
The enabling and transition rules are syntactical representations of the corresponding
notions in the semantic model.

7.2 De�nition

A HLPNG is a structure

HLPNG = (NG; Sig;H; Type; AN;M0)

where

� NG = (P; T ;F ) is called a net graph, with

{ P a �nite set of nodes, called Places;

{ T a �nite set of nodes, called Transitions, disjoint from P (P \ T = ;); and

{ F � (P � T ) [ (T � P ) a set of directed edges called arcs, known as the 
ow
relation;

� Sig = (S;O; V ) is a Natural-Boolean signature with variables, de�ned in Annex A.

� H = (SH ; OH) is a many-sorted algebra for the signature Sig, de�ned in Annex A.

� Type : P ! SH is a function which assigns types to places.

� AN = (A; TC) is a pair of net annotations.

18



{ A : F ! BTERM(O [ V ) such that for Type(p) = Hs and for all (p; t); (t
0; p) 2

F , A(p; t); A(t0; p) 2 BTERM(O [ V )s. BTERM(O [ V ) is de�ned in Annex
A. A is a function that annotates arcs with a multiset of terms of the same
sort as the carrier associated with the arc's place.

{ TC : T ! TERM(O [ V )Bool is a function that annotates transitions with
Boolean expressions. TERM(O [ V ) is de�ned in Annex A.

� M0 : P !
S
p2P �Type(p) such that 8p 2 P , M0(p) 2 �Type(p), is the initial

marking function which associates a multiset of tokens of correct type which each
place.

A HLPNG has a net graph where the arcs are annotated by multiset terms. The co-
e�cients of the terms are natural terms. Transitions are annotated by Boolean terms.
The terms are built from a Natural-Boolean signature which has an associated many-
sorted algebra. A typing function associates a carrier of the many-sorted algebra with
each place. A place can only hold tokens of the same type as the place and hence the
initial marking is a multiset over the place's type.

Note : When generating multiset terms for the arc inscriptions, the co-e�cients of terms
are natural number terms, so that the value can depend on the values of variables and
operators of other types. This allows there to be conditionals in arc expressions.

7.3 Marking

A marking, M , of the HLPNG is de�ned in the same way as the initial marking.

M : P !
S
p2P �Type(p) such that for all p 2 P , M(p) 2 �Type(p).

7.4 Enabling

A transition t 2 T is enabled in a Marking,M , for a particular assignment to its variables,
�, that satis�es the transition condition, assignbool(TC(t)) = true, known as a mode of
t, i�

8p 2 P V al�(p; t) �M(p)

where for (u; v) 2 (P � T ) [ (T � P ),

� u; v = A(u; v), for (u; v) 2 F ,

� u; v = �, for (u; v) =2 F

where � is a symbol that represents the empty multiset, ;, at the level of the signature,
so that V al�(�) = ;.

19



7.5 Transition Rule

If t 2 T is enabled in mode �, for marking M , t may occur in mode �. When t occurs in
mode �, the marking of the net is transformed to a new markingM 0, denoted M [t; �iM 0,
according to the following rule:

8p 2 P M 0(p) =M(p)� V al�(p; t) + V al�(t; p)

8 Notation for High-level Petri Net Graphs

8.1 General

The graphical form comprises two parts: a Graph which represents the net elements graph-
ically and carries textual inscriptions; and a Declaration, de�ning all the types, variables,
constants and functions that are used to annotate the Graph part. The declaration may
also include the initial marking and the typing function if these cannot be inscribed on
the graph part due to lack of space. There needs to be a visual association between an
inscription and the net element to which it belongs.

The width, colour and patterns of the lines used to draw the graph are not mandated by
this standard.

8.2 Places

Places are represented by ellipses (often circles). 

Three annotations are associated with a place p:

� the place name;

� the name of the type (Type(p)) associated with the place; and

� the initial marking, M0(p).

A mechanism must be provided to remove any ambiguity regarding the association of
these annotations with the correct place. The position of the annotations with respect to
places is a matter of taste, and is not mandated. For example, the initial marking could
be shown inside the ellipse, and its name and type outside, or the name of the place could
be included inside the ellipse, and the type and initial marking outside.

If the initial marking is empty, then it may be omitted.

8.3 Transitions

A Transition is represented by a rectangle and is annotated by a name and a boolean
expression, the Transition Condition. If the Transition Condition is true (TC(t) = true),
it may be omitted.

20



For example,

x < y t1

represents a transition with a name t1, and a transition condition, x < y, where both
variables, x and y, and the operator less than, <, are de�ned in the declarations.

A mechanism must be provided to remove any ambiguity regarding the association of these
annotations with the correct transition. The position of the annotations with respect
to transitions is a matter of taste, and is not mandated. For example, the transition
condition could be shown inside the rectangle (as in the example), and its name outside,
or the name of the transition could be included inside the rectangle, and the transition
condition outside.

8.4 Arcs

An arc is represented by an arrow: �!

For (p; t) 2 F , an arrow is drawn from place p to transition t and vice versa for (t; p) 2 F .
If (p; t) and (t; p) have the same annotations (p is a side place of t), A(p; t) = A(t; p), then
this may be shown by a single arc with an arrowhead at both ends and annotated by a
single inscription.

Arcs are annotated with multiset terms. Multiset terms use the symbolic sum represen-
tation de�ned in the Conventions (clause A.2.1). In order to distinguish co-e�cients from
terms, the convention is adopted that terms are enclosed in parentheses.

8.5 Markings and Tokens

A token is a member of
S
p2P Type(p). A Marking of the net may be shown graphically by

annotating a place with its multiset of tokensM(p) using the symbolic sum representation.
Parentheses should be used to distinguish token multiplicities (Natural numbers) from
token values (e.g. Integers) when required.

9 Semantics of HLPN Graph

The HLPNG may be given an interpretation as a HLPN (see clause 5) in the following
way.

1. Places: P is the set of places in the HLPN.

2. Transitions: T is the set of transitions in the HLPN.

3. Set of Types: The set of modes for a transition is determined by the types of the
variables occurring in the surrounding arc annotations restricted by its transition
condition.

21



Let there be nt free variables associated with the arcs surrounding a transition
t 2 T . Let these have names vs1(t); : : : ; vsnt (t) 2 V . In the Sig-Algebra, H, for all
i 2 f1; 2; : : : ; ntg, let the carrier corresponding to si, Hsi, be denoted by Gi with
typed variables vi(t) : Gi. For all i, let gi 2 Gi, then

Type(t) = f(g1; : : : ; gnt) j TC
0(t)g where

TC 0(t) = �(v1(t); : : : ; vnt(t)):TC(t)(g1; : : : ; gnt).
Tuples which satisfy TC(t) are included in Type(t). (The �-expression provides a
means for formally substituting values for the variables in the Transition Condition.)

The types of places are obtained directly from the HLPN graph de�nition. Thus
the set of types is given by D = fType(x)jx 2 P [ Tg.

4. The Typing Function: The typing function restricted to places is de�ned in the
HLPNG and Type(t) is given above.

5. Pre and Post Maps.

The pre and post maps are given, for all (p; t); (t; p) 2 F , by the following family of
mappings from Type(t) into �Type(p)

Pre(p;t) = �(v1(t); : : : ; vnt(t)):A(p; t)

Post(p;t) = �(v1(t); : : : ; vnt(t)):A(t; p)

For (p; t) 62 F and 8m 2 Type(t), Pre(p;t)(m) = ; and for (t; p) 62 F and 8m 2
Type(t), Post(p;t)(m) = ;.

Thus for all t 2 T and for all m 2 Type(t)

Pre(t;m) = f(p; b) j p 2 P; b 2 Pre(p;t)(m)g

Post(t;m) = f(p; b) j p 2 P; b 2 Post(p;t)(m)g

6. Initial Marking.

For all p 2 P , M0(p) is as de�ned in the HLPNG.

10 Conformance

Conformance to this International Standard is according to net class. The lowest level
is for the Petri net class and the highest at the level of the HLPNG. Within a class, the
lowest conformance level is to the semantics. If the semantics are adhered to, then the
next level is with respect to syntax.

22



10.1 PN Conformance

10.1.1 Level 1

To claim PN Level 1 conformance to this International Standard an implementation shall
demonstrate that it has the semantics de�ned in clause 5, by providing a mapping from
the implementation's syntax to the semantic model in a similar way to that de�ned in
clause 9.

The de�nition of the semantic model (clause 5), will be specialised by the restriction
that D consists of one set with one element, such as D = ff�gg. This has the following
consequences.

� There is a one to one mapping between PLACE and P

� There is a one to one mapping between TRANS and T

� Each transition has a single mode

� Each place is typed by f�g (ie there is only one token represented by a black dot)

� The initial marking determines the number of black dots allocated to each place
initially.

10.1.2 Level 2

To claim PN Level 2 conformance to this International Standard an implementation shall
have satis�ed the requirements of PN Level 1 conformance and in addition shall include
the syntax of the PNG de�ned in Annex B, section B.1 and the relevant notational
conventions of clause 8, ie there is no need for place typing, nor a declaration, as these
are trivial.

10.2 HLPN Conformance

10.2.1 Level 1

To claim HLPN Level 1 conformance to this International Standard an implementation
shall demonstrate that it has the semantics de�ned in clause 5, by providing a mapping
from the implementation's syntax to the semantic model in a similar way to that de�ned
in clause 9.

10.2.2 Level 2

To claim HLPN Level 2 conformance to this International Standard an implementation
shall have satis�ed the requirements of HLPN Level 1 conformance and in addition shall
include the syntax of the HLPNG de�ned in section 7 and the notational conventions of
clause 8.

23



Annex A
(normative)

Mathematical Conventions

This annex de�nes the mathematical conventions required for the de�nition of High-level
Petri nets.

A.1 Sets

N = f0; 1; : : :g the natural numbers.

N+ = N n f0g, the positive integers.

Z = f: : : ;�1; 0; 1; : : :g the integers.

Boolean = ftrue; falseg

A.2 Multisets

A multiset, B, (also known as a bag) over a non-empty basis set, A, is a function

B : A �! N

which associates a multiplicity, possibly zero, with each of the basis elements. The mul-
tiplicity of a 2 A in B, is given by B(a). A set is a special case of a multiset, where the
multiplicity of each of the basis elements is either zero or one.

The set of multisets over A is denoted by �A.

A.2.1 Sum representation

A multiset may be represented as a symbolic sum of basis elements scaled by their mul-
tiplicities (sometimes known as co-e�cients).

B =
X

a2A

B(a)(a)

When A is the set of real (or complex) numbers, the parenthesis around a is required to
separate the multiplicity B(a) from the basis element a to avoid incorrect interpretation.
Where there is no confusion the parenthesis may be dropped. If B(a) = 1, then it may
be omitted and just a used in the sum.

A.2.2 Membership

Given a multiset, B 2 �A, a 2 A is a member of B, denoted a 2 B, if B(a) > 0, and
conversely if B(a) = 0, then a 62 B.

24



A.2.3 Empty multiset

The empty multiset, ;, has no members: 8a 2 A, ;(a) = 0.

A.2.4 Cardinality and Finite Multiset

Multiset cardinality is de�ned in the following way. The cardinality jBj of a multiset B,
is the sum of the multiplicities of each of the members of the multiset.

jBj =
X

a2A

B(a)

when jBj is �nite, the multiset is called a �nite multiset.

A.2.5 Multiset Equality and Comparison

Two multisets, B1; B2 2 �A, are equal, B1 = B2, i� 8a 2 A, B1(a) = B2(a).
B1 is less than or equal to (or contained in) B2, B1 � B2, i� 8a 2 A, B1(a) � B2(a).

A.2.6 Multiset Operations

The addition operation and subtraction partial operation on multisets, B1; B2 2 �A,
associate to the left and are de�ned as follows:

B = B1 +B2 i� 8a 2 A B(a) = B1(a) +B2(a)
B = B1� B2 i� 8a 2 A (B1(a) � B2(a)) ^ (B(a) = B1(a)�B2(a))

Scalar multiplication of a multiset, B1 2 �A, by a natural number, n 2 N , is de�ned as

B = nB1 i� 8a 2 A;B(a) = n� B1(a)

where � is arithmetic multiplication.

A.3 Concepts from Algebraic Speci�cation

In order to de�ne the HLPNG, concepts from algebraic speci�cation are required. In the
HLPNG, arcs are annotated by sums of scaled terms involving variables, and transitions
with Boolean expressions. Many-sorted signatures provide an appropriate mathematical
framework for this representation. Signatures provide a convenient way to characterise
many-sorted algebras at a syntactic level. This clause introduces the concepts of signa-
tures, terms and many-sorted algebras that are required for the de�nition of the HLPNG.

A.3.1 Signatures with Variables

A many-sorted (or S-sorted) signature with variables, Sig, is a triple:

Sig = (S;O; V )

where

25



� S is a set of sorts (the names of sets, e.g. Int for the integers);

� O is a set of operators (the names of functions) together with their arity in S which
speci�es the names of the domain and co-domain of each of the operators; and

� V is a set of sorted variables, called an S-sorted set of variables.

It is assumed that S, O and V are disjoint.

Arity is a function from the set of operator names to S� � S, where S� is the set of �nite
sequences, including the empty string, ", over S. Thus every operator in O is indexed by
a pair (�; s), � 2 S� and s 2 S denoted by o(�;s). � 2 S� is called the input or argument
sorts, and s the output or range sort of operator o. (The sequence of input sorts will de�ne
a cartesian product as the domain of the function corresponding to the operator and the
output sort will de�ne its co-domain -cf clause A.3.5.)

For example, if S = fInt; Boolg, then o(Int:Int;Bool) represents a binary predicate symbol,
such as equality (=) or less than (<). Using a standard convention, the sort of a constant
may be declared by letting � = ". For example an integer constant is denoted by o(";Int)
or simply oInt.

The sort of a variable may also be declared in the same way as that of constants, from
the set of variable names to f"g � S. A variable in V of sort s 2 S would be denoted by
v(";s) or more simply by vs or by v : s. For example, if Int 2 S, then an integer variable
would be v(";Int) or vInt.

V may be partitioned according to sorts, where Vs denotes the set of variables of sort s
(i.e. va 2 Vs i� a = s).

A.3.2 Natural and Boolean Signatures

The term Boolean Signature is used to mean a many-sorted signature where one of the
sorts is Bool, corresponding to the carrier Boolean in any associated algebra. A Boolean
signature will also include the constant trueBool.

Similarly, the term Natural Signature is used when one of the sorts is Nat, corresponding
to the Naturals (N) in any associated algebra. A Natural signature also includes all the
natural constants.

Editor's note Perhaps we only need the natural constant one here. We need at least
one natural term to allow us to build BTERM(O [ V )s, (because of its new de�nition) -
otherwise we could have no natural terms, if there are no natural operators, or variables.

The term Natural-Boolean Signature refers to a signature that is both a Natural signature
and a Boolean signature, as de�ned above.

A.3.3 Terms of a Signature with Variables

Terms of sort s 2 S may be built from a signature Sig = (S;O; V ) in the following way.
Denote the set of terms of sort s by TERM(O [ V )s, and generate them inductively as
follows. For s; s1; : : : ; sn 2 S (n > 0)

26



1. For all o(";s) 2 O, o(";s) 2 TERM(O [ V )s;

2. Vs � TERM(O [ V )s; and

3. If e1 2 TERM(O [ V )s1; : : : ; en 2 TERM(O [ V )sn are sorted terms and o(s1:::sn;s) 2
O, is an operator, then o(s1:::sn;s)(e1; : : : ; en) 2 TERM(O [ V )s

Thus if Int is a sort, integer constants and variables, and operators (with appropriate
arguments) of output sort Int are terms of sort Int.

Let TERM(O[V ) denote the set of all terms of a signature with variables and TERM(O)
the set of all closed terms (those not containing variables, also called ground terms). Thus

TERM(O [ V ) =
[

s2S

TERM(O [ V )s

A.3.4 Multiset Terms

Multiset terms are de�ned to allow terms to have multiplicities which are terms of sort
Nat, (rather than than just the natural constants). This allows, for example, the intro-
duction of conditions into arc expressions. Multiset terms can be built inductively from
a Natural signature.

Let BTERM(O [ V ) denote the set of multiset terms, de�ned inductively as follows. For
i 2 TERM(O [ V )Nat and a 2 TERM(O [ V ),

� i(a) 2 BTERM(O [ V );

� for b 2 BTERM(O [ V ), i � b 2 BTERM(O [ V ) where `�' represents scalar
multiplication; and

� if b1; b2 2 BTERM(O [ V ), then (b1 + b2) 2 BTERM(O [ V ), where + is the
multiset addition operator.

Where there is no confusion, the parenthesis and the `�' symbol will be dropped and
juxtaposition will be used for scalar multiplication (e.g. `3(x) will be replaced by 3x and
4� [m = e]Nat(x) by 4[m = e]Natx. However 4� 3(x) will not be replaced by 43x. When
the multiplicity of a term is one (eg 1x) the convention is adopted to drop the one, so
that 1x is represented by x. Conversely, when evaluating multiset terms (cf clause A.3.6)
the parentheses and `�' symbols must be re-instated.

A.3.5 Many-sorted Algebras

A many-sorted algebra, (or Sig-Algebra), H, provides an interpretation (meaning) for the
signature Sig. For every sort, s 2 S, there is a corresponding set, Hs, known as a carrier
and for every operator o(s1:::sn;s) 2 O, there is a corresponding function

oH : Hs1 � : : :�Hsn ! Hs:

27



In case an operator is a constant, os, then there is a corresponding element oH 2 Hs,
which may be considered as a function of arity zero.

De�nition: A many-sorted Algebra, H, is a pair

H = (SH ; OH)

where SH = fHsjs 2 Sg is the set of carriers, with for all s 2 S;Hs 6= ; and
OH = foH jo�;s 2 O; � 2 S�and s 2 Sg the set of corresponding functions.

For example, if Sig = (fInt; Boolg; f<(Int:Int;Bool)g) then a corresponding many-sorted
algebra would be

H1 = (Z;Boolean; lessthan)

where Z is the set of integers: f: : : ;�1; 0; 1; : : :g
Boolean = ftrue; falseg
and lessthan : Z � Z ! Boolean is the usual integer comparison function.

It could also be
H2 = (N;Boolean; lessthan)

where N is the set of non-negative integers: f0; 1; : : :g
Boolean = ftrue; falseg
and lessthan : N �N ! Boolean.

For signatures with variables, variables are S-sorted. In the algebra, the variable is typed
by the carrier corresponding to the sort.

A.3.6 Assignment and Evaluation

Given an S-sorted algebra, H, with variables in V , an assignment 1 for H and V is a set
of functions �, comprising an assignment function for each sort s 2 S,

�s : Vs ! Hs:

This function may be extended to terms by considering the family of functions assign
comprising

assigns : TERM(O [ V )s ! Hs

for each sort s 2 S. The values are determined inductively as follows. For � 2 S� n f"g,
� = s1s2 : : : sn, with s; s1; : : : ; sn 2 S, e 2 TERM(O [ V ), and e1 2 TERM(O [
V )s1; : : : ; en 2 TERM(O [ V )sn

� If e 2 Vs is a variable, then assigns(e) = �s(e)

� For a constant, os 2 O, assigns(os) = oH 2 Hs.

� If e = o(�;s)(e1; : : : ; en), then assigns(e) = oH(assigns1(e1); : : : ; assignsn(en)) 2 Hs.

1The terms binding and valuation are also used in this context.

28



A multiset term is evaluated by determining the values of each of the terms (and their
co-e�cients) comprising a multiset term for a particular assignment to variables. This
is de�ned inductively as follows for a 2 TERM(O [ V ), i 2 TERM(O [ V )Nat and
b; b1; b2 2 BTERM(O [ V )

� V al�(i(a)) = assignNat(i)(assign(a))

� V al�(i� b) = assignNat(i)� V al�(b)

� V al�(b1 + b2) = V al�(b1) + V al�(b2)

The evaluation of a multiset term results in a multiset, represented by a symbolic sum (cf
clause A.2.1).

29



Annex B
(normative)

Net Classes

The purpose of this Annex is to de�ne various classes of nets as a subclass of the HLPNG.
Currently it de�nes Petri nets (without capacities). Other subclasses may include Ele-
mentary Net systems and other high-level nets.

B.1 Petri nets

A Petri net graph PNG is an HLPNG

PNG = (NG; Sig;H; Type; AN;M0)

where

� NG = (P; T ;F ) is a net graph

� Sig = (S;O; ;) with S = fDot; Bool; Natg, O = f�Dot; trueBool; 1Nat; 2Nat; : : :g

� H = (fdot; Boolean;Ng; f�; true; 1; 2 : : :g) a many-sorted algebra for the signature
Sig, where dot = f�g and the obvious correspondences are made (DotH = dot,
BoolH = Boolean, NatH = N , (�Dot)H = �, (trueBool)H = true, (1Nat)H = 1 etc.).

� Type : P ! fdotg is a function which assigns the type dot to all places.

� AN = (A; TC) is a pair of net annotations.

{ A : F ! B where B = f1Nat�Dot; 2Nat�Dot; : : :g

{ TC : T ! ftrueBoolg is a function that annotates every transition with the
Boolean constant true.

� M0 : P ! �dot.

Although this is a rather baroque de�nition of Petri nets, it can be seen to be in one to
one correspondence with a more usual de�nition given below.

PNG = (NG;W;M0)

where

� NG = (P; T ;F ) is a net graph.

� W : F ! N+ is the weight function, assigning a positive integer to each arc.

� M0 : P ! N is the initial marking assigning a natural number of tokens to each
place. These are represented by dots (�).

30



This is because:

� the transition condition is true for each transition, and hence doesn't need to be
considered,

� the type of each place is the same, and given by a single value �, and hence there is
no need for typing places,

� the number of dots (�) associated with each place (marking), and with each arc
(Weight function), are in one to one correspondence with the Naturals.

31



Annex C
(informative)

Tutorial

C.1 Introduction

High level Petri net graphs (HLPNGs) are used to model discrete event systems. A
discrete event system comprises

� collections of real or abstract objects and

� discrete actions which

- modify or consume objects from some collections and

- create objects in other collections.

The created objects may be related to objects that are consumed. It is assumed that
the collections considered have some permanent identity, irrespective of varying contents.
Take, for example, the collection of coins in someone's purse, or a data base. Generally,
several instances of the same object can be contained in a collection.

C.2 Net Graphs

In HLPNGs, an action is modelled by a transition, which is graphically represented by
a rectangle. A collection is modelled by a place, which is graphically represented by a
circle or an ellipse. Places and transitions are called the nodes of a net graph. Arrows,
called arcs, show which places a transition operates on. Each arc connects a place and a
transition in one direction. Arcs never connect a place with a place nor a transition with
a transition. The graphical representation of a net graph is shown in �gure 3.

a transition an arca place

Figure 3: Graphic conventions.

32



C.2.1 Places and tokens

The objects of the system are modelled by (arbitrarily complex) data items called tokens.
Tokens reside in places. The contents (i.e. the tokens) of a place is called the marking of
the place. The tokens form a collection (known in mathematics as a multiset) i.e. several
instances of the same token can reside in the place. A marking of a net consists of the
markings of each place.

Example A in �gure 4 consists of a single place, Alice s purse, which models that Alice's
purse contains two 1-cent, three 10-cent and two 50-cent coins. The set of coins is de�ned
in a textual part of the HLPNG called the Declarations.

The place, Alice s purse, is typed by the set, Coins. This means that only coins (belonging
to Coins) can reside in Alice's purse. In this example, the tokens correspond to coins.

c1

c50 c10
c1

c10 c10

Coins

c50

Alice_s_purse

Coins = fc1, c2, c5, c10, c20, c50g

Figure 4: Example A.

Example A is a net graph. It has neither transitions nor arcs. As no actions are modelled,
nothing ever happens and nothing ever changes in this system.

When a particular instance of a HLPNG is de�ned, each place is de�ned with a special
marking, called the initial marking, because other markings will usually evolve, once a net
is executed. As a place can be marked with a large number of tokens, the initial marking
may be declared textually instead of pictorially. Thus, Alice's present coin collection can
be written as the initial marking,

M0(Alice s purse) = 2c1 + 3c10 + 2c50

and the net graph is then drawn (admittedly in a less illustrative way) without tokens.

C.2.2 Transitions

Example B in �gure 5 models the dripping of a tap. Transition drip can always happen,
any number of times. Example B is also a net, even though it has neither places nor arcs.

C.2.3 Arcs

An arc from a place to a transition indicates that this transition consumes objects from
the place. An arc in the opposite direction indicates that this transition produces tokens

33



drip

Figure 5: Example B.

on the place. In �gure 6, Example C, Alice has a smaller coin collection. She may spend
any number of coins at a time.

Alice_s_purse

Coins

x
spend

Coins = fc1, c2, c5, c10, c20, c50g

x : Coins

M0(Alice s purse) = c10 + 2c50

Figure 6: Example C.

Arc annotations determine the kinds and numbers of tokens that are produced or con-
sumed. Here, the annotation \x" indicates that any coin (from Alice's purse) can be
spent. However, it has to be declared in the textual part of Example C that \x" denotes
a variable for coins. Alice could spend: a ten cent coin; a �fty cent coin; a ten cent and
a �fty cent coin; two �fty cent coins; and all her coins in one transaction, that is by the
occurrence of transition spend.

C.2.4 The net graph

The size and position of the nodes, as well as the size and shape of the arcs, though often
important for readability, are irrelevant to the mathematical description of a net, i.e. the
places, transitions, and arcs of the net, the net graph. Informally, one might say, the net
has one place, called Alice s purse, one transition, spend, and one arc from Alice s purse
to spend. Formally this can be expressed as:

P=fAlice s purseg

T=fspendg

F=f(Alice s purse, spend)g

34



Traditionally, S denotes the set of places, but in this standard we use P (since it is written
English), T denotes the set of transitions, and F denotes the set of arcs. These letters
are the initials of the German words Stelle, Transition, Flussrelation. Each arc is thus
described as the pair consisting of its origin node and its target node.

C.3 Transition conditions

Example D in �gure 7 models that Bob starts with an empty purse and collects 10-cent
coins.

Coins

receiveBob_s_purse

c10

Coins = fc1, c2, c5, c10, c50g

M0(Bob s purse) = ;

Figure 7: Example D.

Example D does not model where the coins may come from. It only shows what happens
to Bob's purse as a consequence of an arbitrary number of occurrences of receive.

In the next example, depicted in �gure 8, Alice is ready to give Bob any of her coins.
Bob, however, accepts only 10c coins from Alice.

CoinsCoins

Bob_s_purse

x = c10

Alice_s_purse donate

c10x

Coins = fc1, c2, c5, c10, c50g

x : Coins

M0(Alice s purse) = c10 + 2c50

M0(Bob s purse) = ;

Figure 8: Example E.

Now we have added a transition condition, requiring that x=c10. The transition donate
can occur only with such variable values as ful�ll the condition. If there are no appropriate,
i.e. c10, tokens in Alice s purse, then donate cannot occur. In a more realistic variant
of Example D, Bob cannot put arbitrarily many coins into his purse. Example F in �gure
9 limits the number of 10 cent coins that Bob can receive to 200.

35



noc<200 receive
c10

Coins

Bob_s_purse

No_of_coins

N

noc+1 noc

Declarations

N set of natural numbers
Coins = fc1, c2, c5, c10, c50g
noc : N
< :N�N! Bool usual \less than" predicate
+ :N�N!N arithmetic addition

M0(Bob s purse) = ;
M0(No of coins) = 0

Figure 9: Example F.

C.4 Net Dynamics

Example C can be used to illustrate the modelling of system dynamics in HLPNs. In her
�rst action, Alice can spend any number of her coins. Let her spend a 10-cent coin. Then
in the net, spend occurs, with x having the value c10. This occurrence of spend is denoted
by (spend, f(x,c10)g). This indicates which transition occurs (spend), and to which value
each of the variables, appearing in the arc annotations around the transition, is bound.
In this case only x appears, and is bound to c10.

By the occurrence (spend, f(x,c10)g) a new marking of the net is created: M1(Alice s purse)

= 2c50.

The new marking is called a reachable marking of Example C. A di�erent marking would
be reached by Alice spending a �fty cent coin. As long as Alice's purse contains coins, she
can spend any of them. In the net, as long as Alice s purse is marked with a non-empty
multiset of tokens, spend can occur with x bound to any one of the tokens in the marking
of Alice s purse. Markings reachable from reachable markings are also called reachable.

36



The dynamics of Example C, i.e.

� the markings reachable in Example C, as well as

� the transition occurrences performed to reach each one,

are depicted in the reachability graph in �gure 10.

{(Alice_s_purse, c10 + 2c50)}

(spend, {(x, c10)})

{(Alice_s_purse, 2c50)} {(Alice_s_purse, c10 + c50)}

{(Alice_s_purse, c10)}{(Alice_s_purse, c50)}

(spend, {(x, c50)}) (spend, {(x, c10)})

(spend, {(x, c50)})

(spend, {(x, c10)})

{(Alice_s_purse,       )}

(spend, {(x, c50)}) (spend, {(x, c50)

Figure 10: Reachability graph of Example C.

From this diagram, one can read, for example, the following facts about the dynamics of
Example C:

� If Alice spends �rst 10 cents and then 50 cents, or if she does it in the reverse order,
then she will have 50 cents left.

� Alice can perform at most three actions.

� Every sequence of 3 actions ends with an empty purse.

� No sequence of actions (save, trivially, the empty sequence) will allow Alice to restore
the contents of her purse.

All of this holds, of course, only within the range of actions considered in Example C.
In the reachability graph, set braces f...g are written around the pair parentheses (...)
wherever usually an entire set appears in this position. Generally there are sets of place
markings and sets of variable bindings to be described. It just happens that in our very
simple example these are one-element sets and the f(...)g looks unnecessarily complicated.

37



The reachability graph for Example D consists of a single in�nite chain, as indicated in
�gure 11. The occurrence (receive, ;) does not mean that Bob receives no coins, but that
no variable is assigned a value.

etc.

(receive,      )

(receive,      )

(receive,      )

{(Bob_s_purse,       )}

{(Bob_s_purse, 2c10)}

{(Bob_s_purse, c10)}

Figure 11: Reachability graph of Example D.

C.5 A larger example: 
ow control

Two companies, A Co and B Co, reside in di�erent cities. A Co packs and sends big crates
of equal size to B Co, one by one. B Co has a room where the crates are stored. Crates
may be taken from the store-room for processing (for example, distributed to retailers, or
opened and the contents consumed - it does not matter here). This procedure is modelled
in �gure 12.

Crates CratesreceiveCrate processCratesendCrate

Crates = {Cr}

Crates_in_transit Store_room

Cr Cr Cr Cr

Figure 12: Crate procedure.

The people from B Co have a problem. The store-room of B Co can only hold a certain
number, say, MAX, of these crates. In order to avoid being forced either to leave crates
in the street or to rent another store-room, B Co agrees with A Co on a \
ow control
protocol".

To implement the protocol, A Co keeps a record of SendingCredits, while B Co keeps a
record of empty \slots" available for placing crates in the store. Any time that there are
empty slots, B Co may give the number of empty slots as sending credits for crates to
A Co. B Co does this by sending a letter with this number and setting the number of
empty slots to 0. Whenever A Co receives such a letter, it increases SendingCredits by
the number written in it.

Sending a crate, which is only possible if SendingCredits is 1 or more, lowers SendingCredits
by 1, and processing a crate raises the number of empty slots by one.

38



Initially, the situation is as follows: no crate or letter is in transit; the store-room is empty;
there is no sending credit; and all slots are empty.

This distributed system is modelled by �gure 13.

Crates_in_transit

sc>0

N

n

0
N

sc

new
n

n n+1

n>0

CratesCrates

Letters_in_transit sendLetter Empty-slots

receiveCrate Store_room processCratesendCrate

N

receiveLetterSending
_credits

sc

sc+new

Cr Cr Cr Cr

sc-1

M0(Crates in transit) = Mo(Letters in transit) = Mo(Store room) = ;
M0(SendingCredits) = 0
M0(Empty-slots) = MAX

Declarations

Crates = fCrg
N = f0, 1, 2, . . . g
Z is the set of integers
n, new, sc : N
MAX : N
+ : Z � Z ! Z is arithmetic addition
� : Z � Z ! Z is arithmetic substraction

Figure 13: Example G.

Note that this net models in�nitely many di�erent systems. It is a parameterized HLPNG
with a parameter, MAX, that may take any natural number as a value. Each such
value val, substituted for MAX instantiates Example G to an \ordinary" HLPNG without
parameters,Example G(val).

39



Annex D
(informative)

Analysis Techniques

There are a large number of analysis techniques for Petri nets, including reachability
analysis (in many forms), structural analysis and invariants analysis that may be used to
investigate properties of systems modelled by nets. This annex is just to alert readers of
this standard to these possibilities. The Petri net community plan to publish a 3 volume
set in the Lecture Notes in Computer Science series as a handbook on Petri nets in 1998.
This will be based on lectures given at a two week advanced course in Petri nets held in
Germany in 1996. Readers are also referred to the bibliography, for example, the second
volume of Kurt Jensen's book on Coloured Petri Nets.

40



Bibliography

1. J. L. Peterson, \Petri Net Theory and the Modeling of Systems", Prentice-Hall,
N.J., 1981.

2. W. Reisig, \Petri Nets, An Introduction", EATCS, Monographs on Theoretical
Computer Science, W.Brauer, G. Rozenberg, A. Salomaa (Eds.), Springer Verlag,
Berlin, 1985.

3. T. Murata, \Petri nets: properties, analysis and applications", Proc IEEE, Volume
77, No. 4, pp. 541-580, 1989.

4. B. Baumgarten, \Petri-Netze, Grunlagen und Anwendungen", Wissenschaftsverlag,
Mannheim, 1990.

5. K. Jensen, \Coloured Petri Nets", Volume 1: Basic Concepts, Springer-Verlag 1992.

6. K. Jensen, \Coloured Petri Nets", Volume 2: Analysis Methods, Springer-Verlag
1994.

7. K. Jensen, \Coloured Petri Nets", Volume 3: Practical Use, Springer-Verlag 1997.

8. J. Desel and J. Esparza, \Free Choice Petri Nets", Cambridge Tracts in Theoretical
Computer Science 40, Cambridge University Press, 1995

9. R. David and H. Alla, \Petri nets and Grafcet", Prentice Hall, 1992.

10. A. A. Desrochers and R.Y. Al'Jaar, \Applications of Petri nets in Manufacturing
Systems: Modelling, Control and Performance Analysis", IEEE Press 1995.

11. Advanced Course on Petri Nets, Bad Honnef, West Germany, September 1986.
Published in `Advances' series, LNCS Vols 254, 255, 1987.

12. E. Best and C. Fernandez, \Notations and Terminology on Petri Net Theory",
Arbeitspapiere der GMD 195, March 1987.

13. J. Billington, \Extensions to Coloured Petri Nets", Proceedings of the Third In-
ternational Workshop on Petri Nets and Performance Models, Kyoto, Japan, 11-13
December, 1989, pp. 61-70.

14. J. Billington, \Many-sorted High-level Nets", invited paper in Proceedings of the
Third International Workshop on Petri Nets and Performance Models, Kyoto, Japan,
11-13 December, 1989, pp. 166-179, also reprinted in K. Jensen, G. Rozenberg (Eds.)
High-Level Petri Nets: Theory and Application, Springer-Verlag, 1991.

15. J. Billington, \Extensions to Coloured Petri Nets and their Application to Proto-
cols", University of Cambridge Computer Laboratory Technical Report No. 222,
May 1991.

16. W. Reisig, \Petri nets and algebraic speci�cations", TCS, Vol. 80, pp. 1-34, May,
1991.

41



17. J.K. Truss, \Discrete Mathematics for Computer Scientists", Addison-Wesley, 1991.

42


