




Preface
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We received 22 high-quality contributions. The program committee has accepted eight
of them for full presentation. Furthermore the committee accepted nine papers as short
presentations. At the common poster session with the workshop on Organizational Mod-
eling (OrgMod’09) one poster is presented. The poster session is in addition open to all
participants of the whole conference events to present ongoing work and current / future
projects without written submissions.
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A Petri Net-based Conceptual Meta-model for System 
Modeling 

Christophe Sibertin-Blanc 

Université de Toulouse, IRIT 
2, rue du Doyen Gabriel Marty, 31042 Toulouse cedex 

sibertin@irit.fr 

Abstract. The structure of a system may be described with three sorts of related 
elements: operations the performances of which make the system go from a 
consistent state to another one; active actors, or processors, that perform 
operations; passive entities that are involved in operation occurrences. The 
association of a processor, an operation and a list of entities defines an action. 
Each of these elements may be hierarchically refined and are subject to the 
type-instance distinction. On the basis of a so defined structure, the behavior of 
a system is defined by a control structure that determines the possibility for an 
act – an action occurrence - to occur. 

 
" Un système est une unité globale organisée d’interrelations  

 entre des éléments, actions ou individus1 ",  

Introduction 

Thanks to their numerous valuable features, Petri nets are a formalism very well 
suited to model the behavior of complex, and thus concurrent, systems. However, one 
may think that they are not used as widely as they could be and, in any case, behavior 
modeling is a difficult task. This state of affairs is perhaps due to the fact that 
modeling the behavior of a system requires beforehand to have a model of the 
structure of the system under consideration: what are its constituting elements and 
how they are related. To identify and define these elements and relations, a meta-
model of the structure of systems is needed. 

The concept of system is used in most disciplines, and a review of the huge 
literature, from (Bertalanffy, 1950) to e.g. (Snooks, 2008) is out of the question. 
Regarding software systems, meta-modeling is a matter of Model Engineering 
(Bezivin 2005) in the line of the MOF (Meta Object Facility, (OMG, 2006)) and the 
UML (OMG, 2004). However, despite its 13 kinds of diagrams and the 1200 pages of 
its definition, the UML does not propose a model of what is a software system. 

                                                             
1 « A system is a global unity organized of interrelations between elements, actions or 

individuals » (Morin 1977, p. 102). 
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In this paper, we propose a meta-model of the structure of systems together with a 
way to describe their control structure by means of Petri nets; it features the following 
main properties:  
• It is conceptual in as much as it is intended to be used by modelers as well as by 

domain experts which possess the theoretical or empirical knowledge of the 
system to be modeled; it can be the language that they need to share in order that 
the domain expert transfers its knowledge to the modeler and is able to validate 
the model elaborated by the later. 

• It is conceptual also because it is compatible with most Domain Specific 
Languages (Mernik &al., 2005) that can be used to describe the constitutive 
elements of a system; it can even be used to structure the description of a system 
that is expressed in natural language. 

• It allows to structure the model of a system. Indeed, a model of a non-trivial 
system includes a big number of diagrams (or, more generally, of model units) 
that are related in many ways: a model of a system itself is a system. The 
effective understanding of each diagram necessitates to know its matter, status 
and context, that is how it is related to other diagrams, and this requires the 
model to be organized in a knowledgeable and tractable way. 

Briefly speaking (see figure 1), a system includes Entities, abstract or concretes, 
that it handles, processes, exchanges with its environment or uses as resources. An 
Entity is a passive object mainly composed of attributes and services (or methods). A 
system also includes Actors, active objects that have the same constitutive elements as 
Entities and in addition consume some energy to store Entities and to perform 
Operations while carrying their activity out. Finally, the structure of a system includes 
Operations, the work units that make the system to change from a coherent state to 
another one. The state of a system is given by the state of all its constitutive elements. 
All these elements are linked by many relations. Entities, actors and operations 
support the type/instance distinction, that is the actualization in time and space of 
their definition. They also support the refinement process, which is their breaking into 
elements of the same nature. 

The elements of the structure of a system allow to define its set of actions, that is 
the performance by an actor of an operation involving some entities. The 
type/instance distinctions may also be applied to actions (the instance, or occurrence 
of an action is an act), and a control structure may be used to break an action into 
smaller actions. Defining the Behavior of a system consists in describing in which 
cases an action may or must occur and the effect of this occurrence or, in an 
equivalent way, which are the actions that may occur from a given state.  
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Fig. 1.  The meta-model of the structure of a system 

2 The structure of a system 

All the three sorts of elements, entities, actors and operations, are necessary for a 
system to feature some activity and be a device useful for its environment. Without 
entities it provides nothing, without operations there is nothing to be performed, and 
without actors it is dead, it has no possibility to performed something. 

2.1 The Entities 

Any system handles some things, items, and objects that we call entities. Some of 
these entities are permanent and stay in the system as long as the system itself. Others 
are transient, because they are received from or sent to the system’s environment, or 
because they are created or deleted by the system. In fact, entities may be considered 
as passive objects in the meaning of the Object-Oriented approach. An entity can be 
identified and distinguished from others. It features a set of attributes that have either 
a constant or a variable value; the state of an entity is defined as the value of all its 
(variable) attributes. To define which are the feasible or consistent states of an entity, 
it may be associated with some local state invariants, that is predicates that must be 
satisfied by the values of its attributes in any case. An entity also provides some 
services, or methods, that can be invoked by other system’s elements. Some services 
do not change the state of the entities, they are query-services that only return an 
information about the entity; others have to respect the entity’s state invariants: if a 
service is invoked when the entity is in a consistent state, then the entity is still in a 
consistent state after the execution. Finally, an entity may be associated with some 

Sibertin-Blanc: A Petri Net-based Conceptual Meta-model for System Modeling 5



  

behavior invariants that define how it can be used, that is in which cases its services 
may be invoked; the figure 2 shows what could be the behavior invariant of a “gate” 
entity. 

Entities may be linked the ones with the others, and also with actors and 
operations, by many kinds of relations. This leads to consider global state invariants, 
that is predicates that must be satisfied by the values of the attributes of linked 
entities; for instance, the date of an invoice must be after the date of the 
corresponding order. 

It is clear that an entity, or an entity type, can be described with the UML notation. 
However, it is also possible to use any other language more appropriate to the 
specificities of the considered entities. The above definition just indicates what 
knowledge it is relevant to capture about an entity, not how this knowledge has to be 
expressed. 

 

 
Fig. 2.  The behavior invariant of a gate entity 

2.2 The actors 

While the entities are the passive elements that are processed by the system, the 
actors are the active elements, the processors or processing units that perform the 
work done by the system. Each actor is an engine, a device, in fact a sub-system that 
consumes some energy to produce some work2. Most entities needs to be hosted 
somewhere, and actors care for them. In any case, an invocation of a service of an 
entity is performed by an actor that uses the service as a tool. With regard to 
operations, actors select the ones to be done and carry their occurrence out.  

As for entities, some actors are permanent while others are transient. It may be the 
case that an actor is involved in an operation performed by another actor; as a 
consequence, all the items that are relevant in the definition of entities are also 
relevant for actors: an actor is-a entity. However, each actor features an additional 
element, its activity that we will introduce in section 3.5. 

                                                             
2 In many cases there are several ways to design the model of a system, even at a specified 

level of detail, according to the purpose of the model. Accordingly, there are several ways to 
identify the actors of a system. The energy consumption criterion does not prevent e. g. to 
consider that a process running on a computer is an actor that consumes the « computational 
energy » provided by the processor that consumes the electrical power energy. Where and 
how energy is consumed still is a modeling choice, the unavoidable fact being that any work 
requires some energy. 
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2.3 The operations 

While services are the atomic3 working units at the entity level (as they preserve 
their consistency), operations are the atomic working units at the level of the whole 
system and they have to respect all the state and behavior invariants: if the execution 
of an operation starts when the system is in a consistent state, then the system is still 
in a consistent state at the completion of this execution (the reader familiar with 
databases will recognize the similarity with the concept of transaction (Gray, 1981)). 
An operation is defined as a set of entity’s service invocations that are gathered 
according to some control structure, and this control structure may be defined in 
anyway.  

The instances of an operation are its performances, or occurrences. Operations 
instances are evanescent elements, they have a bounded span life while entities 
instances last for an undefined period of time. However, we claim that operations are 
first class elements of the structure of a system (compare the attributes and services of 
an entity with the entities and operations of the system). The control structure that 
gathers services into a consistent operation is a steady component of a system. 

2.4 The hierarchical breakdown 

The model of a system may be drawn at different level of abstraction. At the top level, 
the model of a system includes a single actor, the system itself; the entities are the 
ones exchanged with its environment that is other systems with which the one under 
consideration interact; as for the operations, they are the procedures offered by the 
system to its environment. What about procedures? We are considering systems that 
have some raison d’etre; they are artifacts designed with the purpose to have some 
utility and thus to provide services to their environment. An offered procedure is 
launched at the request of the system’s environment and it ends when the request has 
been completely processed (compare with the use case concept of the UML). A 
procedure is a (set of) sequence of treatments that is closed for the causality relation. 
Besides offered procedures, a system also includes homeostatic procedures that are 
intended to maintain its internal equilibrium and may be viewed as the support 
procedures necessary for the offered ones to work properly. One may also consider 
the require procedures of a system, the ones that are offered by the systems of this 
environment. 

This top-level model may be decomposed into a lower level one. The system-actor 
is breakdown into sub-system actors, the procedures are breakdown into operations 
linked by control structures (some services of the system-actor may become 
operations), entities exchanged with the environment may be also breakdown into 
smaller ones and new entities reveal to be considered to describe the operation 

                                                             
3 Atomicity holds in the case of discrete event systems and avoids to consider the state of a 

service: the state of the system is undefined during the course of the execution of a service. 
This is the case considered in this paper, but the meta-model could be extended to consider 
continuous and hybrid systems (David & Alla, 2005).  
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processing; and so recursively. This is nothing else than the well-known refinement 
process advocated by the functional approaches, e.g. (SADT, 1993). 

3. The behavior of a system 

Entities, actors and operations are the necessary and sufficient elements for the 
system to feature some behavior: they define the space of its potential consistent 
states and how it can move from one state to another one under the effect of an 
operation occurrence. Defining the behavior of the system is defining how it operates, 
that is its possible trajectories within this space of potential states and the states that 
can be actually reached from an initial state. To this end, the behavior of a system 
must determine in which cases an operation may or must occur and the effect of this 
occurrence or, in an equivalent way, which are the operations that may occur from a 
given state. 

3.1 The actions 

Any operation occurrence requires some energy, and thus an actor that supplies it, and 
most often it is applied to entities that have to be processed. This leads to consider the 
concept of action defined as the gathering of one operation, one (or several) actor that 
performs the operation and a list of entities that are involved in this operation 
performance (remind that actors are entities, so if an operation invokes a service of an 
actor, this actor acts as an entity of the action, be it the performer of the action or not). 
An action may expressed by a sentence where the subject refers to the actor, the verb 
to the operation and the complements to entities. Thus the structure of a system 
determines the set of its potential states and it also allows to establish the set of its 
actions.  

Since entities, actors and operations support the type / instance distinction, the 
same holds for actions: the type of an action is defined by an actor type, an operation 
type and a list of entity types, while an occurrence of an action, an act, is defined by 
instances of these types. The hierarchical breakdown process may also be applied to 
actions, according to the decomposition of the operation into several ones. 

3.2 Organizing the model of the behavior  

Since operations always occur in the context of an action, to model the behavior of a 
system we have to define in which cases any act may or must take place and the effect 
of this occurrence. 

Due to the number of entities, actors and operation of a system, the definition of its 
whole behavior yields in a very large model that would be difficultly tractable and 
overcome the cognitive capacities of the modeler (and thus its validation). So, there is 
a need to organize the model of the behavior of a system into smaller syntactical units 
that, if possible, are also semantic units that can be executed and convey some 
knowledge about the whole system behavior. These units may be determined in 
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consideration of the structure of the system that is from the points of view of entities, 
actors and operations. 

Now, arises the question of the coordination of these behavior units into a coherent 
and global model of the whole system’s behavior that is how their respective 
executions are synchronized. Petri nets are very well suited to this end, in addition to 
their numerous qualities for dealing with complex control structures such as a 
graphical representation, the possibility to reason about both the states and the 
operations, a well-defined semantics allowing formal analysis, or the possibility of 
making simulation or generating code. Indeed, synchronous interactions between two 
nets occur thanks to the fusion of two transitions while an asynchronous interactions 
occur thanks to a communication place that is an result place of one net and an entry 
place of the other4. 

 
Fig. 3.  The different ways to organize the actions of a system 

3.3 Which Petri net dialect? 

There is a number of Petri net-based formalisms, dedicated to specificities of the 
behavioral properties of the system under consideration. In our case, we need a 
formalism allowing to refer to the structure of the system, that is its entities, actors 
and operations. For this reason, we propose to use the Petri Net with Objects 
formalism (PNO, (Sibertin 1985, Sibertin 2000a), see table 1). There is an 
implementation of this formalism that supports code generation (Sibertin & al., 1995) 
and it could be extended to support e.g. stochastic (Ajmone Marsan & al., 1995) or 
hybrid (David & Alla, 2005) features. In a PNO model of the behavior of a system, 
places are typed by entity or actor types while transitions are labeled with operations. 
Thus an action is modeled by a transition labeled by the operation and surrounded by 
places typed by the corresponding entities and actors, or by several such patterns if 
the action may occur from states corresponding to different locations of the entity or 
actor tokens. 

                                                             
4 Another way to define the interactions between behavioral units is to consider data flows and 

control flows. While the former is represented as an asynchronous interaction by token 
sending, the latter requires a (simple) pattern. 
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Table 1.  The Petri Net with Object formalism 

 Petri Nets with Objects (PNO) are a High-Level Petri Net formalism (Genrich & 
al. 1981, Reizig 1985, Sibertin 1985, Jensen 1987) allowing to handle tokens that are 
(lists of) objects. 

 The type of a Place (written in italic characters) is a (list of) type defined in some 
Object Oriented language, referred to as the data language, and the default type of a 
place is the empty list. The value of a place, or marking is the set of tokens it contains. 
At any moment, the state of the net (or its marking) is defined by the distribution of 
tokens into places. Objects are accessed by reference that is a token that is a reference 
toward an object matching the type of the place. More generally, a token may be (a 
list of) either a constant (e. g. 2 or ‘Hello’), an instance of a class of the data language, 
or a reference toward such an instance. Each place typed by an object class 
corresponds to a possible state for the instances of this class. 

 A Transition is connected to places by oriented arcs as it aims at changing the net 
state, that is the location and value of tokens.  

 Each arc is labeled with a (list of) variable having the same type that the place it is 
connected to. The variables of the arc connected to a transition serve as formal 
parameters of that transition and define the flow of objects from input places to 
output places. A transition may occur (or is enabled) if there exists a binding of its 
input variables with tokens lying in its input places. The occurrence (or the firing) of 
an enabled transition changes the marking of its surrounding places: tokens bound to 
input variables are removed from input places, and tokens are put into output places 
according to variables labeling output arcs. Two transitions may occur concurrently if 
their bindings capture different object references. 

 A transition may be guarded by a Precondition, a side-effect free Boolean 
expression involving input variables. In this case, the transition is enabled by only if 
the binding evaluates the Precondition to true. For any transition, the location of 
objects and the input variables determine the existence of a binding, the values of the 
bound objects determine the satisfaction of the Precondition. 

 A transition may also include an Action which consists in a piece of code of the 
data language involving the transition’s variables, or a label referring to such a piece 
of code. This Action is executed at each occurrence of the transition and it allows to 
process the values of tokens. If an output variable of the transition does not appear on 
any input arc, the Action must create a new object instance to assign a value to this 
variable and extend the binding which enabled the transition. Conversely, if an input 
variable does not appear on any output arc, each occurrence of the transition entails 
the loss of the reference toward the bound object. 

Finally, a transition may be equipped with some emission rules, that is side-effect 
free Boolean expressions involving transition’s variables, the satisfaction of which 
determines the flow of tokens toward the output places (emission rules favor the 
conciseness of nets but they not extend the expressive power of PNOs). 
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 3.4 Operation based modeling 

We assume that each act performed by the system has some utility and thus it appears 
in the course of the execution of some procedure. Then, if we describe all the 
procedure of a system and how they interact – by the sending of a (copy of an) entity 
from a procedure to other ones or by the joining of the transitions of an action 
common to several procedures -, we have described the whole behavior of the system. 
A procedure is described by a PNO whose the locations and values of tokens at its 
initial marking depend on the initial state of the system.  

An offered procedure begins either with an entry place in which the environment 
can put request-tokens or with an initial transition (without input place) and in this 
case the environment can launch directly executions of the procedure (whenever an 
appropriate system’s actor is available to perform the action), and we may consider 
that it ends with a terminal place. To distinguish the different occurrences, or 
executions of a procedure, a new procedure-identifier is generated for each 
occurrence of the procedure and at least one place is typed by this procedure-identifier 
on any path from the beginning to the end of the procedure. The possibility to 
complete each execution of a procedure corresponds to the fact that the terminal place 
of its PNO model can receive as many tokens as the number of its executions. The net 
of a procedure includes action-transitions that are connected by places according to 
the causality relationship (the occurrence of one or several actions enables the 
occurrence of other actions). It may be also convenient to include in the net of a 
procedure query-transitions that invoke query-services of entities or actors, in case the 
selection of an alternative among several ones requires some computation, although 
such selections may be ensured by preconditions of transitions. 

The net of an homeostatic procedure is quite different because executions of an 
homeostatic procedure are not performed upon request of the environment but upon 
the occurrence of an internal event produced by some procedure(s). Thus the net of an 
homeostatic procedure must include an home state which corresponds to the 
beginning and the end of each of its executions. 

Once the net of a procedure is drawn, we can focus upon the specific contribution 
of an actor by keeping only the places typed by this actor (as the performer of the 
action) and avoiding all others. The resulting net describes the role of this actor with 
regard to this procedure.  

3.5 Actor based modeling 

Each action is performed by (at least) an actor and, as for procedures, if we describe 
the behavior of each actor, i. e. the sequences of actions that it may perform that we 
call its activity, and how these activities interact, we have described the whole 
behavior of the system. For the permanent actors, that have the same lifetime as the 
system, we can have either one net for each actor or one net for each actor type where 
the types of the places that need to distinguish the concerned actor are stamped by 
actor identity. The activity net of a actor includes action-transitions and query-
transitions in the same way as procedure nets. For a permanent actor, the net includes 
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a home state, as for homeostatic procedures, while its beginning and end are different 
for transient actors, as for offered procedures. 

If we tag each transition by the procedure in which the corresponding action takes 
place and keep only the transitions tagged by a procedure, we again obtain the role of 
this actor within this procedure. Thus, the activity of each actor may be derived from 
the models of the procedures by gathering its roles with regard to all the procedures 
and, if needed, synchronizing this partial nets. Conversely, the nets of the procedures 
may be derived from the actor activities by gathering and synchronizing the roles of 
all the actors involved in each procedure. 

3.6 Entity based modeling 

We may consider that each action causes some state change, and then involves 
some entities. Thus, as for procedures and actors, if we describe the lifecycle of each 
entity (let us remind that an actor can act as an entity in an action and thus it also has 
a lifecycle), that is all the sequences of operations that invoke its services, and how 
these lifecycles interact, we have described the whole behavior of the system. 

The entity-based model of the behavior of a system is very similar to the one of 
actors, thus we do not elaborate on this point. The contribution of an entity to a 
procedure can be derived in the same way as the role of an actor, so that the 
relationships of the actor-based approach with the procedure-based one also holds for 
the entity-based approach. 

From the lifecycle of an entity, it is possible to keep, in the operations of 
transitions, the invocations of its services and so to verify that its behavioral 
invariants are respected.  

Conclusion 

Let us come back to the epigraph of this paper: Un système est une unité globale 
organisée d’interrelations entre des éléments, actions ou individus. The global unity 
aspect of a system corresponds to the fact that, among the entities, actors and 
operations lying in the universe, some are within the system under consideration 
while others are not. A system is separated from its environment by its border. The 
elements, actions and individuals are respectively what we have called entities, 
operations and actors, while the behavior defines the organization of their 
interrelations. 

In any engineering discipline, the structure of the product to be done shapes the 
organization of the work to be performed. As a consequence, this meta-model may 
serve as a basis to define some methodologies such as the one proposed in (Sibertin 
2000b) in the case of information systems.  
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Abstract. The design of complex Petri net models is a challenge with
respect to intuition, correctness and efficiency. In the case that systems’
models are of large scale and consist of numerous nets, as in the case of
Petri net-based software engineering, net components – an implementa-
tion of a pattern-based approach – are applied successfully. This paper
summarizes our efforts made and experiences with net components. It
illustrates the concept, design and usage of net components. It addition-
ally presents the experiences gained from several software development
projects over the last few years.
Net components are subnets that are combined with each other to form
a Petri net. By this component-based approach of constructing Petri
nets, the construction of nets is facilitated as well as accelerated, and
the Petri nets are structured in an intuitive, easily readable and unified
way. To illustrate the presented concepts, some net components that are
frequently used in an agent-oriented approach in the context of Mulan
are introduced. Besides the fact that they provide the basic functional-
ity in regard to the communication that is done by protocol nets, also
some simple patterns and programming artifacts are introduced into the
development process.

Keywords: components, net components, design patterns, workflow patterns,
Petri nets, Renew, structured Petri nets, Petri net-based software engineering

1 Introduction

High-level Petri net formalisms such as colored Petri nets [9] or reference nets [13]
offer modeling constructs and abstractions comparable to basic programming
constructs of high-level programming languages: data types and variables, se-
quences, branches and iterations and code encapsulation with restricted access.
Additionally, Petri nets allow for an elegant and intuitive modeling of concur-
rency, which is neglected in most widespread programming languages. Therefore,
it is possible to use an appropriate Petri net formalism not only for modeling
and analyzing of systems – as it is usually done – but also for implementation.
This has the additional advantage that the model can be transformed into an
implementation without a change of formalism. Thus the gap between model and
implementation can be closed. The Petri net formalism serves as a programming
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language, and the models at the design stage of the software development pro-
cess can be directly used – in a refined version – as the implementation of the
system.1 This approach of implementation through specification has already been
sketched out in previous publications [4,21].

Over the last few years we have used reference nets together with the tool Re-
new in several advanced student projects (lasting half a year each) that are re-
lated to the main topic of Petri net-based software development. This paper sum-
marizes the efforts and advancements of net components and the pattern-based
approach for Petri net-based software development. While several details have
already been presented to the community in several former publications [3,5,6],
this paper gives an overview of the work done and presents some resulting facts
as well as experiences gained. We focus on advances of the technique as well as
advancements of the supporting tools.

The application domains range from a small stock exchange game over our
multi-agent system implementation itself to full-scaled multi-agent applications
such as an implementation of the Settler board game or a distributed work-
flow management system (WFMS). This leads to a high demand of concep-
tual, methodological and tool support for the implementation process, which is
growing continuously. On the conceptual level we are able to employ and build
advanced concepts on the foundation of the intuitive and semantically clear
concepts of Petri nets. However, when it comes to implementation, Petri net
concepts and application can improve from concepts that are common ground
in programming languages / techniques. Some of these concepts – among many
others – are modularization, information hiding, structuring of code, code reuse
and pattern-based approaches.2 This paper describes the concept and realiza-
tion of net components, which is a means that accelerates the modeling process
through standardized structures of the net models and at the same time allows
to introduce a pattern-based approach.3

In Section 2, we introduce the concept of net components. An application-
specific set of net components – the Mulan components – serves as exemplary
implementation of the concept in Section 3 together with the corresponding

1 In the Petri net formalisms mentioned above, Petri nets are simulated or interpreted,
not compiled. Therefore, one has to accept a loss of performance. This is no problem
at early stages of a software development process, when rapid prototyping means
rapid implementation of a prototype that offers as much of the desired functionality
as possible. In later design stages performance plays a more important role. Using,
for example, the reference net formalism as a modeling formalism, it is possible to
switch over to a Java implementation in an easy and organized way. This, however,
shall not be discussed in depth here.

2 A strong modularization of our code bases are given through the inherent nesting
features of the nets-within-nets paradigm, since reference nets are nets-within-nets.

3 Note that model and implementation fall together through the implementation
through specification approach. Thus both concepts are used interchangeably in this
work. In the context of Petri nets this is rather unusual. Similar work is done e.g. in
the context of CPN tools, where the implementation language is Standard ML (see
[9]).
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toolset. Section 4 is dedicated to experiences in the usage of the net component
concept and its toolset earned after several years of use. We present some related
work and other applications of the net components concept in Section 5 and
conclude with Section 6, which summarizes our results and gives an outlook on
future work.

2 Concept and Design of Net Components

Net components (NC, [3,6]) are subnets, which can be composed or combined to
form a large composed net. They should provide general functionality that can
be commonly used. However, a set of net components is only meant to serve a
special subset of similar Petri nets in a well-defined context of model/software
development. Only if many similar nets of the same category are produced, the
effort of designing a set of net components is rewarded and the benefits of net
components are exploitable.

Net components should not be confused with the software engineering view-
point on components of large software parts. Instead, the net components pre-
sented in this work resemble the control structures of structured programming
languages like cycles or conditional statements or design/workflow patterns. In
short, a net component is a template implementation (or instantiation) of a
pattern.

2.1 Notions

A net component is a set of net elements that fulfills one basic task. The task
should be so general that the net component can be applied to a broad variety
of nets. Furthermore, the net component can provide additional help, such as
a default inscription or comments. One of the used components contains a pre-
defined but adjustable declaration node. In a formal way, net components can
be seen as transition-bordered subnets. This suits the notion of net components
covering tasks (net components as transition refinement).4

Every net component has a unique geometrical form and orientation that
results from the arrangement of the net elements. This unique form is intended
so that each net component can be easily identified and distinguished from each
other. The geometrical figure also has the potential to provide a defined structure
for the Petri net.

In the default implementation of the net components used so far in the net
components toolset, places are added at the outward connecting transitions (in-
terface place) for convenient net component connection.5 Only one arc has to
4 Note that the tool does not impose this notion of transition refinement. Instead this

notion is a design decision.
5 In the composed net our approach is similar to Kindler’s notion of Petri net compo-

nents [10]. There components are place bounded by interface places that are fused
during composition. Here one place exists at the outward connection of the net
component, which is connected by an arc to the next net component.
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be drawn to connect one net component with another. This simple and efficient
method also emphasizes the control-flow through the fact that these simple con-
necting arcs transport by default only black tokens. The connection of net com-
ponents is provided by this place, which in the example implementation only
holds anonymous tokens.

Direct data exchange between net components is not desired in order to
guarantee a simple interface between net components. Instead, we store data
objects to data-containing places and access the data via virtual places.6 When
the programmer adds an appropriate virtual place to the net component, data
can be transferred separately from the control flow to the transition that uses a
variable. Normally, the data is read through an additional test arc. The test arc
allows for concurrent read-only access of the data. If the data is to be modified,
a reserve arc prohibits concurrent access, and if the data is not needed anymore
it can also be consumed by a directed arc. Annotations of the data-containing
places should be adjusted to the appropriate name as well as the annotations of
the corresponding virtual place. Also coloring the places has established itself by
convention as good practice in order to identify corresponding places / virtual
places pairs.

2.2 Structure of Net Components

Net components are (transition-bordered7) subnets that can be composed to
form a larger Petri net. As in the case of design patterns their purpose is to
provide pre-manufactured solutions to re-occurring challenges. Moreover, they
also impose their structure onto the constructed net. Just like a snowflake’s
structure is determined through the underlying structure of water molecules,
the net is structured by the net components.

Through their geometric form, the net components are easily identified in a
larger net. This adds to the readability of the net and to the clarity of the overall
structure of the net, which as a composition is an accumulation of substructures.

Jensen [9] describes several design rules for Petri net elements, which are
based on work done by Oberquelle [17]. These rules encompass how to draw
figures and give general advice for Petri net elements such as places, transitions
and arcs. They are also concerned with combinations and arrangement of the
elements.

6 Virtual places can be regarded as references to the original places. Another well-
known name for this is fusion-place. In Renew virtual places can be identified by
their doubled outline. They share several attributes with the original place: color,
size, form.

7 Note that, as mentioned above, for easing the practical use each output transition
is supplemented with appropriate output places. By doing so, the net components
can be connected just by drawing arcs between such an additional output place
and an input transition of another net component. Please also note that whether
the interface place does or does not belong to the net component is a matter of
preference/definition.
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Net components extend the rules by giving developer groups the chance to
pre-define reusable structures. Within the group of developers, these structures
are fixed and well-known, although they are open to improvements. Conventions
for the design of the code can be introduced into the development process, and
for developers it is easy to apply, adopt and spread these conventions through-
out the net component-based construction. Furthermore, the developing process
is facilitated and the style of the resulting nets is unified. Once a concrete im-
plementation of net components has been incorporated and accepted by the
developers, their arrangements (form) will be recognized as conventional sym-
bols. This makes it easier to read a Petri net that is constructed with these net
components. Moreover, to understand a net component-based net it is not nec-
essary to read all its net elements, but it is sufficient to read the substructures.
This simplifies the review process as well as the refactoring of net code.

2.3 Net Components versus (Design) Patterns

Patterns and design patterns, also in the form of workflow patterns [24], have
been discussed extensively in the past. They are useful elements in software (re-
spectively workflows or business processes) development. They help developers
to name and communicate important (abstract) concepts in the development
phase of process / workflow / software engineering. Often they are visualized
with graphical methods, e.g. UML for design patterns or Petri nets for workflow
patterns. Many patterns are simple, some are complex. Many of the common pat-
terns are omnipresent in current development. For instance the Observer design
pattern is implemented in the Java Listener interface. Also other patterns have
become so common that they are sometimes not recognized anymore. Neverthe-
less, there is a widespread agreement that patterns are useful in the development
of complex systems.

Net components are instantiations of patterns. They can be instances of
commonly known patterns, realizations of trivial patterns or even built from
scratch for a special purpose. In addition to the advantages that are offered
by patterns and the fact that net components are available as templates, net
components have many other advantages. These result in part from the fact
that net components are instantiations / implementations of patterns and in
part from the fact that they are designed for application in Petri nets. Such
advantages are:

Concreteness: In opposition to a pattern a net component is a concrete graph-
ical component that has a fixed graphical representation (readability, reuse).

Composability: The net components can be composed with other net com-
ponents to form a Petri net. This results partly from their concreteness.
However, this has also to be taken under consideration during the design
phase of the net components (structured nets, faster development).

Convention: The analog (geometric) representation of a net component allows
the developers to easily recognize the implemented pattern in a net compo-
nent in different environments (comprehensibility, conventions).
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Congenerousness: Since the pattern and its implementation are modeled in
the same graphical language there exists no breach between model and im-
plementation (flexibility, correctness).

From a technical viewpoint, net components also facilitate the generation
of code as template implementations together with the predefined layout possi-
bilities and allow – through logical grouping of net elements – to further ease
refactorings by simplified graphical reorganization of net code.

Some disadvantages result from the highly conventionalized implementations.
Predefined solutions prevent developers from advancing the technology, and even
criticism is reduced. Additionally, the generic solutions offered by the set of net
components may prevent developers from finding more efficient or more concise
implementations.

2.4 Requirements for Net Components

Net components have to be designed for their purpose. In any case, different
kinds of nets require different sets of net components. However, within a set of
net components that has been designed for a special purpose, the net compo-
nents should remain as generic as possible. The net components should be easily
inter-connectable so that the construction of nets is facilitated. Furthermore, net
components should be designed to represent one syntactical entity. This means
that a net component should represent one basic task that is decomposable. A
net component should be easily identifiable to the reader of the net. This can be
achieved by arranging the net elements in a unique (geometrical) form. In the
current implementation a shadow may emphasize the geometrical form.

A net component should also provide solutions for challenges that frequently
re-occur. Functionality that is thus implemented once, can be used again with-
out repeating the process of low-level implementation again. Altogether these
characteristics for net components are summarized in Table 1:

Characteristic Benefit

Generic character broad applicability
Interconnectivity easily composable
Closeness clear semantics
Unique form easily identifiable
Located in repository pre-manufactured but adaptable solutions.

Table 1. Criteria for net components.

Especially when nets are produced in large numbers (while designing Petri
net-based applications), the advantages of the component-based approach are
unveiled. The net components contribute not only to a clear structure of the
nets, but also to a faster development of applications.
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3 The Mulan Net Components

Mulan (MULti-Agent Nets, see [12,21]) is a concept model and framework
for multi-agent systems designed with reference nets. To build a multi-agent
application based on Mulan, numerous protocol nets that implement agent
behavior and interactions have to be drawn. A protocol net is an implementation
of a part of an agent interaction, which are usually defined as FIPA-compliant
agent interaction protocols.

A set of net components for protocol nets exists [3, Chapter 4.3] that has been
successfully tested and used in teaching projects (Settler 2–6, WFMS 1,2 [19])
by our group at the University of Hamburg. The set of Mulan net components
has been used extensively, and a large number of net component-based protocol
nets have been designed during the projects with them.

The Mulan net components provide the basic functionality to construct pro-
tocols [11]. Those protocols that are constructed with the help of the Mulan
net components are not restricted to the exclusive use of net components; how-
ever, it is unnecessary to use non component-based net elements, because the
set is self-contained. The set provides structures for control flow management
that includes alternatives, concurrency, cycles and sequences. In addition, the
functionality for exchanging data is provided that offers receiving or sending of
messages. Furthermore, some basic protocol-related structures are provided that
handle the starting and the stopping of the protocols.

3.1 Generic Net Components

A selection of Mulan net components is presented in this section. This is done to
demonstrate what kind of functionality they provide for protocol nets and their
form. In this section, the essential and most frequent net components for message
exchange and for basic flow control are presented. Further net components exist
that cover sub-calls and manual synchronization.8

Control Flow Net Components: Alternatives, Concurrency (Figure 1)
The conditional can be used to add an alternative to the protocol. It provides
an exclusive or (XOR) situation. To resolve the conflict the boolean variable
cond should be adjusted as desired. As a complement to the NC if the NC
ajoin (alternative join9) merges the two alternative lines of the protocol. The
NC psplit (parallel split) and the NC pjoin (parallel join) are provided to enable
concurrent processing within a protocol. Note that the forms of these differ sig-
nificantly from NC if and NC ajoin to create a clear separation of concurrency
and alternatives within the protocols. We also offer a component for the trivial
pattern sequence, which already contains an inscription that gets the reference
to the agent’s knowledge base (a net instance), since it is an often used routine.
8 The full set of net components can be found in [3].
9 The names of the patterns are inspired by the names of the workflow patterns.

See [24] for alternative names of common patterns.
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The access to the knowledge base is realized as a synchronous channel. It has to
be supplemented with access methods for the data that is stored in or retrieved
from the knowledge base. Connectable elements of net components – i.e. the el-
ements that are connected with an arc to an element of another net component
– are marked with ‘>’. Many net components come with predefined text an-
notation that are intended as in-line comments. This is a good example for the
manifestation of conventions. To distinguish between inscriptions and comments,
the text color is set to blue and the text is enclosed in square brackets.

Fig. 1. Mulan Protocol Net Components
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Loops These are the equivalent to the basic loops in other programming lan-
guages. The NC iterator provides a loop through all elements of a set described
by the java.util.Iterator. It processes the core of the loop in a sequential
order. The NC forall uses flexible arcs to provide a concurrent processing of
all elements of an array. Flexible arcs allow the movement of a flexible number
of tokens with one single arc (see [20] and [14]). The number of tokens moved
by the flexible arc may vary for each firing, hence its name. In Renew dou-
ble arrowheads indicate the flexible arcs. A flexible arc puts all elements of an
array into the output place and it removes all elements of a pre-known array
from the input place. The cores of both loops, NC iterator and NC forall, are
marked with ∧ (beginning) and ∨ (ending). Data objects are transferred to the
core of the loops via virtual places (marked Object) already provided by the net
components.

3.2 Mulan Protocol Specific Net Components

Some net components for protocol nets are specialized for the use within Mulan
agents. These are net components for protocol management and messaging.

Protocol Management Net Components Beginning (NC start) and Ending
(NC stop) are needed in all protocols. There is exactly one start in every Mulan
protocol, but there may be more than one stop. The protocol is started when the
transition with the channel inscription :start() is fired and stopped when one
transition with the inscription :stop() is fired. In addition, the NC start also
provides the declaration of the imports and all variables that are used by the
net components. The transitions with the inscriptions :start() and :stop()
are up-links of synchronous channels.

Furthermore, the NC start provides a declaration for the net. The declaration
already declares the variables that are used in all Mulan net components and
the import statements. It can be supplemented with other variables or imports
by the developer.

Messaging Net Components These are the net components that provide the
means of communication. The NC in receives a message, which is handed to the
data block of the net component (above the main part of the NC).

Additional data containing places can be added to the data block as desired.
These places can contain elements that were extracted from the messages, for
example the name of the sender or the type of the performative. The NC out
provides the outgoing message task. The NC out-in is a short implementation
for the combination of both NC out and NC in. It provides a send request and
wait-for-answer situation, but does not add functionality other than NC out and
NC in. However, it shortens the protocol significantly.
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3.3 Realization

Petri nets can be drawn with Renew in a fast and easy manner. To be able to
use net components accordingly, it is desirable to have a seamless integration of
net components in Renew. This is provided by a simple palette (Figure 2) that
is the usual container for the buttons of all drawing tools for net elements.

Renew supports a highly sophisticated plug-in architecture [22], by which its
functionality can be extended through plugins, so that the usual functionality
is still available. The net components can be drawn in the same way as simple
drawing elements by selecting the tool from a tool palette. Once a palette is
loaded into the system, the net components are always available for drawing
until the palette is unloaded again.

Fig. 2. Palettes and net components for Use Case diagrams in the Renew.

All net components are realized as Renew drawings, so they can easily be
adjusted to the need of the programmer by editing within Renew. The net
component drawings are held in repositories, thus sets of net components can
be shared by a group of programmers. Nevertheless, users can also copy and
modify the repository to adjust the net components to their needs, or build
new net components with Renew. It is also possible to use multiple palettes of
different repositories.

Net components are added to the drawing in the same way as the usual net
elements. The mechanism can be compared to typical IDE template mechanisms.
As for instance in Eclipse it is possible not only to use predefined templates for
all kinds of elements (e.g. while loops, for loops, instanceof statements,. . . ) but
also to modify them. Renew and the NC Plugin allow for similar handling of
net components as templates and in addition, since sets of net components are
usually held in a SCM repository, these modifications can easily be spread among
the developers.
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4 Experiences with Net Components

Net components have been used for about six years in our Petri net-based soft-
ware development projects. Due to their graphical nature Petri nets allow the
creation of spaghetti code. Especially during the modification or refactoring of
a net model, often code (net elements) is added in areas that do not offer ad-
ditional space. The rearrangement of all surrounding net elements is a very
time-consuming process that is often skipped or the surrounding element are
carelessly pushed aside leaving behind a cluttered net structure. With net com-
ponents, such situations can easily be handled due to several reasons:

– The protocol net components promote a left-to-right net layout, because the
components themselves are designed horizontally.

– In most net components there is exactly one element to be customized.
Therefore, additional data places are forced to be located near this element.

– Ad-hoc transitions are not needed any more because many net components
already come with a skeleton for data flow and manipulation.

– Net components are supported in the tool by a weak and flat grouping mech-
anism.10 This improvement eases the insertion of new elements in the middle
of an existing net without destroying the layout of individual net components
while it retains full modifiability of net component details.

– Documentation of nets is promoted by standardized comment templates that
are attached to the net components.

In general, we observed that nets built with net components are tidier than
nets without net components. Additionally, the readability of nets is improved
significantly. With a little experience the comprehension of the nets is reduced
to the reading of two elements per net component: the shape of the component
and the customized inscription or comment. Without the need to examine every
net element, it is thus possible to understand the described process.

Besides the graphical benefits, the teaching staff observed an increase in code
development speed and students’ learning curve in Petri net design. There are
multiple explanations:

– It is obviously faster to compose a net from larger blocks than to repeat
every small step repeatedly (reuse of code); even faster than copy & paste.

– The set of net components cover mostly well-known constructs from classic
sequential programming languages such as conditionals and loops. So the
transition from classical programming to Petri net programming is easier.

– Moreover, net components enable automation of net construction resulting
in generation of nets or round-trip engineering techniques.

10 The weak and flat grouping mechanism allows the movement of all elements of the
component as a group while individual net elements of the net component are still
accessible to any kind of manipulation. There is no hierarchical grouping, instead
grouped groups become fused. The classical grouping feature is more restrictive since
single elements of a group can not be manipulated nor selected.
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– Existing net components come with transitions and places already inscribed
and connected correctly, thus they show examples of correct code and in-
scriptions.

– For the attending teachers and tutors the results of the students’ designs are
much easier reviewed due to the structural clarity mentioned above.

– Reuse of concepts and solutions have been intensified. The original set of net
components is based on patterns of net elements that have been recognized in
protocol nets. Now, they are commonly used and we detect more advanced
patterns that can also become net components. Design patterns become
graspable for developers (pattern-based approach).

– Reuse of concepts is facilitated. It is easy to cut a recognized pattern from
an existing net and turn it into a new net component.

– The overall acceleration of net design leaves more time to discuss e.g. im-
portant architectural matters of the software.

These benefits do not only apply to software development. Net components have
also been applied to other areas. Besides the workflow patterns presented in [15],
also a set of net components for the construction of Petri net-based plans, which
are automatically assembled during runtime and executed on the fly, has been
developed.

To give an illustration of the qualitative differences we have carried out some
internal tests with experienced members of our group and some of our students.
The results even for most simple example implementations with a given and de-
tailed specification are already satisfying. Nets drawn without net components
tend to be much smaller, due to concise implementation. However, the test per-
sons needed two to five times longer to develop the protocol nets.11 An immediate
repetition of the test also showed that the pure coding is at least twice as fast
with the use of net components. If we consider that the use of net components
helps the developer avoid many pitfalls in (Petri net) programming / modeling,
then the real benefit from using a net component-based approach is obviously
much greater.

It has to be admitted that some of the advantages mentioned above entail a
trade-off in flexibility of Petri net engineering. The strong form of net compo-
nents restricts the overall net layout, and – as mentioned already – structured
net component-based Petri nets tend to be larger then simple unstructured nets.
Moreover, developers tend to stick to the predefined solutions and are very con-
servative with the introduction of new patterns. Because many net components
are oriented along classical sequential programming language constructs, result-
ing nets sometimes include less concurrency than Petri nets would allow. It could
be argued that, depending on the stage of modeling expertise the developers have
gained, parts of this flexibility trade-off may also be seen as an advantage rather
than a disadvantage. These are very usual and common effects regarded from
the perspective of software engineering.
11 One of our – experienced but sceptical – team members who had claimed to design

faster without net components, was quite surprised that he achieved a speedup of
factor five with net components.
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However, some of the original and some later proposed net components have
been used rarely, if at all. This results from numerous reasons, which can not
be extensively discussed in this paper. Some of the reasons for rejection of net
components are bad integration and a too specialized purpose. Also, frequently
the ability of net components to be parameterizable, as for the automation of
e.g. inscription adaption or for dynamically adaptable net structures (switch),
is requested.

5 Related Work

Kindler [10] uses Petri net components to model parts of systems (components).
The resulting models are used to verify compositional systems. The notion of
Petri net components is similar to ours. In his approach (in which components
are place bounded) the interface places are fused, while in our approach only
one interface place exists between two connecting points of net components.
The resulting nets (or net structures) after composition with Kindlers approach
are the same as with the approach presented in this paper. However, no software
engineering conceptualizations are discussed in the direction of a set of template
implementations.

In [24,23] van der Aalst et al. have presented (advanced) workflow patterns.
Although the original intent was directed towards a different goal this work has
strongly influenced the net components, especially the set of Mulan protocol
components. The workflow patterns show a comprehensive generic catalog of
workflow pattern designed with Petri nets. To our knowledge there exists no
toolset that allows the application of these. However, they have influenced the
YAWL language [7], which supports many of the mentioned patterns through
direct notations.

Mulyar and van der Aalst [16] present a realization of workflow patterns
in coloured Petri nets with CPN Tools [1] making extensive use of the ML
inscription language. By this they offer example implementations of the abstract
patterns. Again, they do not discuss the idea of using these patterns as templates
in the context of software development.

In the context of net components other implementations have been done.
Rölke and Moldt [15] have modified the plugin to design and supply advanced
workflow patterns implemented through reference nets. This set is merely an
example pattern implementation with no practical purpose, but it has a nice
conceptual value offering elegant solutions for challenging problems in workflow
design.

Braker [2] has adopted the workflow pattern of van der Aalst et al. [24] for
reference net-based process definitions in an early modification of the net compo-
nent plugin. Braker tries to cover a broad variety of advanced workflow patterns
in a practical setting. The approach suffers from overloaded, complicated imple-
mentations and the weaknesses of the early version of the net component plugin,
i.e. the missing possibility to group net components. These net components were
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also meant to dock on to each other, a feature that was envisioned but not
implemented.

Cabac and Knaak [5] have also presented data-flow components in the context
of process mining. These differ in the fact that – in opposition to the pure control-
flow net components presented in this work – the focus lies on the processing of
data, which is handed from one processor, source or sink (which are specialized
net components) to the next.

The net component plugin12 itself has been plugified to respect the fact that
several sets of net components have to be supported. Thus the repository can
be not only an arbitrary (but suitable) directory but also a plugin that extends
the toolset with new sets of net components.

In the context of multi-agent application development with Mulan a new
set of net components has been developed for the construction of decision com-
ponents (DC). These nets implement the internal behavior of agents, especially
processes that do not control the communication of an agent and internal long
running processes, such as planning or interaction spanning synchronizations.
For these nets similar net components as from the set of net components for
protocol nets are used (and have accelerated the construction of DCs). However,
there are also some differences, such as explicit handling of synchronizations of
calls. Each call/return gets its own id, which has to be handled explicitly in
the net. Figure 3 shows several proposed components that are currently in use:

Fig. 3. The decision component net components.

Interface to the protocol nets (call (synchronous), call/return (asynchronous)),
12 The net components plugin and some standard components (also as plugin) can be

downloaded from the Renew home page [14].
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manual choice and join and some test components with which the functionality
of the DC can be tested as a stand-alone net instance.

6 Conclusion

For Petri net-based software engineering structuring elements, pattern-based
development and efficient implementation of Petri net code is needed. We have
shown for the (Petri net-based) agent-oriented paradigm that net components
can provide the means for this.

Net components are sub-nets with geometrical arrangements that ease their
identification and discrimination. Each net component is bounded by transitions
and fulfills one basic task. As a means of structuring, the Mulan net components
are capable of accelerating the development of protocol nets. The readability of
net component-based protocol nets is increased significantly as well as the speed
of construction of nets in comparison to protocol nets without net components.
The net components tool implemented as a plugin for Renew enables us to use
net components for the fast construction of Petri nets. The net components that
are held in a repository are editable in Renew, thus adaptable to the needs of the
development team. Moreover, the net components plugin itself is extensible by
repository plugins that are dynamically pluggable and unpluggable at runtime.

The Mulan net components are successfully used since the second teaching
project of the ongoing series of multi-agent system development projects in our
research group and have eased the teaching and development of Petri net-based
protocol nets.

We are looking forward to apply the mentioned workflow patterns [15] – and
improve the implementation as net components – to the currently developed
agent-based distributed workflow engine [18]. This integrates a reference net-
based workflow engine [8] into the multi-agent system Mulan. In this context
net component-based development can improve the development of workflows.
A first design of simple net components has already been integrated into the net
component tool set [15].

In the future we want to introduce net components into other areas of net
development where extensive coding is undertaken. Net components can be ap-
plied to other software development paradigms and besides workflow design they
can also improve the construction of large scale Petri net models in other areas.

Currently, we are experimenting with a collapse (and expand) functionality
for net components (similar to coarsening/refinement) that could lead to a rapid
prototyping of languages such as workflow languages e.g. YAWL [7]. Figure 4
shows an exemplary collapse from a NC cond to a YAWL-like notation. New
graphical language elements can be defined rapidly and directly executed through
the underlying operational Petri net semantics.
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Abstract. Model-Driven Engineering (MDE) is a software engineering
paradigm using abstract models to describe systems which are then sys-
tematically transformed to concrete implementations. Since model trans-
formations are crucial for the success of MDE, several kinds of dedicated
transformation languages have been proposed. Hybrid languages com-
bine the statefulness and the ability to define control flow of imperative
approaches with the raised level of abstraction of declarative ones. How-
ever the low-level engines employed to execute transformations lead to an
impedance mismatch between specification and execution of model trans-
formations which hampers debugging. Additionally, current approaches
lack of appropriate reuse mechanisms for resolving recurring transfor-
mation problems. Therefore, we propose a process-oriented specification
and execution of model transformations based on Transformation Nets,
a variant of Colored Petri Nets (CPNs). By using Transformation Nets,
the benefits of imperative and declarative approaches are combined, not
only for the specification of model transformations, but also for their ex-
ecution by using CPNs themselves as a transformation engine. Further-
more, Transformation Nets introduce a novel notation for implementing
transformation logic within transitions to foster reuse.

Key words: Model-Driven Engineering, Model Transformations, CPN

1 Introduction

Model-Driven Engineering (MDE) [7] is a current trend in software engineering
where models are used to describe systems which are then systematically trans-
formed to concrete implementations. Thus, MDE places models as first-class
? This work has been partly funded by the Austrian Science Fund (FWF) under grant

P21374-N13.
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artifacts throughout the whole software lifecycle [3]. The main promise of MDE
is to raise the level of abstraction from technology and platform-specific con-
cepts to platform-independent and computation-independent modelling. To ful-
fill this promise, the availability of appropriate model transformation languages
is the crucial factor, since transformation languages are for MDE as important
as compilers are for high-level programming languages. Transformation scenar-
ios can be divided into vertical model transformations and horizontal model
transformations. Vertical model transformations lower the level of abstraction,
e.g., transforming UML class diagrams to relational models, whereas horizontal
model transformations transform models between two different representations
on the same level of abstraction, which is the focus of our approach, e.g., a UML
class model is transformed to an entity relationship diagram.

To specify model transformations, approaches range from purely imperative
styles allowing to define how a transformation is carried out to fully declara-
tive transformation definition styles focusing on what a transformation’s output
should be like according to a certain input. In between this spectrum, hybrid
approaches combine the statefulness and the ability to define control flow of
imperative approaches with the raised level of abstraction of declarative ones
[4]. In general, declarative and hybrid approaches use transformation engines to
execute the model transformations operating on a low level of abstraction, e.g.,
the Atlas Transformation Language (ATL) uses a stack machine [9], shown as
black-box to the transformation designer. As a consequence, debugging of model
transformations is limited to the information provided by the transformation
engine, only, most often consisting of variable values and logging messages, but
missing important information, e.g., why a certain part of a transformation is
actually executed or not. This is due to the fact that an explicit runtime model
[7] for the execution of model transformations is not supported which could be
used to observe the runtime behavior of certain transformations.

Another problem current transformation languages suffer from is that no
appropriate reuse mechanisms and pre-defined libraries for resolving recurring
model transformation problems are provided. Especially, the resolution of struc-
tural heterogeneities [10], i.e., the same concept is expressed by different meta-
model elements, represents a recurring challenge. Thus, resolving structural het-
erogeneities requires to manually specify partly tricky model transformations
again and again for each scenario.

The contribution of this paper is a novel approach for defining model trans-
formations called Transformation Nets [12], which use a variant of Colored Petri
Nets (CPNs) [8]. Transformation Nets embody a process-oriented view on model
transformations, whereby the actual transformation is carried out by reuasable
patterns of transformation logic that stream models represented by the net’s
tokens from source to target. Such a runtime model provides the explicit state-
fulness of imperative approaches through tokens contained in the net’s places.
The abstraction of control flow from declarative approaches is achieved as the
net’s transitions can fire autonomously depending on their environment and
effectively make use of implicit, data-driven control flow. Furthermore, Trans-
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formation Nets provide a uniform formalism not only for representing the trans-
formation logic together with the metamodels and the models themselves, but
also for executing the transformations. Thus, no impedance mismatch between
specification and execution occurs which allows for enhanced understandability
and debuggability of model transformations. In this paper we present how a vari-
ant of CPN is employed for the domain of model transformations. Firstly, we
show how model transformations are appropriately represented with a variant
of CPNs, and secondly, a novel notion for implementing reusable transformation
logic within transitions is proposed.

The remainder of this paper is structured as follows. Section 2 gives an
overview of the Transformation Net formalism. While, the subsequent Section 3
describes the static part of Transformation Nets, depicting how metamodels and
models are represented within Transformations Nets, Section 4 elaborates on
the dynamic part of Transformation Nets, especially how transformation logic
is specified. Section 5 reports on lessons learned by the application of Transfor-
mation Nets. Related work is discussed in Section 6, and finally, Section 7 gives
a conclusion and an outlook on future work.

2 Transformations Nets at a Glance

Within this section the basic concepts of model transformations in general and
Transformation Nets in particular are introduced.

2.1 Big Picture of Model Transformations

The general model transformation scenario is illustrated in the upper half of Fig-
ure 1 comprising a transformation with one input (source) model and one output
(target) model [4]. Both models conform to their respective metamodels which
define the abstract syntax of a modeling language. Transformation Nets pro-
vide an integrated view on model transformations by homogenously representing
metamodels, models, and transformation logic. At the same time Transforma-
tion Nets serve also as a runtime model to actually carry out the transformation.
One can differentiate between static and dynamic parts of a Transformation Net.
The static parts correspond to the transformations’ metamodel elements (rep-
resented as places), given input model elements and generated output model
elements (represented as tokens), whereas the dynamic parts corresponds to the
transformation logic itself (represented as transitions) as formalized in a meta-
model introduced in the following.

2.2 Transformation Net Metamodel

The abstract syntax of the Transformation Net is formalized by means of a meta-
model (cf. Fig. 2) conforming to the OMG’s Meta Object Facility (MOF) [1]
standard. The Transformation Net metamodel describes appropriately adapted
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Fig. 1. Conceptual Architecture of Transformation Nets

Colored Petri Net concepts [8] in order to fulfill the special requirements occur-
ring in the domain of model transformations. In particular, in order to be able to
encode metamodels and models, we introduce two kinds of places and two kinds
of tokens (cf. Sec. 3). The second major adaption concerns the transitions. Since
transitions are used to realize the transformation logic, we borrow a well estab-
lished specification technique from graph transformation formalisms [6], which
describe their transformation logic as a set of graphically encoded productions
rules (cf. Sec. 4).
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name : String
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color : String fromColor : String
toColor : String*

hungry : Bool
negated : Bool

TPArc PTArc

Fig. 2. The Transformation Net Metamodel

The whole Transformation Net metamodel is divided into four subpackages
as can be seen in Fig. 2. Thereby, the package Containers comprise the modu-
larization concepts. The package StaticElements is used to represent the static
parts of a model transformation, i.e., metamodels and models. The dynamic ele-
ments, i.e., the transformation logic, are represented by concepts of the package
DynamicElements. The package Connectors finally is responsible for connecting
the static parts with the dynamic parts. In the following sections, we describe
the packages and their contained elements in detail.
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3 The Static Part of Model Transformations

To represent metamodels and models in Transformation Nets a translation from
the graph-based paradigm underlying MDE to the set-based paradigm underly-
ing Petri Nets is necessary. We rely on the core concepts of an object-oriented
meta-metamodel as defined by MOF, being classes, attributes, and references.
In the following, we elaborate on how MOF concepts used in metamodels and
their respective instances are represented within Transformation Nets (cf. Fig. 3
for a summary).
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Fig. 3. Representing MOF concepts within Transformation Nets

3.1 Representing Metamodel Elements as Places

A metamodel mainly consists of classes, attributes, and references which are
mapped to places in a Transformation Net. We distinguish between two kinds of
places, namely OneColoredPlace to represent classes, and TwoColoredPlace to
represent attributes and references. Both types of places can be represented by
according data types in CPNs which are assigned to the corresponding places.

Classes represented as One-Colored Places. Abstract and concrete
classes are both represented as OneColoredPlaces. Although, abstract classes
cannot have instances, places created from abstract classes normally contain to-
kens indirectly due to other places stemming from sub-classes, (cf. below) being
contained within them. Furthermore, the name of the class becomes the name of
the place (name). The notation used to visually represent one-colored places is
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an oval as traditionally used to depict places in Petri nets. Subclass relationships
are represented by nestedPlaces whereby the place corresponding to the sub-
class is contained within the place corresponding to the superclass. The tokens
contained in the“sub-place” are also visible in the “super-place”, which means
that if a token is contained in a sub-place it may also act as input token for a
transition connected to the “super-place”.
Attributes and References represented as Two-Colored Places. At-
tributes and references are represented by TwoColored Places, whereby the
name of the place consists of the name of the containing class and the name of
the attribute or reference itself, separated by an underscore (ClassName name).
Notationally, the borders of two-colored places are doubly-lined to indicate that
they contain two-colored tokens.

Orderings. References that impose an order on their links, e.g., an array el-
ement which has several elements contained in a specific order, require some
extensions to normal two-colored places. If in case of such an ordered reference,
the content of the two-colored place is internally set up as several ordered se-
quences (but not explicitly represented). For instance, for each different array
represented by different fromColor, a sequence of two-colored tokens with that
fromColor exists. Sequences in ordered places are working according to the FIFO
principle in order to facilitate the implementation of transformation logic.

Multiplicities. Places can restrict the amount of tokens they can contain.
In particular two-colored places have an absolute capacity (absCapacity) to
restrict the total number of its tokens and a relative capacity (relCapacity) to
restrict the maximum length of its sequences. Hence, multiplicities of references
can be mapped onto the relative capacity of a two-colored place. For instance,
a two-colored place with a capacity of ‘1’ may contain several tokens, but for
each token a distinct fromColor is mandatory. An absolute capacity would allow
only one token irrespective of its color inside the place, e.g., used to ensure a
sequential eradication or to represent singleton classes. Capacities are visualized
through the respective number inside the place, which is underlined in case of
an absolute capacity.

3.2 Representing Model Elements as Tokens

Objects represented as One-Colored Tokens. For every object, i.e., in-
stance of Class that occurs in a model a OneColoredToken is produced, which
is put into a place that corresponds to the respective element in the source meta-
model. The “color” is realized through a unique value (color) that is derived
from the object id (OID).
Values and Links represented as Two-Colored Tokens. For every value
as an instance of an Attribute, as well as for every link as an instance of a
Reference, a TwoColoredToken is produced. The fromColor attribute refers to
the color of the token (thus the OID) that corresponds to the owning object. The
toColor is given by the color of the token that corresponds to the referenced
target object (the OID of the target object). Notationally, a two-colored token
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is represented as a ring (depicting the fromColor) surrounding an inner circle
(depicting the toColor).

3.3 Transformation Nets by Example

By making use of an example we show how Transformation Nets can be applied
to transform arrays to linked lists. The top of Fig. 4 depicts the source and target
metamodels, as well as the input model and the desired, semantically equiva-
lent output model. The mapping of concepts between the array metamodel and
the linked list metamodel is achieved by transforming the Array class to an
equivalent LinkedList class, just like the Element classes are transformed to
Node classes. The ordered set of contains links needs to be translated into cor-
rectly set up head, next and prev links that maintain a semantically equivalent
ordering of Node objects.
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Fig. 4. Motivating Example: Static Part

Fig. 4 depicts the static parts of the Transformation Net for the example. The
metamodel elements Array and Element are represented by two corresponding
places in the Transformation Net. Both classes have an id property, represented
as two-colored places as well as the reference contains. The lower part of the
figure shows models conforming to the metamodels used to extract tokens which
are put into the corresponding places. The array P1 is indicated by a one-colored
token in the Array place whereas the id of the array is depicted by a two-colored
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token in the Array id place. The four elements (S1 to S4) contained in the
Array are represented by four according tokens in the Element place. In addition
four two-colored tokens are created representing the ids of the attributes and
put into the Element id place. The four tokens in the place Array contains
represent the links between array (depicted by the outer color) and it’s elements
(depicted by their inner color). Analogous to the source model, places for the
target model are created which are empty until the target tokens are generated
by executing the model transformation. The shown target tokens in Fig. 4 are
therefore the result of a successfully executed transformation, which are then
used to instantiate the target model.

4 The Dynamic Part of Model Transformations

The transformation logic is embodied by a system of Petri Net transitions and
additional places which reside in-between those places representing the original
input and output metamodels. In this way, tokens are streamed from the source
places through the Transformation Net and finally end up in the target places.
Hence, when a Transformation Net has been generated in its initial state, i.e.,
source tokens are already derived from the input model, a specialized Petri Net
engine executes the transformation process and streams tokens from source to
target places. The resulting tokens in the target places are then used to instan-
tiate an output model that conforms to the target metamodel. In the following
it is shown how to actually match for source model elements and how target
model elements are produced.

4.1 Matching and producing model elements by firing transitions

An execution of a model transformation has two major phases. The first phase
comprises the matching of certain elements of the source model whereas the
second phase produces the elements of the output model. This matching and
producing of model elements is supported within Transformation Nets by fir-
ing transitions. To specify their firing behavior, a mechanism well known from
graph transformation systems is used [6]. Transitions consist of input placehold-
ers (LHS of the transition) representing the pre-conditions of a certain trans-
formation, whereas output placeholders (RHS of the transition) depict its post-
condition. Those placeholders are expressed by the classes InPlacement (LHS)
and OutPlacement (RHS) in the metamodel as shown in Fig. 2. Every Placement
is connected to a source or target place using Arcs, whereby incoming and outgo-
ing arcs are represented by the classes PTArc and TPArc, respectively. To express
these pre- and post-conditions, so-called meta tokens (cf. class MetaToken in the
metamodel) are used, prescribing a certain token configuration by means of color
patterns which can be used in two different ways, either as Query Token (LHS)
or as Production Token (RHS), as shown in Fig. 5.

Query Tokens. Query tokens are meta tokens which are assigned to input
placements. Query tokens can either stand for one-colored or two-colored token
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configurations, whose colors represent variables that are bound during matching
to the color of an actual input token. Note that the colors of query tokens are
not the required colors for input tokens, instead they describe configurations
that have to be fulfilled by input tokens. Normally, query tokens match for the
existence of input tokens but with the concept of negated input placements it
is also possible to check for the non-existence of certain tokens (cf. attribute
negated of class InPlacement in Fig. 2).

Production Tokens. Output placements contain so-called production to-
kens which are equally represented through the class MetaToken and its sub-
classes. For every production token in an output placement, a token is produced
in the place that is connected to the output placement via an outgoing arc. The
color of the produced token is defined by colors that are bound to the colors of
the input query tokens contained in one transition. However, it is also possible
to produce a token of a not yet existing color, for instance if the color of the
output query token does not fit to any of the input query tokens. With this
mechanism, new elements can be created in the target model which do not exist
in the source model.
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Fig. 5. Example Transition and Color Binding

By matching a certain token configuration from the input places, the tran-
sition is ready to fire with the colors of the input tokens bound to the meta
tokens residing in the input placements. The production of output tokens once a
transition fires is dependent on the matched input tokens. For example, when a
transition is simply streaming a certain token, it would produce as an output the
exact same token that was matched as the input token (cf. (a) in Figure 6). This
form of transition is especially needed for implementing one-to-one correspon-
dences between metamodel elements. Please note that the default firing behavior
of a Transformaion Net does not consume the tokens of the input places in order
to avoid race conditions as often several transitions make use of one and the same
input place. This can be changed by setting the attribute hungry of the corre-
sponding InPlacement to “true”. In order to prevent a transition to fire more
than once for a certain token configuration, the already processed configurations
are stored in the history of a transition.
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4.2 Reusable Transformation Logic

Since InPlacements as well as OutPlacements are just typed to one-colored
tokens and two-colored tokens, but not to certain metamodel classes, these tran-
sitions can be reused in different scenarios. Different to CPNs which use arc-
inscriptions to encode firing behavior as shown in Fig. 6, Transformation Net
transitions encapsulate this information. In Transformation Net arcs need no
inscriptions and therefore places extracted from a metamodel can be connected
directly to predefined transitions. This kind of reuse is not restricted to single
transitions only, since through the composition of transitions by sequencing as
well as nesting the resulting transformation modules realize complex transforma-
tion logic. Furthermore, the graphical representation of pre- and post-conditions
by color patterns is similar to graph transformation patterns transformation
designers are used to. To exemplify basic firing rules, Fig. 6 shows a series of
transitions with their placements containing patterns of one- and two-colored
query and production tokens and their histories are shown below the actual
transition as well as the equivalent transitions in CPNs. These transitions rep-
resent reusable patterns which are applied in the following to solve the example
of Sec. 4.3.
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Fig. 6. Reusable Transformation Logic expressed as Transitions

Transition (a) in Fig. 6 shows a simple pattern that matches a one-colored
token from an input place and streams the exact same token to an output place,
therefore this pattern is called Streamer. It can be applied in cases of one-to-
one mappings, e.g., an array is transformed to a linked list. Transition (b)
matches a two-colored token from its input place, and produces an inverted
token in the output place. This Inverter pattern can be applied to set inverse

44 PNSE’09 – International Workshop on Petri Nets and Software Engineering



references (cf. ”next” and ”prev” references in our example). Transition (c)
called Linker shows two one-colored query tokens on the input side, whose
matched colors determine the ”from”- and ”to”-colors of the produced output
token. This pattern is used to introduce new links between objects. Transition
(d) matches two-colored tokens from input places and peels off the outer color
of the token, therefore the name Peeler. This pattern is used to get the value
of an attribute or the target of a link which is represented by the inner color
of the two-colored token. Finally, transition (e) represents a variation of the
Streamer pattern called ConditionalStreamer adding additional query tokens
to ensure certain preconditions. For example, this pattern may be used to ensure
that before a link between two objects is set the objects to be linked have been
created.

4.3 Solution for the Motivating Example

Fig. 7 depicts the complete Transformation Net realizing the necessary transfor-
mation logic added in between the static parts of source and target places. Note
that the shown markings represent the state after execution of the Transforma-
tion Net.
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Fig. 7. Motivating Example solved with Transformation Nets

Starting from the top, we see Transition (I) that matches one-colored
tokens from the “Array” place and propagates them into the “LinkedList” place
using the Streamer pattern. The “id” attributes are streamed once their owning
objects have been transformed, which is the case when the owning objects are
present in the nets “trace” places by applying ConditionalStreamers, namely
Transition (II) and Transition (III). Analogously, the Transition (IV)
matches two-colored tokens from the “contains” place and propagates them to
the “head” place. Note that this transition can only fire once, because the “head”
place has a relative capacity of one, only. Due to the fact that the input place is
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of the ordered kind, the transition matches the tokens starting from the “zero-
th” link of the reference. The third and final case where such primitive transition
logic suffices is the transformation of all “Element” tokens to the “Node” place.
Compared to that, dealing with “contains” tokens is of more interest. Thereby,
two-colored tokens are matched from the “contains” place, and the adjacent
Transition (V) peels out the outer ring, basically producing a duplicate of an
“Element” token. The outcome is then put into a place with absolute capacity
of one to enforce the ordering of tokens. Only if this place is empty again, the
transition matching “Array contains” tokens can produce the follow-up token
therein. That place is cleared by the switching of the adjacent Transition (VI),
which consumes its input and moves it to its output with an absolute of capacity
one. In case both places are filled with a one-colored token, the Transition
(VII) is enabled which produces a two-colored token out of its inputs that is
streamed into the “next” place. When firing, only the token from the right-
most place is consumed, thus freeing the place to be filled again. Hence, this
Transformation Net pattern forms a buffer-like structure of two places, which
are, once they are filled, partly emptied to make space for successor tokens in the
“queue” of places with single capacity. Transition (VIII) inverts and copies
the created two-colored tokens from the “Node next” to the “Node prev” place.

The example has been realized with the help of our prototype tool supporting
modeling, executing, and debugging Transformation Nets. Further details about
the tool support may be found at our project page4. In order to show that
Transformations Nets hide complexity in contrast to CPNs Fig. 8 depicts an
equivalent CPN executing the same transformation. Firstly, to express the fact
that tokens are not consumed per default, tokens consumed from a place are
streamed back again. In order to avoid multiple firings every token gets an index
and an additional place storing a counter is added to a transition. The transitions
uses this counter to match for a specific token which is incremented after firing to
match for the next available token (see label (I) in Figure 8). Secondly, standard
CPNs offer no built-in concepts to express absolute and relative capacities. For
absolute capacities we therefore again add an additional place, cf. CPN patterns
presented in [11], holding the required number of tokens (see label (II) in Figure
8). Relative capacities can be expressed using a complex arc inscription, labeled
(III) in Figure 8. Thereby it is shown that Transformation Nets can be mapped
to standard CPNs in order to make use of already existing, efficient execution
engines or to apply formal CPN properties in order to check the specification of
the Transformation Net.

5 Lessons Learned

This section presents lessons learned from the running example and thereby
discusses key features of the Transformation Net approach.

Representation of model elements by colored tokens reveals trace-
ability. The source model to be transformed is represented by means of one-
4 http://www.modeltransformation.net
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colored tokens and two-colored tokens residing in the source places of the Trans-
formation Net whereby the actual transformation is performed by streaming
these tokens to the target places. Through this mechanism it is possible to de-
rive the source-target relationship, i.e., traceability, between model elements by
searching for same-colored tokens in source places and target places, respectively.

Visual syntax and live programming fosters debugging. Transforma-
tion nets represent a visual formalism for defining model transformations which
is especially favorable for debugging purposes. This is not least since the flow of
model elements undergoing certain transformations can be directly followed by
observing the flow of tokens whereby undesired results can be detected easily.
Another characteristic of transformation nets, that fosters debuggability, is live
programming, i.e., some piece of transformation logic can be executed and thus
tested immediately after definition without any further compilation step. There-
fore, testing can be done independently of other parts of the Transformation Net
by just setting up a suitable token configuration in the input places.

Implicit control flow eases evolution. The control flow in a transfor-
mation net is given through data dependencies between various transitions. As
a consequence, when changing a transformation, one needs to maintain a sin-
gle artifact only instead of requiring additional efforts to keep control flow and
transformation logic (in the form of rules) synchronized. For instance, when a
certain rule would need to be changed to match for additional model objects,
one has to explicitly take care to call this rule at a time when the objects to be
matched already exist.
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Fine-grained model decomposition facilitates resolution of hetero-
geneities. The chosen representation of models by Transformation Nets lets
references as well as attributes become first-class citizens, resulting in a fine-
grained decomposition of models. The resulting representation in combination
with weak typing turned out to be especially favorable for the resolution of struc-
tural heterogeneities. This is since on the one hand there are no restrictions, like
a class must be instantiated before an owned attribute and since on the other
hand e.g. an attribute in the source model can easily become a class in the tar-
get model by just moving the token to the respective place. Due to this fine
grained decomposition we can not ensure a target model that is conform to its
metamodel during transformations. The conformance to the target metamodel
is checked when the target model is instantiated using the tokens in the target
places.

Transitions by color-patterns ease development but lower readabil-
ity. Currently the precondition as well as the postcondition of a transition are
just encoded by one-colored as well as two-colored tokens. On the one hand, this
mechanism eases development since e.g. for changing the direction of a link it
suffices just to swap the respective colors of the query token and the produc-
tion token. On the other hand, the larger the transformation net grows the less
readable this kind of encoding gets. Therefore, it has been proven useful to as-
sign each input as well as each output placement a human-readable label, that
describes the kind of input and output, respectively.

6 Related Work

Concerning our Transformation Net approach, we consider two orthogonal threads
of related work. First, we discuss current model transformation approaches and
point out their debugging support, and second, we elaborate on the usage of
Petri Nets for model transformations.

Model Transformation Languages. Model transformation languages in
general can be divided into imperative, declarative and hybrid approaches. Basi-
cally, imperative approaches are similar to direct manipulation of models through
some general purpose programming language API, but offer a dedicated concrete
syntax and allow to define the transformation in terms of the models abstract
syntax. The operational part of the QVT specification [2] allows to define map-
pings, which are function-like constructs that can be imperatively called to create
target elements. Declarative approaches are typically based on defining rules that
are later on interpreted by an execution engine to produce the desired result.
Hence, the actual transformation execution as well as the order of rule applica-
tion generally need not be handled by the user. The way how a transformation
is defined, is by specifying rules that constrain under which condition certain
elements of the source and target metamodel are related. One part of the QVT
specification consists of the Relations language, which allows to define rules in
the above described way. However, what a declarative approach gains in ab-
straction, it loses in flexibility. To alleviate these limitations, hybrid approaches
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combine imperative and declarative styles of transformation definition. The Atlas
Transformation Language (ATL) [9] is a QVT-like language that distinguishes
between declaratively matched and imperatively called rules.

However, the benefits of an explicit runtime model for the execution is not
considered by these approaches. Instead low-level execution engines are employed
which aggravates debugging and understanding of model transformation. By
the process-oriented specification and execution of model transformations us-
ing Transformation Nets, we combine the benefits of imperative and declarative
approaches not only for the specification of transformations, but also for their ex-
ecution by using CPNs themselves as a transformation engine, which is currently
not supported by hybrid approaches.

Petri Nets employed for Model Transformations. The relatedness of
Petri nets and graph rewriting systems has induced some impact in the field
of model transformations. Especially in the area of graph transformations some
work has been conducted that uses Petri nets to check formal properties of graph
production rules. Thereby, the approach proposed in [13] translates individual
graph rules into a place/transition net and checks for its termination. Another
approach is described in [5], which applies a transition system for modeling the
dynamic behavior of a metamodel.

Compared to these two approaches, our intention to use Petri nets is totally
different. While these two approaches are using Petri nets as a back-end for auto-
matically analyzing properties of transformations by employing place/transition
nets, we are using a variant of CPNs to specify transformations and to foster
debuggability and understandability of transformations. In particular, we are
focussing on how to represent model transformations as Petri Nets in an in-
tuitive manner. This also covers the compact representation of Petri Nets to
eliminate the scalability problem of low-level Petri nets. Finally, we introduce
a specific syntax for Petri Nets used for model transformations and integrate
several high-level constructs, e.g., inhibitor arcs and pages, into our language.

7 Conclusions and Future Work

In this paper we showed how Transformation Nets, which are a variant of CPNs,
can be used to specify and execute model transformations. Thereby we showed
how metamodels, models and transformation logic can be expressed in Trans-
formation Nets, providing an integrated view on all transformation artifacts
involved as well as a dedicated runtime model to foster debugging. Finally we
showed how concepts of Transformations Nets could be expressed in terms of
CPNs.

Currently, we are working on a automated translation of Transformation Nets
to standard Colored Petri Nets in order to make use of efficient execution engines
of third party vendors. This furthermore allows us to use Petri net properties
for analyzing and verifying model transformations which is another direction
we are going to strive for future work, e.g., liveness properties to check if a
transformation finishes.
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Abstract. Crosscutting concerns are responsible for producing tangled
representations that are difficult to understand, maintain, and evolve.
Aspect-oriented software development aims at addressing those cross-
cutting concerns, known as aspects, by providing means for their sys-
tematic identification, separation, representation, and composition. This
paper focuses on the composition activity of the aspect-oriented require-
ments engineering approaches, by proposing the use of reference nets, a
class of high-level Petri nets, for the specification of concerns and match
points as executable high level models. To that end, we propose a set of
reusable reference net models for the automatic composition of concerns,
at the requirements level, in order to create executable graphical models
amenable to further specification. The resulting models have a precise
semantics and can be graphically simulated using the renew tool. This
simulation of the composed concerns allows their validation and offers
new insights to the modeller, as it offers a readable and detailed view
of the multiple inter-dependencies. The proposed approach is applied
to a composition of concerns, with four different composition operators,
which is translated to an executable Petri net model.
Key words: requirements analysis, aspect-oriented development, net
composition, Petri nets, renew tool.

1 Introduction

An effective requirements engineering approach should reconcile the need to inte-
grate functional and non-functional concerns with the need to modularize those
that are crosscutting [1, 2]. A concern refers to a property which addresses a
certain problem that is of interest to one or more stakeholders and which can be
defined by a set of coherent requirements. A concern can be functional or non-
functional [3, 4]. This paper builds on the second and third authors previous
work on Aspect-Oriented Requirements Engineering (AORE) [3, 5, 6], focusing
on the concern composition activity of the model presented therein. There, the
composition of concerns was informally defined through a minimum set of oper-
ators. The goal is to provide new abstractions and composition mechanisms to
modularize and compose such concerns during requirements engineering. This
paper extends the work already presented in [3, 5, 6] by proposing a novel process

Barros et al: Composition of Concerns Using Reference Nets 51



for the composition of concerns based on a set of operators and their translation
to Petri nets.

Petri nets, and especially high-level nets, offer a highly expressive language
for the definition of the needed operators, namely parallel, choice, sequence, and
break. Here, the preemption semantics of the latter is modelled through the
use of transition synchronization among models. Each operator models a way
to compose two concerns and is specified as a Petri net model. These models
are used as templates whose instances are composed in a scalable, readable,
and executable way. This net composition is automatic and uses simple abstract
models for specifying each concern. The resulting composed model is already an
executable net model, but can also be enhanced with more detailed specifications
for each concern.

This paper is organized as follows. Section 2 introduces the background on
the AORE model and Petri nets, as well as the the motivation for the presented
work. Section 3 presents our proposal, namely the Petri net models for each
operator and their application to a case study. Section 4 discusses the related
work and Section 5 draws some conclusions and identifies future tasks to be
developed.

2 Motivation and background

The present work aims at providing the support for the composition of concerns,
as well as for the creation of executable specifications for functional concerns, in
a reusable and scalable way. To that end, we propose the use of Petri net models,
more specifically reference net models. Reference nets have a precise semantics
and are supported by a tool — the renew tool [7, 8] — that allows interactive
and automatic simulations. Next, we briefly present the AORE approach and
reference nets.

2.1 Composition of concerns

The AORE approach is composed of three main tasks, all related to concerns:
(1) identification, (2) specification, and (3) composition [5]. In this paper, we
focus on the support for the third task: composition of concerns. Hence, we
assume that crosscutting and non-crosscutting concerns (untangled concerns)
were already identified and textually specified. Therefore, we already know which
concerns to compose. The result is a Petri net model, composed of several inter-
related nets.

In the composition of concerns we incrementally compose a set of concerns
until the whole system is obtained. Each composition takes place in a match
point in the form of a composition rule. A match point tells us which concerns
should be composed and is identified when one or more required concerns may
need to be composed together with a base concern [3]. If a concern is composed
in more than one match point, this concern is crosscutting. A composition rule
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shows how a set of concerns can be woven together by means of a predefined op-
erator. The rule takes the form <LeftOperand> <Operator> <RightOperand>,
where the operands can be a concern or a sub-composition (which is another
composition rule) and <Operator> represents the operator. The four operators
we have chosen were inspired by the following LOTOS operators: full synchro-
nization, choice, enabling, and disabling [9]. Here, we represent them by ”|”, ”^”,
”>>”, and ”>=”, respectively. We call them ”parallel”, ”choice”, ”sequence”, and
”break”. Informally, their semantics are the following:

Parallel (denoted by T1 | T2): refers to the parallel operator and means that
the behaviour of T1 and the behaviour of T2 have synchronous start and end
points. It represents concurrent execution of concerns.

Choice (denoted by T1 ^ T2): refers to the choice operator and means that
only one of the concerns will be satisfied (T1 or T2).

Sequence (denoted by T1 >> T2): refers to a sequential composition and means
that the behaviour of T2 begins if and only if T1 terminates successfully.

Break (denoted by T1 >= T2): means that T2 interrupts the behaviour of T1
when it starts its own behaviour. This allows the representation of interrup-
tions.

All these four operators are binary and compoundable as each returns a concern.
Hence, a composition rule can be defined based on other composition rules,
separated by one of the above operators.

Next, we briefly present Petri nets and the specific class of Petri nets we will
be using, named reference nets.

2.2 Petri nets and reference nets

Petri nets (e.g. [10]) are a well-known set of graphical specification languages. A
Petri net is a directed graph with two types of nodes named places and transi-
tions. Places are usually drawn as circles or ellipses, and transitions by simple
lines or rectangles. Each arc must connect one place to one transition or one
transition to one place. Places can contain one or more tokens. These tokens
constitute the place marking. Hence, the system state is modelled by the set of
all markings, also named net marking. The marking changes when transitions
fire. As the net semantics allows any number of enabled transitions to fire, Petri
nets are able to graphically model concurrency and synchronization in a visual
way.

A Petri net is said to be low-level if the marking in each place can be either
empty or modelled by a positive integer value. If the number of tokens is small,
they are typically pictured as black dots inside the place. Then, the net exe-
cution, i.e. the sequence of net firings, can be seen as tokens ”flowing” around
the net, something which is usually called the ”token game”. Yet, low-level net
models can rapidly become too large and too difficult to use. Coloured Petri
nets [11, 12] allow tokens of complex data types (the ”colours”) and the specifi-
cation of functions that operate on the respective token values, thus adding data
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processing capabilities to Petri nets. Together with the use of one or more of the
known structuring mechanisms for Petri nets (e.g. [13]), it becomes possible to
achieve huge reductions in the size of the models. As the definition of functions
and data types assume the use of a programming language, the modeller can
freely balance the use of textual or graphical elements in reusable and modular
models. Hence, Coloured Petri nets with structuring mechanisms are a highly
expressible graphical specification language, which have already been applied to
model large systems (e.g. [12]).

Here, we will be using reference nets [7, 8] which are a well-supported example
of Coloured Petri nets extended with the nets-within-nets structuring approach.
There, the tokens can be not only data type values but also other nets. Hence,
it becomes possible to compose nets in a hierarchical way where each token is
an abstraction for a subnet. This possibility is used here to build a hierarchical
graphical model that mimics an expression evaluation tree: each node in the
tree is a net model. The tree leaves model primitive concerns, while each of
the remaining nodes model one operation, i.e. a composition rule. Finally, as
presented latter, a top level model is added as the new root of the tree. The
modelling of all the presented operators as reference nets is presented in Section
3.2.

3 Composition of concerns using Petri nets

This section presents the composition of concerns using an example based on the
Washington subway system. The example is first presented using an algebraic
specification and then using the proposed Petri net models.

3.1 The EnterSubway case study

The presented enterSubWay model is based on the Washington subway system
as in [5]:

”To use the subway, a client has to own a card that must have been
credited with some amount of money. A card is bought and credited in
special buying machines available in any subway station. A client uses
this card in an entering machine to initiate her/his trip. When s/he
reaches the destination, the card is used in an exit machine that debits
it with an amount that depends on the distance travelled. If the card has
not enough credits the gates will not open unless the client adds more
money to the card. The client can ask for a refund of the amount in the
card by giving it back to a buying machine.”

Based on the requirements given above, we identify the following concerns:
”buyCard”, ”enterSubway”, ”exitSubway”, ”refundCard”, and ”creditCard”.
Functional concerns, as these, are usually not too difficult to identify. A closer
look at the requirements can also suggest some non-functional requirements. For
example, the text ”special buying machines available in any subway station”
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suggests that ”availability” is important. In fact, from our knowledge of the real
world, the system should be available eighteen hours a day. Another concern we
should consider is ”responseTime”, since the system needs to react in a short
amount of time to avoid delaying passengers.

Still other concerns can be identified based on some requirements catalogues,
such as [4]. For example, as the system can simultaneously be used by many pas-
sengers, then ”multiaccess” is an issue that the system needs to address. Other
concerns identified based on this catalogue are: ”accuracy”, ”security”, ”com-
patibility”, and ”faultTolerance”. These concerns are specified text templates
according to the AORE approach [3]. After the specification, the concerns are
composed using match points, as presented in Section 2.1. This can be better
demonstrated by a matrix for the identification of match points, as illustrated
in Table 1. A cell is filled with a

√
if a given required concern is required by the

base concern. For example, for the match point enter, for the ”enterSubway”
base concern, the table shows the list of required concerns that must be com-
posed with it, namely ”validateCard”, ”errorCard”, ”integrity”, ”availability”,
”responseTime”, ”accuracy”, ”faultTolerance”, and ”multiaccess”.
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buy buyCard
� � � �

enter enterSubway � � � � � � � �
exit exitSubway

� � � � � � � �
refund refundCard

� � � � � �
credit creditCard

� � � � � � � �
validate validateCard

�
none errorCard

… … … … … … … … … … …

Required Concerns

Match 
Points

Base Concerns

Table 1. Identification of match points

Next, we exemplify the composition of concerns with two match points: enter
and buy. The compositions rules for each match point are specified using the
presented operators as follows, where parentheses are used to specify priorities:

enter = ( (availability | multiaccess) >>

( (validateCard >> (errorCard ^ enterSubway) ) |

responseTime | accuracy ) >>

integrity)

>= faultTolerance

buy = ( (buyCard | responseTime) >> accuracy >> integrity )

>= faultTolerance

enterBuy = enter | buy
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These composition rules express the order in which each concern must be
satisfied. For example, in match point buy, buyCard and responseTime are exe-
cuted in parallel and, only after both have finished, the concerns accuracy and
integrity are executed in sequence. Any of these four concerns can be inter-
rupted by the faultTolerance concern. This interruption can also happen in
match point enter. Finally, both match points are composed in parallel by the
composition rule enterBuy = enter | buy. The goal of this composition is to
illustrate the identification of crosscutting concerns, i.e. when a concern is en-
abled in more than one match point, for example integrity and responseTime.

Next, we briefly present reference nets together with the proposed net models.

3.2 Graphical and executable models for concerns composition

We now present a reference net model for each of the presented operators, to-
gether with a brief overview of the reference nets syntax and semantics. Each of
these models is designed to be used as a template. Model composition is achieved
through the instantiation of the respective template parameters.
Neither reference nets neither the renew tool provide support for net tem-
plates. Hence, templates are in fact invalid reference nets. They become valid
reference nets after text replacement, based on the presented algebraic represen-
tation. This is automatically done by a simple script available at
http://www.estig.ipbeja.pt/˜jpb/aore2renew. The presented match points buy,
enter, and enterBuy are examples of inputs to the script. Based on the alge-
braic specification and using the templates presented next, the script generates
a set of reference nets in the renew tool format. Together, they form a reference
net model.

Now, we present the net templates related to the net operands. Then we
present the net templates for each of the four operators.

The operand net templates We start by presenting the Top net template in
Fig. 1a. This is where the net model simulation begins. First, it creates a set
of pairs (concern name, creator instance). To that end transition init starts
by creating an HashMap JavaTM object. Then, for each concern name in the
model, it generates a creator net instance and stores the respective pair in the
HashMap object. The code for this operation binds the START CREATORS template
parameter. The (concern name, creator net instance) pairs will allow the use of
the concern creator instance given the respective name, as concern net instances
are created by the corresponding creator instance. Then, this set of pairs is
passed to the start transition, which uses it to get the creator instance (c =
cs.get(CREATOR)) for the top level concern. Then, it uses the creator instance to
create the net instance x for the top level concern (c.create(cs, x)). Note that
the set of creators cs is passed to the creator c and the instance x is returned.
Now, the top level concern can be executed by the firing of transition isEnabled
until it is destroyed by transition end.

Note that the HashMap object reference is a net token. This token contains
pairs of names and references to other net instances. The enabled places also
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start

end

   Top< START_CREATORS, CREATOR >  

cs

cs

[c, x]

[c, x]

[c, x]

[c, x]

c:destroy(x)

cs = new java.util.HashMap();
START_CREATORS                  

c = cs.get(CREATOR); c:create(cs, x)

[]

init

c:isEnabled(x)enabled

start

end :end()

  AC  

:isEnabled()

:new(cs)

isEnabled

enabled

b)

enabled

:create(cs, c)

create

c: new TYPE(cs)

c:end()
:destroy(x)

destroy
c:isEnabled()
:isEnabled(c)

isEnabled

c

c

  Creator< TYPE >  

c

c

a) c)

isEnabled

Fig. 1. Reference net models for the a) top level model; b) an abstract concern; and
c) a creator model

contain references to other nets. Hence, the model and the respective simulation
are strongly based on the nets-within-nets structuring approach — the main
characteristic of reference nets.

The AC model in Fig. 1b provides a generic abstract specification for any
concern, the abstract concern. The abstract concern has a start and an end
transition. After started, it can fire the test transition isEnabled.

Although each concern is automatically modelled as an abstract concern, it
can be specified at the intended level of abstraction by taking advantage of the
reference nets language, which also allows the use of the JavaTM programming
language. Hence, for functional concerns, the generated instance of the abstract
concern model can be replaced by a more detailed one where place enabled
and transition isEnabled are refined. Yet, each of the added transitions should
still contain the :isEnabled uplink which forces the transition enabling by some
transition in the upper level concern: the one that has the present concern as an
operand. An example of this kind of functional concern model is available, for
the enterSubway concern, at http://www.estig.ipbeja.pt/˜jpb/aore2renew.
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For each CN concern we create a net AC CN and also a net C AC CN. The latter
is responsible for creating all instances of net AC CN. The C AC CN net is the result
of instantiating the creator template in Figure 1c with CN.

Creators are singleton net instances: for each CN concern there is a single
C AC CN instance that creates all AC CN instances. Each of these instances is an
execution of concern CN. Hence, the level of crosscutting of a given CN concern is
given by the quantity of executions of the same CN, i.e. the number of simultane-
ous executions of enabled AC CN instances. The references to all AC CN instances
are stored in place enabled in the respective C AC CN net instance (see Fig. 1c).

Therefore, to execute a single primitive concern, we generate an instantiation
for each template instantiation in Fig. 1. For example, if our concern is named
availability we would get three nets each one with one instance, i.e. three
singletons:

1. A new template instance of model AC, named AC availability with one
net instance.

2. A new template instance of model creator, named C AC availabilitywith
one net instance.

3. A new template instance of model Top, named Top availability with one
net instance.

Naturally, to model a single primitive concern, we could also use a single
net model. This composition is only interesting when we do specify composition
rules, as previously presented for the enterBuy composition. The used operators
are also modelled by net templates. These are now presented.

The operator net templates Now we turn to the net templates that model
the four operators: parallel (|), choice (^), sequence (>>), and break (>=).

Figure 2 shows how to model the parallel (OP PAR) and choice (OP CHOICE)
operators as reference net models. Both are templates: they become reference
nets after replacing the C1 and C2 template parameters with the names of the
operand concerns. Therefore, a concrete instantiation of the OP PAR model will
replace C1 and C2 with the names of other concerns acting as terms.

Regarding the OP PAR model, and according to the reference net semantics,
the net execution starts by creating a net instance based on the instantiation
of the OP PAR template. Its execution starts with the firing of transition start,
which gets two net instances from the creators of each operand concern: one net
instance x1 from the creator instance c1 and another net instance x2 from the
creator instance c2. The two net instances, x1 and x2, are executed concurrently
with the OP PAR net instance, in particular transitions isEnable1 and isEnable2
can fire in each step in a non-deterministic way. Each transition in a reference
net is enabled according to the known Coloured Petri net semantics plus the
restrictions due to the use of synchronous channels between transitions. These
are briefly presented in the following paragraphs.

Each synchronous channel establishes a synchronous inter-dependency be-
tween two or more net instances. It can be seen as a form of transition fu-
sion, where two or more transitions fire together. The synchronous channels

58 PNSE’09 – International Workshop on Petri Nets and Software Engineering



end

start

[c1, x1] [c2, x2]

[c2, x2][c1, x1]

enabled1 enabled2

[c2, x2]

[c2, x2]

[c1, x1]

[c1, x1]
isEnabled1

c2:isEnabled(x2)
:isEnabled()

c1:isEnabled(x1)
:isEnabled()

c2 = cs.get(C2);

c1 = cs.get(C1);

:new(cs)

c2:destroy(x2)

c1:destroy(x1)
:end()

c1:create(cs, x1)

c2:create(cs, x2)

  OP_PAR<C1, C2>  

isEnabled2

a)

start1

[c1, x1] [c2, x2]

[c2, x2][c1, x1]

enabled1 enabled2

[c2, x2]

[c2, x2]

[c1, x1]

[c1, x1]
isEnabled1

c2:isEnabled(x2)
:isEnabled()

c1:destroy(x1)
:end()

start2c1 = cs.get(C1);

c1:isEnabled(x1)
:isEnabled()

c2:destroy(x2)
:end()

c1:create(cs, x1) c2:create(cs, x2)

c2 = cs.get(C2);

:new(cs) :new(cs)

  OP_CHOICE<C1, C2>  

end2end1

isEnabled2

b)

Fig. 2. Reference net models for the parallel and choice operators

in reference nets are similar to method calls in classical object-oriented lan-
guages. Hence, they have two parts: (1) a downlink specifying the net instance
and the synchronous channel name together with optional parameters (e.g.
c:destroy(x)), which is similar to a method call; (2) an uplink specifying the
synchronous channel name and the optional parameters list (e.g. :destroy(x)),
which is similar to a method definition. A single transition can have more than
one downlink. This is the case for transition end in the OP PAR model in Fig.
2, which has two: c1:destroy(x1) and c2:destroy(x2). This transition can
only fire together with the transitions inside the c1 and c2 net instances with a
:destroy(x) uplink (see Fig. 1c).

When transition start fires, with instantiated C1 and C2 concern names,
the tuples [c1, x1] and [c2, x2] are put in places enabled1 and enabled2
thus enabling transitions isEnable1 and isEnable2, which model the execution
of concern x1 and concern x2, respectively. They are executed while transi-
tion end does not fire, which can only happen if both concerns (x1 and x2)
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can both end. This synchronization is guaranteed by the synchronous chan-
nels c1:destroy(x1) and c2:destroy(x2) that synchronize with the respec-
tive destroy transitions in creators c1 and c2 (see Fig. 1c). Then, using the
respective destroy transitions, these synchronize with the end transitions in the
respective concern nets.

Transitions isEnable1 and isEnable2, have an isEnabled uplink. This guar-
antees that the concerns in the OP PAR net can only fire if the supermodel (the
respective creator instance) allows them to. If those transitions cannot fire, the
model will eventually deadlock if transition end also cannot fire. At that point,
as the supermodel has no references to it, the OP PAR net instance is a target for
garbage collection [8].

The OP CHOICE in Fig. 2 is similar regarding the use of composition through
net instances and the use of synchronous channels, but with the following im-
portant difference: either concern C1 or C2 is created and processed, but not
both. For this reason, each one must be able to end independently of the other.
The choice between the two is non-deterministic, but could easily be made de-
pendent on guards (logical conditions) attached to the respective start1 and
start2 transitions. This can be added by the modeller when creating a more
detailed model.

Figures 3a and 3b show the net model templates for the sequence and break
operators, respectively. Their semantics should now be straightforward. The
OP SEQ model is a sequential execution of two concerns, where the second starts
when the first terminates normally. In the OP BREAK model, transition end1 ends
concern C1. Also, when C1 is being executed, it can be interrupted at any time by
the break transition, which also starts concern C2. In this case, C1 does not end
normally and becomes deactivated as transition isEnable1 becomes disabled.
Hence, it will not enable any isEnabled transition, with an isEnabled uplink
(:isEnabled()), in the C1 net. The C1 concern will eventually deadlock and, as
there will be no more references to it, it will be garbage collected.

3.3 Translation to the executable net model

The translation from the algebraic specification to a Petri net model mimics
the construction of an evaluation expression tree. Fig. 4 shows the structure of
the model generated from the algebraic specification in Section 3.1, where each
rectangle represents a net class (a template instance) in the reference net model
and each arrow specifies a ”uses” dependency.

In fact, the Petri net model structure is isomorphic to the evaluation expres-
sion tree with the difference that it adds a Top model instance. More specifically,
the following reference net models are generated:

– A top level net, which results from the instantiation of the Top template in
Fig. 1a with the tree root operator net creator;

– For each distinct leaf node in the tree, two net models are generated: (1)
an instance of the creator model template in Fig. 1c; (2) an instance of the
abstract concern model template in Fig. 1b; The former will create the net
instances of the latter.
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b)a)

end2

start

enabled1

enabled2

:isEnabled()

  OP_SEQ<C1, C2>  

:isEnabled()

:end()

:new(cs)

[cs, c1, x1]

[cs, c1, x1]

c1:destroy(x1)

[c2, x2]

[c2, x2]

c1:isEnabled(x1)

c1 = cs.get(C1); 

c2:destroy(x2)

c2:isEnabled(x2)

end1
c2 = cs.get(C2); 
c2:create(cs, x2)

c1:create(cs, x1)

isEnabled1

isEnabled2[c2, x2]

[c2, x2]

[cs, c1, x1]

[cs, c1, x1]

end2

start

enabled1

enabled2

  OP_BREAK<C1, C2>  

:end()

:new(cs)

[cs, c1, x1]

[c2, x2]

[c2, x2]

c1:isEnabled(x1)

c1 = cs.get(C1); 

c2:destroy(x2)

c2:isEnabled(x2)

break

c1:create(cs, x1)

isEnabled1

isEnabled2[c2, x2]

[c2, x2]

[cs, c1, x1]

[cs, c1, x1]

c2 = cs.get(C2); 

c2:create(cs, x2)

c1:destroy(x1)
:end()
end1

[cs, c1, x1]

[cs, c1, x1]

:isEnabled()

:isEnabled()

Fig. 3. Reference net model for the sequence operator

– For each non leaf node — the operator nodes — two net models are gener-
ated: (1) an instance of the respective operator model template in Figures 2,
3a, and 3b; (2) an instance of the creator model template in Fig. 1c, which
is able to create operator net instances.

Basically, two reference nets are generated for each node in the tree, ex-
cept that the repeated occurrence of a given concern (a crosscutting) reuses the
same two nets. For example, for the faultTolerance concern only two nets are
generated: the C AC faultTolerance and the AC faultTolerance. Hence, the
C AC faultTolerance rectangle has two incoming arrows. The multiple occur-
rence, specified by multiple tokens in place enabled, is modelled by multiple net
instances of net AC faultTolerance, one instance for each occurrence.

The Top model is used to build all the creator singletons — in transition init
— putting them all in the HashMap object. The respective code text instantiates
the START CREATORS parameter of the Top net template. Then, transition start
initiates the top level concern (c:create(cs, x))using the respective creator,
obtained from its name CREATOR (c = cs.get(CREATOR)).
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C_op_par_12

op_par_12

C_op_break_7 C_op_break_11

op_break_7 op_break_11

C_op_seq_10C_AC_faultTolerance

op_seq_10AC_faultTolerance

C_op_seq_9C_AC_integrity

op_seq_9

AC_integrity

C_op_par_8C_AC_accuracy

op_par_8AC_accuracy

C_AC_buyCardC_AC_responseTime

AC_buyCardAC_responseTime

C_op_seq_6

op_seq_6

C_op_seq_5

op_seq_5

C_op_par_0 C_op_par_4

op_par_0 op_par_4

C_op_par_3

op_par_3

C_op_seq_2

op_seq_2

C_AC_validateCard C_op_choice_1

AC_validateCard op_choice_1

C_AC_errorCard C_AC_enterSubway

AC_errorCard AC_enterSubway

C_AC_availability C_AC_multiaccess

AC_availability AC_multiaccess

Top_op_par_12

Fig. 4. Structural dependencies in the generated model for the enterBuy composition
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In the end, we achieve a fully hierarchical and executable model that guar-
antees an abstract view for all concerns and respective compositions. As already
stated, this model provides a composition of all concerns and a starting point for
the creation of a more detailed executable specification for functional concerns.

4 Related Work

The work presented in this paper is focused on aspectual composition, i.e.
on composition of crosscutting concerns in aspect-oriented requirements engi-
neering. As already presented, the ability to compose crosscutting and non-
crosscutting requirements allows the analysis of their interrelationships and,
if needed, a more complete view of the requirements. Therefore, this section
presents a list of aspect-oriented requirements engineering approaches that sup-
port this composition.

The EA-Miner tool [14] supports identification and separation of concerns
and crosscutting concerns, i. e. aspects, as well as their relationships at the
requirements level, helping to reduce the effort to accomplish these tasks. The
tool is web based and utilizes natural language processing (NPL) techniques,
such as part-of-speech and semantic tagging, to reason about the properties of the
concerns and their relationships. So, these techniques structure the concerns from
requirements documents into specific aspect-oriented requirements models, such
as viewpoints and aspects. After this, the tool composes aspects and viewpoint
requirements using composition rules based on operators. So, a set of composition
rules is defined for each aspect, i. e. the approach only proposes composition rules
that define how an identified aspect is composed with viewpoints, showing the
effect of the aspect on the viewpoint.

Moreira et al. propose a multi-dimensional approach for the separation of
concerns in requirements engineering as well as trade-off analysis of the re-
quirements specification from such a multi-dimensional perspective [15]. This
approach uses concern projections to specify the influence of a given concern
on other concerns. The materialization of these projections is accomplished by
defining a set of composition rules (compositional intersections help reduce the
number of required compositions), one for each projection. These rules operate
at fine granularity, i.e., at individual requirements level and not just at concerns
level. After specifying the various projections with the aid of composition rules,
identification and resolution of conflicts among the concerns is carried out.

AOV-graph is an extension to V-graph models to avoid the tangling and scat-
tering of crosscutting concerns in requirements models [16]. This approach uses
goal models and the concepts defined in aspect-oriented languages to provide
separation, composition and visualization of crosscutting concerns to facilitate
their modelling and the traceability between them. AOV-Graph wants to model
sets of requirements separately and to offer a way to model the relationships
between them. Crosscutting relationships are specified using pointcuts and op-
erators, advices and intertype declarations. These crosscutting relationships are
identified, either because a requirement impacts on many points, or because it
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is important to keep one requirement separate from the others. Furthermore,
AOV-Graph offers different views originating from the composite model.

Generally speaking, all the approaches propose an aspectual composition
technique, based on the specification of crosscutting relationships or projections,
using natural language and composition rules with operators. Our approach dif-
fers from the others by offering a set of operators with well-known semantics that
can be executed using an established graphical language with a precise semantics.
The semantics of the operators, namely, sequence, choice, parallel, and interrup-
tion (break) are amenable to a readable graphical specification using Petri nets.
In fact, they correspond to well-known Petri net patterns, making Petri nets an
obvious choice for the respective specification (see [17] for a systematic review
of control-flow patterns).

Additionally, the use of reference nets, allows compact and modular graphical
representations that can be enriched through the use of the well-known JavaTM

programming language. The resulting models are supported by the renew tool,
available free of charge.

5 Conclusions and Future Work

This paper focuses on the composition activity of the AORE approach, by
proposing a Petri net based approach to compose concerns at the requirements
level. The concerns composition is specified using a simple textual language that
is automatically translated to a skeleton Petri net model. This model offers a
starting point for the modeller. From this generated model, the modeller can
specify each abstract concern with greater detail or replace it with a previously
specified one.

The presented approach allows a separation between the composition of con-
cerns and the specification of each concern, improving understand ability and
maintainability. Together with the proposed automatic composition, the pre-
sented work can be readily extended with additional operators while guarantying
the reuse of existing concerns models. It also provides a basis for the adoption
of a model-driven development at the requirements level allowing the creation
of readable graphical and executable models with a precise semantics.

As future work it will be useful to enrich the composition rules with the
possibility to use operators supporting a finer level of granularity, namely by also
allowing structured horizontal compositions together with the presented vertical
ones. Regarding the renew tool, a useful addition would be the availability of
advanced interactive support for querying the generated log. Currently, this log
can be searched and used to ease interactive simulation, but has no associated
query language.
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Abstract. This paper describes an approach for constructing rapid prototypes to 
assess the behavioral characteristics of concurrent software architecture designs.  
Starting with a software architecture design nominally developed the using COMET 
concurrent object-oriented design method, an executable Colored Petri Net (CPN) 
prototype of the software architecture is developed.  This prototype allows an engineer / 
analyst to explore behavioral and performance properties of a software architecture 
design prior to implementation. This approach is suitable both for the engineering team 
developing the software architecture as well as independent assessors responsible for 
oversight of the software architecture design.  

Keywords: UML, rapid prototyping. coloured Petri-nets, concurrent software 
architecture. 

1   Introduction 

The increasing complexity of software-intensive systems, particularly with respect 
to concurrently executing software tasks, requires a thorough understanding of 
software architecture behavioral properties and tradeoffs among design decisions.  
Analyzing and understanding the concurrent behavior of a software architecture 
during the early design stages is imperative to the successful and cost-effective 
development of the system.  To address this issue, we present an approach for 
constructing rapid prototypes of embedded systems to assess the behavioral 
characteristics of concurrent software architecture designs. The approach leverages 
software design nominally developed using the COMET concurrent object-oriented 
design method [1] and reusable Colored Petri Net (CPN) [2] templates and 
components to rapidly prototype a concurrent software architecture. The goal of the 
CPN prototype is to compare and assess concurrent software architecture behavior to 
determine if the software architecture is feasible before spending valuable resources 
on hardware purchase, development, testing, etc. This paper expands on previous 
work [2] by specifically focusing on rapid prototyping executable models using 
reusable CPN components and templates. The complete set of templates for this 
approach were defined in [2]. The resulting approach should provide the ability to 
quickly develop prototypes of software architecture. 
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1.1   Related Research 

Prototyping the concurrent behavior of a system at design time is important to 
determine whether the system, with its set of concurrent tasks, behaves as desired both 
in terms of functionality and performance. If potential problems can be detected early 
in the life cycle, steps can be taken to overcome them.  

Typical modeling and analysis methods include event sequence and queuing 
modeling [1, 3]; simulation modeling [4]; and scheduling analysis [3, 5, 6].  In recent 
years, there has been an increased effort to construct executable models of software 
designs and thus allow the logic of the design to be simulated and tested before the 
design is implemented. Existing modeling tools such as IBM® Rational® Rose® 
Technical Developer [7] and Ilogix Rhapsody [8] frequently use statecharts [9] as the 
key underlying mechanism for dynamic model execution. An alternative approach is 
to model concurrent object behavior using Petri Nets [10-14].  Our efforts [2, 14] have 
specifically focused on a Colored Petri Net (CPN) approach in which behavioral 
patterns are identified for objects in the software architecture and then modeled with 
CPN templates matching the behavioral patterns.  We have chosen this approach since 
CPNs provide excellent modeling, analysis, and simulation capabilities for concurrent 
systems.  Additionally, our approach supports independent assessments of the 
software architecture without requiring the software architect to adapt to a new 
paradigm. 

2   Rapid Prototyping Approach 

The purpose of this paper is to describe an approach leveraging executable CPNs 
for the rapid prototyping of concurrent software architecture designs.  The purpose of 
the CPN prototypes proposed in this approach is to simulate the concurrently 
executing software tasks and to enable analysis and understanding of the concurrent 
behavior of a software architecture during the early design stages. 

The proposed rapid prototyping approach has four major steps that are: 1) Develop 
the platform independent software architecture 2) Create the platform specific 
software architecture 3) Construct the CPN prototype 4) Execute and analyze the CPN 
prototype.  Each step is described below in more detail. 

2.1   Develop the Platform Independent Software Architecture Model 

The first step in our approach is to develop the platform independent software 
architecture model (PIM).  The purpose of the PIM is to capture the concurrent object 
behavior in the form of concurrent behavioral design patterns (BDP), which in  
subsequent steps will be mapped to CPN templates or components [2].  As discussed 
in previous work, each BDP represents the behavior of concurrent objects together 
with associated message communication constructs, and is depicted on a UML 
concurrent interaction diagram.  Each concurrent object is assigned a behavioral role 
(such as I/O, control, algorithm) which is given by the COMET concurrent object 
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structuring criteria [1] and depicted by a UML stereotype. An example of a behavioral 
design pattern for an asynchronous device input concurrent object is given in Figure 1. 

 

 

Fig. 1. Asynchronous input concurrent object behavioral design pattern 

2.2   Create the Platform Specific Software Architecture Model 

The second step in our rapid prototyping approach is to develop the platform 
specific software architecture model (PSM).  The purpose of the PSM is to capture the 
performance characteristics of how the software architecture will perform if 
implemented on a specific platform.  To enable fast construction of PSMs, the UML 
PIM model should be annotated with platform specific characteristics.  This is quicker 
than creating a separate or external PSM model. 

Platform specific characteristics and values can then be directly added to the UML 
software architecture model using a UML Profile such as the UML Profile for 
Modeling and Analysis of Real-time and Embedded Systems (MARTE) or UML 
Profile for Software Performance, Schedulability, and Time (SPT) [21-22].  The UML 
SPT Profile and UML MARTE Profile provide the ability to capture non-functional 
performance characteristics directly in UML models.  For example, tagging a message 
in an interaction diagram with the UML SPT’s <<paStep>> stereotype indicates that it 
is a step in sequence that uses resources.  The specific platform specific values, such 
as execution time, can be captured in the stereotype’s tags like PAdemand. 

Performance values can be determined from published information about the 
platform, as well as through measurement.  Note that multiple PSMs can be applied to 
a given architecture, supporting prototypes for tradeoff analyses.  These models may 
also be constructed at varying levels of fidelity depending on available information.  
As the development efforts mature, so then can the prototypes of the architecture. 

2.3  Construct the CPN Prototype 

After the PSM is developed, an executable CPN prototype from the PSM can be 
systematically constructed.  For each BDP in the PSM, a self-contained CPN template 
is required, which by means of its places, transitions, and tokens, models a given 
concurrent behavioral pattern.   A set of existing reusable CPN templates can be found 
in [2].  For example, Figure 2 is the CPN template for an asynchronous device input 
concurrent object shown in Figure 1. 
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Fig. 2. Asynchronous input concurrent object CPN template 

To instantiate the templates for each specific object, an analyst using our approach 
must provide a certain set of architectural parameters captured by following tagged 
values: 

-Execution Type: passive, asynchronous, or periodic 
-IO: input, output, or I/O 
-Communication Type: synchronous or asynchronous 
-Activation Time: periodic activation rate   
-Processing Time: estimated execution time for one cycle 
-Operation Type: read or write 
-Statechart: for each  «state dependent» object. 
To illustrate pairing these architectural parameters with BDPs, refer to Figures 1 

and 2.  Figure 1 is an active object, “asyncInputInterface” that implements the I/O 
behavioral pattern as indicated by its stereotype.  Furthermore, tagged types are used 
to capture specific architectural properties of the object, namely that it executes 
asynchronously; handles only input; and has a yet-to-be specified processing time of 
<process time>.  The resulting CPN representation in Figure 2 reflects these 
parameters with the selection of an asynchronous, input-only CPN template and by 
setting the time inscription on the Process Input transition to @+<process time>. 

This <process time> parameter is an estimate of the time required by the object to 
complete one activation cycle.  This information can be obtained directly from UML 
MARTE annotations in the PSM.   For example, process time can be found UML 
SPT’s <<paStep>> stereotype in the PAdemand tag. 

Since CPN templates provide only the basic behavioral pattern and component 
connections, they must be refined to provide application specific behavior.    

To rapidly support construction of the prototype, we recommend using a reuse 
repository of CPN components.  A CPN component is an elaborated CPN template for 
a commonly used object.  For example, if a company commonly uses a specific 
sensor, a CPN component can be created for the software controller for the particular 
sensor.  This CPN component can then be reused quickly in multiple different 
prototypes.  Reusing CPN components will ultimately reduce the time it takes to 
construct the CPN prototypes.  This is critical in rapid prototyping environments. 

After all the BDPs in the PSM have an associated CPN templates or CPN 
components, the CPN templates and components are then interconnected via 
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connector templates to create a prototype of the software architecture.  The CPN 
prototype is then executed using a CPN tool, thereby allowing the designer to analyze 
both the concurrent behavior of the CPN prototype, with a given external workload 
applied to it. 

3. Case Study:  Robot Control 

We illustrate our rapid prototyping approach using a robot controller case study 
based on the Lego® Robotics Invention System™ (RIS), commonly known as 
Mindstorms™ [16].  The RIS platform was chosen based on the embedded nature of 
the platform with easily reconfigurable sensors and actuators [18]. 

The robot controller case study is an autonomous rover employing an infrared light 
sensor and two motors (actuators).  The goal of the rover is to search an area for 
colored discs, while staying within the course boundary and avoiding obstacles.  In 
this case study, the light sensor is the sole input sensor, responsible for detecting 
boundary markings, obstacle markings, and discs according to different color 
schemes.  This case study was used as a term project for a graduate course on real-
time embedded software engineering at George Mason University. 

 

 

Fig. 3. Robot controller PIM interaction diagram 

3.1   Robot Controller PIM 

The architecture model for the autonomous rover is illustrated in Figure 3.  In this 
particular scenario, we are interested in navigating the course; responding to changes 
from the light sensor; and taking the appropriate action based on the detection event. 
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In this design, there are three active, concurrently executing objects (detect, rover, 
and nav) and one passive object (map).  External I/O objects (depicted as actors in 
Figure 3) are also shown for receiving light sensor input and for modeling output to 
the two motors.  Following object structuring guidelines from the COMET method, 
each of the objects in the system is stereotyped according to the hierarchy previously 
shown in Figure 1.  These stereotypes indicate the behavioral design pattern (BDP) 
implemented by each object. Further details about the behavioral properties are 
augmented with the architectural parameters as follows: 

The detect, rover, and nav objects all operate asynchronously and have an 
Execution Type tagged value of “async”.  As the input interface for the light sensor, 
the detect object has an IO tagged value of “input”.  All messages between the active 
objects have a Communication Type tagged value of “synchronous”, indicating 
synchronous, buffered communication.  This particular design decision was made to 
decrease the risk of missing a boundary or obstacle detection event.  Other design 
choices for this system would be to employ FIFO or priority queuing.  The affects of 
these design decisions could also be analyzed using the techniques presented in this 
paper, but are not shown due to space limitations. Finally, the update() operation on 
the map object has an Operation Type tagged value of “writer”. 

Note that values for the Processing Time parameters are left unspecified at this 
point as we will set these parameters based on the PSM in the next section. 

3.2 Robot Controller PSM 

The next step in our approach is to create a platform specific model for the target 
platform.  This is shown in Figure 4 using historical data and hardware specifications 
for the RIS system  [18-20]. 

In this model, our rover is identified as the single node in the system and is based 
on the Robot Command eXplorer (RCX) platform.  The RCX is the central component 
to any RIS system and houses the Hitachi H8 microcontroller with a 16 MHz CPU.  
Paired with the leJOS Java environment the execution speed of this CPU is 
documented to be an average of 1750 floating point operations per second (FLOPS). 

Additionally, there are 16 KB of ROM and 28 KB of RAM available on the RCX 
of which, 17.5 KB of RAM are used by the leJOS operating system.  The system 
clock resolution on the RCX, at 1ms, is longer than the time required for observed 
context switching between concurrent threads, thus the leJOS.overhead is set to zero.  
In our system, there are three physical devices attached:  one light sensor at port S2 
and two motors at ports A and C.  Independent control of these motors is used to steer 
the rover; turning is achieved by rotating the left (Motor A) and right (Motor C) 
motors in opposite directions.  Using historical data, the average detection latency of 
the light sensor was set at 10.3 ms, while the average output latency of the motors was 
set at 1 ms, which is set in the PAdelay tag. 

It would also be useful to combine the information from the PSM with historical 
data on software size.  This type of information is commonly maintained by software 
development organizations and, in our case, we will rely on average software sizes 
across the set of student projects.  From this data, we discover the following: 

«IO» objects average 19 instructions (in Java bytecode) per execution cycle and 
have an average size of 1,182 bytes. 
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Fig. 4. Robot controller PSM interaction diagram 

«coordinator» objects average 27 instructions and 2,722 bytes. 
«algorithm» objects average 89 instructions and 1,015 bytes per algorithm. 
«entity» objects average 1,400 bytes. 
Now, using the combined historical sizing data and information from the rover, we 

can augment the PSM with this platform specific information.  Prior to the CPU being 
available for performance measurement, an initial estimate of the execution time is 
computed by multiplying the estimated average number of instructions by the 
computational speed of the CPU (1750 FLOPS in our PSM example).  These 
estimates are captured in the paDemand tag. 

3.3 CPN Prototype 

Using the above PSM design information, we can now begin to construct a Colored 
Petri Net (CPN) prototype of the software architecture [2]. Using our approach, we 
start with a context level model, capturing the system as a black box (transition) and 
external sensors and actuators represented as places.  This model, allowing us to focus 
on the highest level of abstraction with observed inputs and outputs is shown in 
Figure 5. 
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Fig. 5. Robot controller context level CPN 

 

Fig. 6. Robot controller CPN architecture 

Moving forward, our second step is to decompose the RoverBot system-level 
transition into a layer of abstraction representing the concurrent object architecture.  
This architecture level model is shown in Figure 6.  At this level, each of the active 
objects from is represented as its own transition (box) in the CPN prototype.  Each of 
these will be further decomposed to implement the specific CPN template matching 
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the objects behavioral design pattern or a CPN component if one exists for the object.  
We have also included the single «entity» object containing map data and it is 
represented by a place for the map data to be stored along with a transition and two 
places representing the behavior for calling the update() operation.  Finally, as all 
message communication  between active objects in the RoverBot system is 
synchronous, there is a CPN place modeling a buffer for the synchronous 
communication between detect and rover and between rover and nav. Notice that our 
external input and output places have also been carried down to this level as well.  

Once an architecture-level model is established, each of the transitions representing 
an active object is then decomposed by applying the CPN template associated with the 
behavioral design pattern of that object.  For the asynchronous, input-only «IO» 
object, “detect”, this CPN object-level model is shown in Figure 7.  Here, the CPN 
template has been inserted and instantiated specifically for the detect object by setting 
the object ID to “1” as seen by the number appended to place and transition names.  
The specific control token, C1 has also been added as has the function for processing 
detections, “detection (sensorReading)”.  To maintain consistency, the main transition 
of this template, Pin1, has also been connected to the sensor input place and to the 
roverBuf message buffer place. 

 

 

Fig. 7. CPN template for the “detect” object  

Now, using the combined historical sizing data and information from the rover 
PSM, we can augment the architectural parameters within the CPN prototype to obtain 
further insights as to the behavioral and performance aspects that should be expected 
when matching the original platform independent design model with the actual 
platform characteristics of the target implementation. 
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To begin, we add a place, RAM, to our CPN prototype.  This will model the 
available memory resources measured in bytes.  The initial token value for the RAM 
place is calculated by subtracting the leJOS memory overhead along with the average 
RAM usage for the objects in our architecture from the total available RAM specified 
in the PSM.   

Table 1.  Calculating Memory Availability 

Source Memory (Bytes) 
ram.sizeKB 28,672 
lejos.kbMemOverhead 17,920 
«IO» detect 1,182 
«coordinator» rover 2,722 
«algorithm» nav 2,030 
«entity» map 1,400 

Available RAM: 3,418 
 
Once the rover system begins execution, the primary consumption of memory 

occurs when points are added to the map object.  For each point added to the map, 16 
bytes are used for x and y coordinates; detection event; and timestamp.  To prototype 
this memory consumption, the RAM place from the CPN context level model is 
attached to the Update transition of the map object’s CPN representation on the 
architecture level model.  This is shown in Figure 8.  Using this approach, 16 bytes are 
subtracted from the available RAM each time the update operation is called.  If the 
system reaches a point where less than 16 bytes are available, then the CPN model 
will be suspended. 

 

 

Fig. 8. Consumption of RAM by “map” object 

Next, the <process time> parameter will be updated for each active object template.  
This information can be obtained from PAdemand tag in the PSM’s <<psStep>> 
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stereotype.  Additionally, each «IO» object template will add the detection or output 
latency to the <process time>.  For example, the detect object, responsible for 
interfacing with the light sensor, would have a basic <process time> of 10.8ms.  An 
additional 10.3ms are then added to account for the value of 
lightSensor.detectionLatency from the PSM, resulting in a total time delay 21ms.  
Once time values have been allocated to all objects, we can move forward with 
analyzing the prototype of the architecture as described in the next section. 

These initial estimates can eventually be replaced with higher fidelity data as it 
becomes available, allowing an engineer to refine the behavioral analysis as desired. 

3.4 Analyzing the Prototype 

Recall from the sequence diagram of that the primary purpose of the autonomous 
rover system is to navigate an area, mapping objects discovered by the light sensor 
and taking evasive action when the light sensor detects obstacles or course boundaries.  
To begin analyzing this behavior with the corresponding CPN prototype, we use a test 
driver to provide simulated input events at random intervals.  One of the first things 
we want to discover is how quickly the architecture responds to the detection of an 
obstacle or boundary.  This can be analyzed from the context-level model by taking 
the difference in time stamps from the time an obstacle or boundary event arrives on 
the light sensor place to the time that a command is issued to the motors.  For 
example, if the first obstacle was detected at time 6459 (all time is in milliseconds in 
this model).  From the timestamps on the Motor places, we can see that from the time 
an input arrives to the time the system responded, there was an elapsed time of 31ms.  
This information could then be used, along with the speed of the rover, to determine if 
the reaction time is sufficient using this software architecture and this particular 
platform. 

Other forms of analysis could include observing the memory usage over time or 
investigating the interaction among the concurrent objects as the simulated input rate 
varies.  Analysis of physical architectural variations such as different light sensors or 
motors could also be conducted by applying different PSMs.  Analysis of software 
architecture variations such as the use of different message communication 
mechanisms (e.g. FIFO or priority queuing) between the active objects could also be 
explored.  These analyses are not shown due to space limitations in this paper. 

3.5 Comparing Prototype with Observations 

To validate our prototype, the rover design presented above was implemented in 
leJOS and the code was instrumented to capture timestamps.  Execution of the rover 
when presented with boundaries or obstacles initially identified actual response times 
of 25-27ms from the point that the light sensor was presented with the boundary or 
obstacle to the point that the first motor command was output in response to the 
detection.  This is slightly under the 31ms estimated by our analysis in the previous 
section.  Interestingly, though, as we conducted tests with the rover over time, we 
observed response times increasing as battery power decreased.  The above 
measurements of 25-27ms were observed with fully charged (9.0V) batteries. 
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However, response times of up to 33ms were observed as the battery power was 
depleted to 8.2V.  These results are summarized in Table 2 below.  Replacing the 
depleted batteries with a fully charged set returned the response times to the initially 
observed 25-27ms.  Thus, we believe that future research should include a power 
source with the embedded platform specific model. 

Table 2.  Response Time Results 

Response Time in Milliseconds Team 
Run 1 Run 2 Run 

3 
Run 
4 

1 27 27 29 33 
2 25 26 27 27 
3 26 25 26 28 
4 26 27 29 32 
5 25 25 26 26 

4 Conclusions and Future Research 

In this paper, we have presented an approach to combine information from 
platform-independent and platform-specific models to construct prototypes of 
software architectures for embedded systems.  This approach allows an engineer / 
analyst to examine behavioral and performance properties of a software architecture 
design paired with a candidate implementation architecture.  The underlying CPN 
prototype is particularly useful in modeling concurrent object architectures in event-
driven systems.  Applying the behavioral design patterns in the UML-based design 
along with corresponding CPN templates and components, the results from the 
analyses can be directly mapped back to the original design artifacts.  Furthermore, by 
employing architectural parameters such as processing time, the CPN analysis model 
can be rapidly modified to account for different candidate architectures. 

Future research in this area must continue to examine properties that should be 
captured and the most effective ways in which to capture them.  In comparing our 
observed results to our analyses, the inclusion of a power model would obviously be 
desired in an embedded system.  Additionally, future work should consider the ability 
to model distributed software designs configured to execute on multiple distributed 
embedded nodes and the communication between them.  
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Abstract. Contemporary workflow management systems offer work-
items to users through specific work-lists. Users select the work-items
they will perform without having a specific schedule in mind. However,
in many environments work needs to be scheduled and performed at par-
ticular times. For example, in hospitals many work-items are linked to
appointments, e.g., a doctor cannot perform surgery without reserving
an operating theater and making sure that the patient is present. One of
the problems when applying workflow technology in such domains is the
lack of calendar-based scheduling support. In this paper, we present an
approach that supports the seamless integration of unscheduled (flow)
and scheduled (schedule) tasks. Using CPN Tools we have developed a
specification and simulation model. Based on this a system has been re-
alized that uses YAWL, Microsoft Exchange Server 2007, Outlook, and a
dedicated scheduling service. The approach is illustrated using a real-life
case study at the AMC hospital in the Netherlands.

1 Introduction

Healthcare is a prime example of a domain where the effective execution of
tasks is often tied to the availability of multiple scarce resources, e.g. doctors.
In order to maximize the effectiveness of individual resources and minimize pro-
cess throughput times, typically an appointment-based approach is utilized for
scheduling the tasks performed by these resources. However, the scheduling of
these appointments is often undertaken on a manual basis and its effectiveness
is critically dependent on preceding tasks being performed on-time in order to
prevent the need for rescheduling.

To illustrate the importance of the afore-mentioned issue, consider a small
hospital process for diagnosing a patient, shown in Figure 1. As a first step, the
patient is registered. Next, a physical examination (task “physical examination”)
of the patient takes place which is done by an assistant and a nurse. In parallel,
a nurse prepares the documents for the patient (task “make documents”). When
these tasks have been completed, a doctor evaluates the result of the test (task
“consultation”) and decides about the information and brochures that need to
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Fig. 1. Running example showing schedule (S) and flow (F) tasks. The prefix “d:”
indicates the average time needed for performing the task and prefix “r:” indicates
which roles are necessary to perform the task. From each associated role, exactly one
person needs to be assigned to the task. For both schedule tasks, indicated by the
character “P” in the top-right corner of the task, the patient is also required to be
present.

be provided by the nurse (task “give brochures and information”). Figure 1 also
shows the corresponding organizational model which specifies the roles being
played by people in the organization.

From this example, it can be seen that a distinction can be made between two
kinds of tasks. The tasks annotated with an “F” in the figure, can be performed
at an arbitrary point in time when a resource becomes available and are called
flow tasks. However, the tasks “physical examination” and “consultation”, anno-
tated with an “S” in the figure, can only be performed when the required room
is reserved, the patient is present, and the necessary medical staff are present for
performing the specific task, i.e. these tasks need to be scheduled and performed
at particular times. Therefore, we call these kinds of tasks schedule tasks as they
are performed by one or more resources at a specified time.

For the consultation task in the figure, it is often the case that a doctor finds
out at the actual appointment that some results from required diagnostic tests
are missing. Consequently, this leads to wasted time for the doctor as a new
appointment needs to be scheduled. Therefore, for the effective performance of
schedule tasks it is vital that the whole workflow is taken into account in order
to guarantee that preceding tasks are performed on-time thereby preventing the
need for rescheduling and avoiding unproductive time for resources as a result
of canceled appointments.

Workflow technology presents an interesting vehicle with which to support
healthcare processes. Based on a corresponding process definition, Workflow
Management Systems (WfMSs) support processes by managing the flow of work
such that individual work-items are done at the right time by the proper person
[2]. Contemporary WfMSs offer work-items through so-called work-lists. At an
arbitrary point in time, a user can pick a work-item from this list and perform
the associated task.

If we consider the implementation of this process in the context of a WfMS,
we find that a significant dichotomy exists in that people are used to working
in a scheduled way, but this is not supported by current WfMSs. In contrast
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to administrative processes, healthcare processes invoke the coordination of ex-
pensive resources which have scarce availability. Therefore, it is of the utmost
importance that the scheduling of appointments for these resources is done in an
efficient way, that is suitable both for the medical staff and also for the patients
being treated. To summarize, there is a need to integrate workflow management
systems with scheduling facilities.

In this paper, we present the design and implementation of a WfMS sup-
porting both schedule and flow tasks. In addition to the classical work-list func-
tionality generally associated with workflow systems, the concept of a calendar
is also introduced in order to present appointments for scheduled work-items to
the people involved. Unlike traditional workflow implementations, our focus is
on how WfMSs can be integrated with scheduling facilities rather than simply
extending the functionality of a WfMS or a scheduling system (e.g. a scheduling
algorithm). In other words, we investigate how scheduling facilities can be added
to workflow systems in general.

An interesting problem in this context lies in the actual development ap-
proach taken to extending a WfMS with scheduling facilities. Our strategy for
this is based on the use of CPN Tools, a widely used modeling and execution
tool for Colored Petri Nets, with which we developed a comprehensive concep-
tual model capable of serving both as a specification and simulation model for
the application domain. Formalizing such a system using CP Nets offers several
benefits. First of all, building such a net allows for experimentation. So, the
model or parts of it can be executed, simulated, and analyzed which leads to
important insights about the design and implementation of the system. Second,
the hierarchical structuring mechanism of CP Nets allows for the modeling of
large complex systems at different levels of abstraction. That is, CP Nets can
be structured into a set of components which interact with each other through
a set of well-defined interfaces, in a similar way to the components in a modular
software architecture.

In this way, we were able to use the conceptual model as a specification for
the subsequent realization of the system. In order to realize the functionality
contained in the conceptual model, we incrementally mapped it to an opera-
tional system based on widely available open-source and commercial-off-the-shelf
(COTS) software. Although the conceptual model is detailed, it remains abstract
enough, such that its components can be concretized in many different ways. We
choose an approach based on the reuse of existing software. In total, the con-
ceptual model consists of 30 nets, 250 transitions, 634 places, and in excess of
1000 lines of ML-code illustrating the overall complexity of the system. For the
concrete realization of the system we used the open-source, service-oriented ar-
chitecture of YAWL and Microsoft Exchange Server 2007 as the implementation
platform.

The remainder of the paper is organized as follows. In Section 2 we ex-
plain how a workflow language can be augmented with information relevant for
scheduling. In Section 3 we present the design of a WfMS integrated with schedul-
ing facilities, together with a concrete implementation. In Section 4 a concrete
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application of the realized system is presented. Section 5 discusses related work
and finally Section 6 concludes the paper.

2 Flow and Schedule Tasks

In order to allow for the extension of a WfMS with scheduling functionality some
concepts need to be introduced. It is assumed that the reader is familiar with
basic workflow management concepts, like case, role, and so on [2]. Using the
process shown in Figure 1, we will elaborate on how a workflow language can be
integrated with scheduling functionality.

2.1 Concepts

We can distinguish between two distinct types of tasks. Flow tasks are performed
at an arbitrary point in time when a resource becomes available. As only one
resource is needed, it is sufficient to define only one role for each of them3.
Consequently, these tasks can be presented in an ordinary work-list. For example,
for the flow task “make documents” the work may either be performed by “Sue”
or “Rose”.

Conversely, schedule tasks are performed by one or more resources at a spec-
ified time. As multiple resources can be involved, with different capabilities, it is
necessary to specify which kinds of resources are allowed to participate in com-
pleting the task. To this end, multiple resources may be defined for a schedule
task where for each role specified, only one resource may be involved in the actual
performance of the task. For example, in Figure 1, the schedule task “physical
examination” may be performed by “Jane” and “Rose”, but not by “Sue” and
“Rose”. Note that a resource involved in the performance of a schedule task may
also be a physical resource such as medical equipment or a room. Furthermore,
for the schedule tasks the patient may also be involved which means that the
patient is also a required resource for these tasks. Note that the patient is not
involved in the actual execution of the task but is a passive resource who needs
to be present whilst it is completed. For this reason, the patient is not added to
any of the roles for the task, nor are they defined in terms of a separate role.
Instead, it is necessary to identify for which schedule tasks the patient needs to
be present.

For presenting the appointments made for schedule tasks to users, the concept
of a calendar will be used. More specifically, each resource will have its own
calendar in which appointments can be booked. Note that each patient also has
his / her own calendar. An appointment either refers to a schedule task which
needs to be performed for a specific case or to an activity which is not workflow
related. So, an appointment appears in the calendars of all resources that are
involved in the actual performance of the task. An appointment for a schedule

3 There also exist approaches for which more roles may be defined, but this is not the
focus of our work.
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task, for which a work-item does not yet exist, can be booked into the calendar
of a resource. However, when the work-item becomes available it has already
been determined when it will be performed and by whom. Note that sometimes
work-items need to be rescheduled because of anticipated delays in preceding
tasks.

In order to be able to determine at runtime the earliest time that a schedule
task can be started, information about the duration of every task needs to be
known. For example, in Figure 1, for each task the average duration is indicated
by prefix “d:”. For example, one block represents one minute, which means that
the task “physical examination” takes 60 minutes on average.

2.2 Formalization

Based on the informal discussion in the previous section, we now formalize the
augmented workflow language. The definition of our language is based on WF-
nets [2]. Note that our results are in no way limited to WF-nets and can be
applied to more complex notations (BPM, EPCs, BPEL, etc). Note that WF-
nets are the most widely used formal representation of workflows. A WF-net is
a tuple N = (P, T, F ) defined in the following way:

– P is a non-empty finite set of places;
– T is a non-empty finite set of tasks (P ∩ T = ∅);
– F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation);
– There is one initial place i ∈ P and one final place o ∈ P such that every

place or transition is on a directed path from i to o.

A WF-net can be extended in the following way, called a scheduling WF-net
(sWF-net). A sWF -net is a tupleN = (P, Tf , Ts, F, CR,Res,Role,R,Rtf,Rts,D),
where:

– Tf is a finite set of flow tasks;
– Ts is a finite set of schedule tasks;
– Tf ∪ Ts = T and Tf ∩ Ts = ∅, i.e., Ts and Tf partition T . So, a task is either

a flow task or a schedule task, but not both;
– (P, T, F ) is a WF-net;
– CR ⊆ Ts is the set of schedule tasks for which the human resource for whom

the case is being performed is also required to be present.
– Res is a non-empty finite set of resources;
– Role is a non-empty finite set of roles;
– R:Res→ P(Role) is a function which maps resources on to sets of roles;
– Rtf :Tf 9 Role is a partial function which maps flow tasks on to roles;
– Rts:Ts → P(Role)\{∅} is a function which maps schedule tasks on to at

least one role;
– D:T → N0 is a function which maps tasks onto the number of blocks that

are needed for the execution of the task.

Note that Figure 1 fully defines a particular sWF-net.
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3 Design

In this section, we present the design and implementation of a WfMS integrated
with scheduling facilities. First of all, the approach followed for doing this is
presented. Second, in Section 3.2, we introduce the architecture of the system.
Third, for each component identified in Section 3.2, a detailed (functional) de-
scription is provided in sections 3.3 to 3.5.

3.1 Approach

Contemporary WfMSs provide a wide range of functions. In order to determine
before the implementation phase, how such a system can be integrated with
scheduling facilities one needs to identify how the new scheduling functionality
being added should be incorporated with existing functionality. To this end,
Colored Petri Nets (CP Nets) [12] have been chosen as the mechanism to identify
and formalize the behavior of the system. CP Nets provide a well-established and
well-proven language suitable for describing the behavior of systems exhibiting
characteristics such as concurrency, resource sharing, and synchronization.

Formalizing a system using CP Nets offers several benefits. First of all, build-
ing such a net allows for experimentation. So, the model or parts of it can be
executed, simulated and analyzed which leads to insights about the design and
implementation of the system. Second, a complete model of the system allows for
testing parts of the system that are implemented. Given that a CP Net consists
of several components, we can “replace” one or more components in the CP Net
by the concrete implementation of these components by making connections be-
tween the CP Net model and components in the actual system. As the CP Net is
an executable model this allows for the testing of numerous scenarios facilitating
the discovery of potential flaws in both the architecture and the implementation.

Another important benefit of having a CP Net consisting of several com-
ponents, is that it provides precise guidance in the configuration of software
products, thereby allowing for the use of existing software. As will become clear
below, whilst the specification model is detailed, it remains abstract enough,
such that it allows components to be concretized in various ways.

3.2 Architecture

In this section, we give a global overview of the architecture of a WfMS inte-
grated with scheduling facilities. The architecture of both the conceptual model
of the system and its concrete implementation are shown in Figure 2. Both ar-
chitectures illustrate the main components and the system is defined in a service
oriented way. The components are loosely coupled and the interfaces (shown as
clouds) are kept as compact and simple as possible.

In Figure 2b, we see for the actual system implementation how the compo-
nents have been realized. As the interfaces share the same numbering, it is easy
to compare both sets of interfaces.
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a) Architecture of the conceptual model

b) Architecture of the concrete implementation of the system

Fig. 2. Architectures of both the conceptual model and the concrete implementation
of the system. There are four main components: (I) workflow engine, (II) scheduling
service, (III) workflow client application, and (IV) calendars. The distinct interfaces
are indicated by numbers.

The architecture consists of four components. First of all, the workflow engine
routes cases through the organization. Based on the business process definition
for a case, tasks are carried out in the right order and by the right people. Once
a task in a case becomes available for execution, the corresponding work-item
is communicated to users via the workflow client application allowing it to be
selected and performed by one of them. The scheduling service and the workflow
client application communicate with the Calendar component in order to obtain
a view on users’ calendars and to manipulate their contents. Note that users can
add /remove appointments that are possibly unrelated to the workflow.

As our focus is on how a WfMS can be integrated with scheduling facilities,
we want to completely separate the scheduling facilities provided by the system
from the engine. As a consequence, we have a separate scheduling service com-
ponent which is responsible for providing scheduling facilities to the system (e.g.
(re)scheduling of tasks). In order for the scheduling service to work function cor-
rectly, all scheduling constraints imposed by the engine (which might be relevant
to a scheduling decision) need to be sent to the scheduling service. To be more
precise, the scheduling service receives a scheduling problem, which contains all
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relevant constraints for one case only. Based on these constraints, the scheduling
service makes decisions with regard to the scheduling of schedule tasks for the
case.

Informally, the scheduling problem is formulated as a graph which has nodes
and arcs between nodes. Nodes, arcs and the graph itself may have properties
represented as name-value attributes. The rationale for representing the schedul-
ing problem using this data structure is that any information in the graph can
be included which is deemed relevant. For a case, which is in a given state, we
map the process definition, defined in terms of the formal definition given in
Section 2.2, to the graph (e.g. tasks, duration, split/join semantics of a node,
roles). Where a work-item exists for a given node, a property is added to that
node indicating the state the work-item is currently in. For a user to reschedule
an appointment, additional information is added, such as the name of the re-
quester. Moreover, if the human resource for which the case is being performed
is also required in order to perform any task, then the name of the calendar for
this resource is included together with the names of the relevant schedule tasks.

An example of a scheduling graph is given in Figure 3. In this figure, we see
how the process definition shown in Figure 1 is mapped to the graph. In order
to simplify the graph, the figure only shows the properties of the “consultation”
node. For this node it indicates that the average duration is 45 minutes, only a
doctor is allowed to perform the task, the task is a schedule task, the node has
XOR-split semantics, AND-join semantics, and a work-item exists for it which
is in the enabled state.

In sections 3.3 to 3.6 the individual components are discussed in more detail.
For each component a description of the main functionality is provided together
with a discussion on its interaction with other components. Note that, due to
space limitations, only the most important interface methods will be discussed.

3.3 Workflow Engine

A workflow engine is responsible for the routing of cases. In addition to the
standard facilities an engine should provide [2], the following facilities are added
in order to integrate scheduling capabilities.

The engine is responsible for sending a scheduling problem to the scheduling
service in order to determine whether appointments need to be (re)scheduled,
or if limited time remains in which to finish work-items for preceding tasks

(duration,45)
(roles,doctor)

(typeTask,schedule)
(splitType,XOR)
(joinType,AND)
(state,enabled)

start register
patient

p2

p1
physical

examination

make
documents

p3

p4
consultation

give
brochures

and
information

p5

end

Fig. 3. Scheduling graph for the running example of Figure 1 in which the task “con-
sultation” is enabled.

.
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Fig. 4. CP Net component for the workflow engine component.

of an appointment. As a consequence of our choice to completely separate the
scheduling facilities from the engine, a scheduling problem for a case is sent
when the following situations occur: (1) a case is started; (2) a work-item is
finished; (3) a user wants to reschedule an appointment; and (4) at regular time
intervals. The fourth option is necessary as it may be the case that no work-
items are completed in a given period, but that some appointments need to be
rescheduled due to the fact that time has passed. Obviously, the graph is sent
the least number of times possible.

As a consequence of the execution of the scheduling service, the engine is
informed about appointments for which limited time is left in which to finish
work-items of preceding tasks. For these work-items, a warning is sent to the
workflow client to indicate that limited time remains in which to finish the
work-item.
Model.
A fragment of the CP Net for the workflow engine component is depicted in
Figure 4. The places at the far right and far left hand side are part of the
interface of the engine with other components. As an indication of the complexity
of the engine it is worth mentioning that the flattened substitution transition
comprises 54 transitions and 127 places. Moreover, the whole CP Net consists of
217 transitions, 518 places and around 950 lines of ML code. The construction
of the whole model required more than three months of work. This underscores
the fact that it is a complex system.
Implementation.
The Engine component in the CP Net model can be replaced by a concrete
implementation which allows it to be tested. The workflow component is realized
(see Figure 2b) using the open-source WfMS YAWL [1] and a service which
acts as an adaptor in between YAWL and the workflow client application. The
adaptor service communicates with YAWL via “Interface B” [1]. The adaptor
also communicates with the scheduling service using SOAP messages. However,
the adaptor and the YAWL system are tightly coupled as large volumes of work-
item and process related information are exchanged.
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3.4 Workflow client application

Users working with the WfMS do so via the workflow client application which
delivers the basic facilities that should be provided by this facility [2]. The com-
ponent consists of a GUI and a work-list management component. The work-list
management component serves as a layer between the engine and the GUI and
takes care of the communication between them. The GUI component consists
of a “worktray” and a “calendar” component where the “worktray” provides
the same facilities as a classical worktray. The appointments that are created
for schedule tasks are advertised via the calendar. Once a work-item becomes
available for such an appointment, it can be performed via the calendar. In our
approach, only one user can interact with the WfMS with respect to the com-
pletion of the work-item. This prevents concurrency issues where multiple users
want to complete the same work-item.

With regard to the appointments that are made for schedule tasks, users can
express their dissatisfaction with the nominated scheduling by requesting: (1)
the rescheduling of the appointment, (2) the rescheduling of the appointment to
a specified date and time, or (3) the reassignment of the appointment to another
employee. Such a user request can be done as a single action and is the only
supported means for the rescheduling of appointments by users. In addition, the
workflow client also indicates whether limited time is left in which to undertake
work-items in order to meet the schedule. Moreover, users are also allowed to
add appointments to the calendar which are not workflow related (e.g. having
dinner with friends).

As can be seen in Figure 2a, two interfaces are defined for the communica-
tion between the workflow client application and the engine. The interface with
number “1” defines the standard communication that takes place between an
engine and a workflow client application. The interface with number “2” defines
methods added as a consequence of the scheduling facilities developed for the
system. For this interface, nothing is stored in the engine when these methods
are called.
Model.
The corresponding CP Net model for the work-list management component is
fairly complex (and is not shown here): the component’s model contains 104
transitions and 225 places.
Implementation.
Similarly, the workflow client application component of the CP Net can be re-
placed by a concrete implementation. Once the Exchange Server was in place we
could easily use the Microsoft Outlook 2003 client to obtain a view of a user’s
calendar. Furthermore, the Outlook client can be configured in such a way that
it can act as a full workflow client application which can communicate with the
WfMS via an adaptor service via the exchange of SOAP messages.

3.5 Scheduling Service

The scheduling service is responsible for providing scheduling facilities to the
WfMS. Scheduling is done sequentially on a case-by-case base. Once a scheduling
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problem is received, the scheduling service needs to determine whether some of
the schedule tasks need to be (re)scheduled. Moreover, several distinct issues
need to be addressed of which we mention the most important ones.

First of all, the final scheduling of tasks needs to occur in the same order
as the sequence of schedule tasks in the accompanying process definition for the
case. Moreover, there should be sufficient time between two scheduled tasks.
Also, when rescheduling appointments, any preceding constraints need to be
satisfied. For example, in Figure 1, it needs to be guaranteed that first the
“physical examination” is scheduled, followed by the “consultation” which needs
to occur at a later time.

Second, for the actual scheduling of an appointment multiple roles can be
specified for a schedule task. For each role specified a resource needs to be se-
lected, i.e., the number of roles determines the number of resources involved
in the actual performance of the task. If the patient for which the case is per-
formed also needs to be present at an appointment, then this is also taken into
account. The scheduling service only books an appointment in the calendars of
these resources who need to be present during the performance of the task (i.e.
the performers of the task and the patient (if needed)).

Third, the scheduling service is also responsible for determining whether lim-
ited time is left for performing preceding work-items for scheduled tasks. In such
a situation, the engine needs to be informed. Moreover, the scheduling service
is also informed about the cancelation of a case, so that all appointments re-
lated to the case can be removed. When too little time is left for performing
preceding work-items for a scheduled schedule task, the corresponding appoint-
ment is automatically rescheduled which in this context can be seen to be the
most straightforward recovery action. However, different strategies can also be
conceived for dealing with such situations. Potential solutions can be found in
[15].

In this paper, we focus on integration aspects instead on devising new schedul-
ing algorithms. Nevertheless, to demonstrate the approach that is used for the
scheduling of appointments, we will briefly examine the implemented ‘naive’
scheduling algorithm. Of course it can be envisaged that more advanced schedul-
ing strategies are possible.

The (re)scheduling of appointments is done automatically, which means that
there is no user involvement. Starting with the tasks in the graph for which a
work-item exists, it is determined which schedule tasks need to be (re)scheduled.
Once we know that tasks are able to be scheduled, they are scheduled. Moreover,
these tasks are scheduled on a sequential basis in order to avoid conflicts involving
shared resources. However, we do not schedule any tasks which occur after a
choice in the process as this can lead to unnecessary usage of available slots in
the calendar. Moreover, we do not take loops into account.

For the actual scheduling of an appointment, a search is started for the first
opportunity where one of the resources of a role can be booked for the respective
work-item. If found, an appointment is booked in the calendar of the resource.
If the patient for which the case is performed also needs to be present at the
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appointment, then this is also taken into account. For example, for Figure 1, if a
case is started, an appointment is created for task “physical examination” in the
calendars of “Jane”, “Sue”, and the patient, or “Jane”, “Rose” and the patient.
Model.
The CP Net model which models the scheduling service consists of 48 transitions
and 144 places. Moreover, modeling the scheduling behavior necessitated writing
many lines of ML code, involving around more than 60 hours of work.
Implementation.
The concrete implementation of this component of the CP Net is shown in Figure
2b. Here we see that the component is implemented in Java as a service which
communicates with the WfMS via SOAP messages. However, in order to get a
view of and to manipulate the calendar, the service also communicates via a
Java interface with the Exchange Server which in turn exchanges information
via SOAP messages.

3.6 Calendar

The Calendar component is responsible for providing a view on the calendars
of users and for manipulating their contents. It is possible to create / delete
appointments or to get information about the appointments that have been
made. Moreover, the interface contains some convenience methods for deleting
cases and finding the first available slot for a schedule task. Otherwise, large
volumes of low-level information need to be exchanged whereas now only one
call is necessary.
Model.
The CP Net model which models the scheduling service consists of 11 transitions
and 22 places. Note that this model is relatively simple.
Implementation.
For the Calendar component we selected Microsoft Exchange Server 2007 as the
system for storing the calendars of users. The big advantages of this system are
its widespread use and the fact that it offers several interfaces for viewing and
manipulating calendars.

4 Application

In this section, we demonstrate our approach and software in the context of a
real-life healthcare scenario. To evaluate our approach, we have taken the diag-
nostic process of patients visiting the gynecological oncology outpatient clinic at
the AMC hospital, a large academic hospital in the Netherlands. This healthcare
process deals with the diagnostic process that is followed by a patient who is
referred to the AMC hospital for treatment, up to the point where the patient
is diagnosed, and consists of around 325 activities. However, for our scenario we
will only focus on the initial stages of the process shown in Figure 5.

At the beginning of the process, a doctor in a referring hospital calls a nurse
or doctor at the AMC hospital resulting in an appointment being made for
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the first visit of the patient. Several administrative tasks need to be requested
before the first visit of the patient (e.g. task “first consultation doctor”). At the
first consultation, the doctor decides which diagnostic tests are necessary (MRI,
CT or pre-assessment) before the next visit of the patient (task “consultation
doctor”). Note that for the MRI, CT and pre-assessment tasks we do not show
the preceding tasks at the respective departments that need to performed in
order to simplify the model presented.

For this scenario, we assume that the task “additional information and
brochures” has been performed. Moreover, at the first consultation with the
doctor it has been decided that an MRI and a pre-assessment are needed for
the patient. So, by looking at the process model it becomes clear that the tasks
“MRI”, “pre-assessment” and “consultation doctor” need to be scheduled. The
result of the scheduling performed by the system for these tasks is shown in
Figure 6a. Note that our case has “Oncology” as its process identifier and has
“15” as its case identifier. Moreover, for the “consultation doctor”, “pre assess-
ment”, and “MRI” examination, a doctor, an anaesthetist, and MRI machine
are needed respectively. Moreover, the patient is also required to be present.

In Figure 6a we can see that the “MRI” has been scheduled for 10:00 to 10:45
(see first column), the consultation with the doctor has been scheduled for 13:00
to 13:30 in the calendar of doctor “Nick” (see second column), and that the pre-
assessment has been scheduled for 11:00 to 11:30 in the calendar of anaesthetist
“Jules” (see third column). At the far right, we can see the calendar of patient
Anne who also needs to be present for the work-items mentioned, which explains
why the previously mentioned appointments are also present in her calendar. For
Anne we see that she is not available till 10 ’o clock which has influenced the
actual scheduling. This is due to the fact that she can not manage to be at the
hospital before 10 ’o clock by public transport. However, it is important that the
“consultation doctor” task is scheduled after the “MRI” and “pre-assessment”
task, which is also consistent with the corresponding process definition.

Now, let us assume that unexpectedly some maintenance for the MRI ma-
chine is necessary for that day, which will take until 13:30 hours to complete.

Fig. 5. Screenshot of the YAWL editor showing the initial stages of the gynaecological
oncology healthcare process. The flow tasks are indicated by a person icon and the
schedule tasks are indicated by a calendar icon.

.
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a) Before rescheduling

b) After rescheduling

Fig. 6. Screenshot of the calendars for the MRI, consultation with the doctor, and the
pre-assessment before and after rescheduling.

.

Consequently, the MRI appointment needs to be rescheduled to 13:30 hours. The
effect of this specific rescheduling request can be seen in Figure 6b. In this figure,
the message box indicates that the MRI has been successfully rescheduled to the
requested time. Moreover, in the calendar of Anne we can see that the MRI now
takes place from 13:30 to 14:15. However, it was also necessary to reschedule the
appointment with doctor “Nick” which will now take place from 14:30 to 15:00.
As can be seen in Figure 5, this rescheduling step is necessary as the task “con-
sultation doctor” occurs after the “MRI” task and the task “register patient”
falls in between these two tasks and takes 15 minutes.

5 Related Work

Analysis of the healthcare research shows that significant work has been done
on the problem of appointment scheduling. Examples of such research efforts are
appointment scheduling for outpatient services [7] and operating room scheduling
[6]. However, most of these studies focus on a single unit instead of situations
in which a patient may pass through multiple facilities. In our research, we take
the scheduling of work-items for the whole workflow into account together with
the current state of a case.
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Our work is also related to time management in workflows. For example, in
[13, 11] the authors focus on the satisfiability of time constraints and the enforce-
ment of these at run-time. In addition, there is also research on the problem of
the scheduling of tasks by WfMSs. For example, [4, 9, 14] present algorithms for
the scheduling of tasks. In contrast, we focus on the augmentation of a WfMS
with scheduling facilities instead of just presenting new scheduling algorithms.

The work presented in [8] is somewhat similar to ours as it presents different
architectures for a WfMS in which temporal aspects are explicitly considered.
However, the temporal reasoning facilities are added as core functionality to
the engine. In this paper, we propose a different approach where this kind of
functionality is realized through a separate service in the system. In this way,
loose coupling is guaranteed which means that our approach can be generalized
to any WfMS (or even to multiple engines at the same time).

Multiple people can be involved in the actual performance of a schedule
task. However, in our approach, only one user can interact with the WfMS with
respect to the completion of a work-item. In [3, 5, 10] reference models to extend
the organizational meta model with a team concept allowing for the distribution
of work to teams are proposed. By doing so, advanced mechanisms are offered
for the performance of work by such a team. Additionally, in [3, 5] a language is
discussed for defining work allocation requirements to people.

6 Conclusions and Future Work

In this paper, we have presented the design and implementation of a WfMS aug-
mented with calendar-based scheduling facilities. Instead of just offering work-
items via a work-list, as is the case in most existing WfMSs, they can also be
offered as a concrete appointment in a calendar taking into account which pre-
ceding tasks are necessary and whether they have been performed.

Our approach demonstrates that the use of CP Nets, for constructing a con-
ceptual model of the system to be realized, provides valuable insights in terms of
understanding the problem domain and identifying the behavior of the system.
Moreover, the same conceptual model provides a comprehensive specification on
which to base the ultimate realization of the required functionality. We have
incrementally mapped it to an operational system using widely available open-
source and commercial-off-the-shelf (COTS) software. This demonstrates that
although the specification model is detailed, it remains at a sufficient level of ab-
straction to allow its constituent components to be concretized in various ways.
Moreover, it also shows that our ideas can, for example, be applied to a variety
of WfMSs and scheduling systems.

The resultant system has been tested using several realistic scenarios. We plan
to test the components of the system in a more systematic way by incrementally
“replacing” components of the CP Net by their concrete implementation. In this
way, we can test numerous scenarios facilitating the discovery of flaws both in
individual components as well as in the overall architecture of the actual system.
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In the design and the implementation of the system, a naive algorithm has
been used for the scheduling of appointments. This naive approach can lead
to inefficient use of resources. In the future, we plan to use the CP Net for
evaluating various scheduling approaches and to investigate the effects of our
calendar-based approach on case performance.

Finally, to test the feasibility of our approach, we plan to evaluate the oper-
ation of our resultant system in a real-life scenario at the AMC hospital.
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Abstract. Bounded Model Checking (BMC) is an efficient verification
method for reactive systems. BMC has been applied so far to verifica-
tion of properties expressed in (timed) modal logics, but never to their
parametric extensions. In this paper we show, for the first time, that
BMC can be extended to PRTECTL – the parametric extension of the
existential version of CTL. To this aim we define a bounded semantics
and a translation to SAT for PRTECTL. The implementation of the
algorithm for Elementary Net Systems is presented together with some
experimental results.

1 Introduction

Bounded Model Checking (BMC) [BCCZ99] is a method of performing veri-
fication by stepwise unwinding a verified model and translating the resulting
fragment, as well as the property in question, to a propositional formula. The
resulting formula is then checked by means of efficient external tools, i.e., SAT-
solvers. This method is usually incomplete from the practical point of view, but
can find counterexamples in systems that appear too large for other approaches.

BMC was invented in late 1990s, and since then has become an established
method among verification approaches. BMC is applied to verification of prop-
erties specified in temporal, dynamic, epistemic, and timed logics [BCC+99],
[BC03], [Hel01], [PWZ02], [Woź03]. In fact, for many system specifications and
property languages devised for explicit-state model checking, the BMC coun-
terparts have been developed. In this paper we show how parametric model
checking can be performed by means of BMC.

The rest of the paper is organized as follows. In Section 2 we shortly explore
the motivations for the choice of parameterized temporal logics vRTCTL and
PRTCTL to which the BMC method is applied. Referenced and cited works are
mentioned along with an outline of the contents. Section 3 recalls from [ET99]
the syntax and semantics of the logics used in this work. In Section 3 we de-
fine existential fragments of the considered logics – vRTECTL and PRTECTL,
⋆ Partly supported by the Polish Ministry of Science and Higher Education under the

grant No. N N206 258035.
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respectively. Section 4 introduces k-models together with bounded semantics
for vRTECTL and PRTECTL. In Section 5 a translation of a model and a
property under investigation is presented together with an algorithm for BMC.
Section 6 contains an application of the above method to Elementary Net Sys-
tems. We choose two standard problems: the Mutual Exclusion and the Dining
Philosophers and test some associated parameterized properties in Section 7.
The concluding remarks and an outline of some future work are in Section 8.

2 Related Work

The logics investigated in this paper were introduced in [ET99] while the appli-
cation of BMC to the existential fragment of the CTL originates from [PWZ02]
with a further optimization in [Zbr08]. The work presented in this paper falls into
a broad area of the Parametric Model Checking – an ambiguous term which may
mean that we deal with the parameters in models (as in [AHV93] and [HRSV01]),
in logics (as in [ET99] and [BDR08]) or in both (as in [RB03]). There are two rea-
sons limiting the practical applications of the Parametric Model Checking. The
first – computational complexity of the problem – is the result of the presence
of satisfiability in the Presburger Arithmetic (PA) as a subproblem. In case of
the translation of the existential fragment of TCTL to PA formulae proposed in
[BDR08], the joint complexity of the solution is 3EXPTIME. The second – unde-
cidability of the problem for Parametric Timed Automata in general [AHV93] –
results in a fact that some of the proposed algorithms need not to stop [HRSV01].
To the best knowledge of the authors, this paper presents the first extension of
BMC to parameterized temporal logics.

3 Parameterized Temporal Logics

In this section we recall the temporal logics vRTCTL and PRTCTL, first defined
in [ET99], both being extensions of Computation Tree Logic (CTL) introduced
in [EC82]. The logic vRTCTL allows superscripts of form ≤η, where η is a linear
expression over path quantifiers of CTL. An example of a formula of this logic
is EF≤Θ1+Θ2(w1 ∧ EG¬c1). The formulae of PRTCTL are built from formu-
lae of vRTCTL by adding additional existential or universal quantifiers which
may be restricted or unrestricted. As an example of a PRTCTL formula con-
sider ∃Θ1≤1∀Θ2≤2EF

≤Θ1+Θ2(w1∧EG¬c1). Following E. A. Emerson’s approach
[ET99], the formulae are interpreted in standard Kripke structures, which seem
to be appropriate for application in many computer science fields, as motivated
in [ET99]. The logics mentioned above essentially extend CTL, as they allow
to formulate properties involving lengths of paths in a model. We interpret su-
perscripts as time bounds, assuming that a transition in a model takes the unit
of time. Throughout this paper by N we denote the set of all natural numbers
(including 0). By a sentence of a logic we mean a formula without free variables,
and by α(Θ1, . . . , Θn) we point out that the formula α contains free parameters
Θ1, . . . , Θn.

98 PNSE’09 – International Workshop on Petri Nets and Software Engineering



3.1 Syntax

Let Θ1, . . . , Θn be variables, called here parameters. An expression of the form
η =

∑n
i=1 ci · Θi + c0, where c0, . . . , cn ∈ N, is called a linear expression. A

function υ : {Θ1, Θ2, . . . , Θn} −→ N is called a parameter valuation. Let Υ be a
set of all the parameter valuations.

Definition 1. Let PV be a set of propositional variables containing the symbol
true. Define inductively the formulae of vRTCTL :

1. every member of PV is a formula,
2. if α and β are formulae, then so are ¬α, α ∧ β and α ∨ β,
3. if α and β are formulae, then so are EXα, EGα, EαUβ,
4. if η is a linear expression, α and β are formulae of vRTCTL, then so are

EG≤ηα, EαU≤ηβ.

The conditions 1, 2, and 3 alone define CTL. Notice that η is allowed to be
a constant. The logic defined by a modification of the above definition, where
η = a for a ∈ N, is called RTCTL in [ET99]. For example EF≤3(w1 ∧ EG¬c1)
is an RTCTL formula.

Definition 2. The formulae of PRTCTL are defined as follows:

1. if α ∈ vRTCTL, then α ∈ PRTCTL,
2. if α(Θ) ∈ vRTCTL or α(Θ) ∈ PRTCTL, where Θ is a free parameter, then

∀Θα(Θ), ∃Θα(Θ), ∀Θ≤aα(Θ), ∃Θ≤aα(Θ) ∈ PRTCTL for a ∈ N.

The following inclusions hold: CTL ⊆ RTCTL ⊆ vRTCTL ⊆ PRTCTL. In this
paper we consider only sentences of PRTCTL.
Additionally we use the derived modalities: EFα

def
= E(trueUα), AFα

def
=

¬EG¬α, AXα def
= ¬EX¬α, AGα def

= ¬EF¬α (CTL modalities) and EF≤ηα
def
=

E(trueU≤ηα), AF≤ηα
def
= ¬EG≤η¬α, AG≤ηα

def
= ¬EF≤η¬α. Each modality of

CTL has an intuitive meaning. The path quantifier A stands for ”on every path”
and E means ”there exists a path”. The modality X means ”in the next state”,
G stands for ”in the all states”, F means ”in some state”, and U has a meaning
of ”until”.
The introduced superscripts will become clear when the semantics of vRTCTL is
presented. As to give an example of the intuitive meaning of an RTCTL formula,
EG≤3p may be perceived as the statement ”there exists a path such that in the
first four states of this path p holds”. The logic vRTCTL adds a possibility of
expressing similar properties under parameter valuations, and PRTCTL allows
for stating that some property holds in a model under some class of parameter
valuations.

Definition 3. The logics vRTECTL, RTECTL, and PRTECTL are defined as
the restrictions of, respectively, vRTCTL, RTCTL, and the set of sentences of
PRTCTL such that the negation can be applied to the propositions only.
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3.2 Semantics

We evaluate the truth of the sentences and the formulae accompanied with
parameter valuations in Kripke structures.

Definition 4. Let PV be a set of propositional variables containing the symbol
true. A Kripke structure (a model) is defined as a tuple (S,→,L) where:

1. S is a finite set of states,
2. → ⊆ S × S is a transition relation such that for every s ∈ S there exists

s′ ∈ S with s→ s′ (i.e., the relation is total),
3. L : S −→ 2PV is a labelling function satisfying true ∈ L(s) for s ∈ S.

The labelling function assigns to an each state s a set of propositions which
are assumed to be true at s. An infinite sequence π = (s0, s1, . . .) of states of a
model such that si → si+1 for i ∈ N is called a path. By π(i) we denote the i–th
position on a path π. The number of the states of M is called the size of M and
denoted by |M |. For a parameter valuation υ and a linear expression η, by υ(η)
we mean the evaluation of η under υ.

Definition 5. (Semantics of vRTCTL)
Let M be a model, s – a state, α, β – formulae of vRTCTL. M, s |=υ α denotes
that α is true at the state s in the model M under the parameter valuation υ. We
omit M where it is implicitly understood. The relation |=υ is defined inductively
as follows:

1. s |=υ p ⇐⇒ p ∈ L(s)
2. s |=υ ¬p ⇐⇒ p 6∈ L(s),
3. s |=υ α ∧ β ⇐⇒ s |=υ α ∧ s |=υ β,
4. s |=υ α ∨ β ⇐⇒ s |=υ α ∨ s |=υ β,
5. s |=υ EXα ⇐⇒ ∃π

(
π(0) = s ∧ π(1) |=υ α

)
,

6. s |=υ EGα ⇐⇒ ∃π

(
π(0) = s ∧ ∀i≥0π(i) |=υ α

)
,

7. s |=υ EαUβ ⇐⇒ ∃π

(
π(0) = s ∧ ∃i≥0

[
π(i) |=υ β ∧ ∀j<iπ(j) |=υ α

])
,

8. s |=υ EG
≤ηα ⇐⇒ ∃π

(
π(0) = s ∧ ∀0≤i≤υ(η)π(i) |=υ α

)
,

9. s |=υ EαU
≤ηβ ⇐⇒ ∃π

(
π(0) = s∧ ∃0≤i≤υ(η)

[
π(i) |=υ β ∧ ∀j<iπ(j) |=υ α

])
.

If α is a formula of RTCTL, then the validity of s |=υ α does not depend on the
parameter valuation υ, as there are no parameters in the formula. In this case
we write M, s |= α omitting the parameter valuation subscript.
Observe that for every formula α of RTCTL there exists a formula β of vRTCTL
and a parameter valuation υ such, that α = υ(β), where υ(β) denotes the formula
obtained by substituting all the linear expressions with their evaluations under υ.
For example the formula EF≤5(w1∧EG¬c1) can be obtained from EF≤Θ1(w1∧
EG¬c1) by valuation υ such that υ(Θ1) = 5 or from EF≤Θ1+Θ2(w1 ∧ EG¬c1)
by valuation υ′ such that υ′(Θ1) = 3 and υ′(Θ2) = 2.

The semantics of PRTCTL is defined in such a way that by eliminating the
quantifiers we eventually arrive at a sequence of conjunctions and/or disjunctions
of RTCTL formulae. By a fresh (integer) variable we mean a new variable which
is not a parameter and is not present in the considered formula.
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Definition 6. (Semantics of PRTCTL)
Let M be a model, s – a state, and α – a formula of PRTCTL. M, s |= α denotes
that α holds at the state s in the model M. The relation |= is defined inductively
as follows:

1. s |= ∀Θα(Θ) iff
∧

iΘ≥0 s |= α(iΘ),
2. s |= ∀Θ≤aα(Θ) iff

∧
0≤iΘ≤a s |= α(iΘ),

3. s |= ∃Θα(Θ) iff
∨

iΘ≥0 s |= α(iΘ),
4. s |= ∃Θ≤aα(Θ) iff

∨
0≤iΘ≤a s |= α(iΘ),

where iΘ is a fresh integer variable.

For example:

M, s |= ∀Θ1≤1∃Θ2≤2EF
≤Θ1+Θ2(w1 ∧ EG¬c1)

⇐⇒
∧

0≤iΘ1≤1

∨
0≤iΘ2≤2

M, s |= EF≤iΘ1+iΘ2 (w1 ∧ EG¬c1).

It is straightforward to check that for a model M and a state s, M, s |=υ EGα
⇐⇒ M, s |=υ EG≤|M|α and M, s |=υ EαUβ ⇐⇒ M, s |=υ EαU≤|M|β. The
proof of this fact is based on the observation that in every path a prefix of length
greater or equal than |M | contains a loop.
Recall Theorem 1 from [ET99]:

Theorem 1. Let M be a model and Q1Θ1
. . . QnΘn

α(Θ1, . . . , Θn) where Qi ∈
{∀, ∃} and α(Θ1, . . . , Θn) ∈ vRTCTL, be a PRTCTL sentence. Then M, s |=
Q1Θ1

. . .QnΘn
α(Θ1, . . . , Θn) iff M, s |= Q1Θ1≤|M| . . . QnΘn≤|M|α(Θ1, . . . , Θn).

In this paper we enhance the above theorem by the following lemma.

Lemma 1. Let M be a model and Q1Θ1≤c1
. . . QnΘn≤cn

α(Θ1, . . . , Θn) where
Qi ∈ {∀, ∃} and α(Θ1, . . . , Θn) ∈ vRTCTL be a sentence of PRTCTL. Then
M, s |= Q1Θ1≤c1

. . . QnΘn≤cn
α(Θ1, . . . , Θn) iff

M, s |= Q1Θ1≤min(c1,|M|) . . .QnΘn≤min(cn,|M|)α(Θ1, . . . , Θn).

Proof. See the Appendix.

Basically, Theorem 1 allows for replacing the unrestricted quantifiers with their
versions bounded with the size of the model and Lemma 1 states that it suffices
to consider the bounds not greater that |M |. Therefore, in the rest of this paper
we restrict our research to vRTCTL and PRTCTL formulae with superscripted
modalities and restricted quantifiers.

3.3 Example

In Figure 1 the states of the model M are drawn as circles, whereas the values
of the labelling function (a set of propositions assumed to be true) are rendered
inside. The transitions are drawn as arrows connecting states. The presented
Kripke structure is induced by the Petri net modelling the classical problem of
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Mutual Exclusion for 3 processes (see Subsection 7.1). It is straightforward to
check that:

M, start |= ∀Θ1≤1∃Θ2≤2EF
≤Θ1+Θ2(w1 ∧ EG¬c1),

M, start |= ∃Θ1≤3∀Θ2E
(
w1U

≤Θ1EG≤Θ2r2
)
.

Notice that in the first formula there is no superscript over EG, nevertheless, as
we have shown it can be rewritten in the equivalent form:

M, start |= ∀Θ1≤1∃Θ2≤2EF
≤Θ1+Θ2(w1 ∧ EG≤8¬c1).

Similarly, the second formula can be rewritten in an equivalent form, with the
parameter Θ2 bounded by |M | :

M, start |= ∃Θ1≤3∀Θ2≤8E
(
w1U

≤Θ1EG≤Θ2r2
)
.

Fig. 1.

(w1, w2,p)start

(c1,w2) (w1, c2)

(r1,w2,p) (w1, r2,p)

(c1, r2) (r1, c2)

(r1, r2,p)

in1

in2

out1 out2

d1

in2

d2

in1

out1

out2

d2

d1

d2

d1

4 Bounded Semantics

The idea of bounded model checking is based on a concept of unfolding the
computation tree of a given model only to a limited depth. In order to make
things more clear we need the following definitions.
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Definition 7. Let M be a model and k ∈ N. Let Pathk be the set of all sequences
(s0, . . . , sk) of states of M, where si → si+1 for each 0 ≤ i < k. The pair
(Pathk,L) is called the k-model of M and is denoted by Mk.

An element of Pathk is called a k-path and denoted by πk.

Definition 8. Let Mk be a k-model of M and πk ∈ Pathk. Define a function
loop : Pathk −→ 2N as:

loop(πk) = {l | l ≤ k and πk(k) → πk(l)}.
A k-path πk is called a loop if loop(πk) 6= ∅. Observe that loops are essentially a
way of representing some infinite paths in a finite way.

Definition 9. (Bounded semantics for vRTECTL)
Let Mk be a k-model, s – a state, α, β ∈ vRTECTL, p – an atomic proposition, η
– a linear expression, and υ – a parameter valuation. By Mk, s |=υ α let denote
that α is true (valid) at the state s of Mk. Again, Mk is omitted if it is implicitly
understood. Define the relation |=υ as follows:

1. s |=υ p iff p ∈ L(s)
2. s |=υ ¬p iff p 6∈ L(s),
3. s |=υ α ∧ β iff s |=υ α and s |=υ β,
4. s |=υ α ∨ β iff s |=υ α or s |=υ β,
5. s |=υ EXα iff ∃πk∈Pathk

(πk(0) = s ∧ πk(1) |=υ α),
6. s |=υ EG

≤ηα iff ∃πk∈Pathk

(
πk(0) = s∧[

((υ(η) ≤ k)∧∧
0≤i≤υ(η) πk(i) |=υ α)

∨((υ(η) > k) ∧∧
0≤i≤k πk(i) |=υ α ∧ loop(πk) 6= ∅)]),

7. s |=υ E(αU≤ηβ) iff ∃πk∈Pathk

(
πk(0) = s ∧ ∃0≤i≤min(k,υ(η))

[
πk(i) |=υ β ∧∧

0≤j<i πk(i) |=υ α
])
.

The above definition differs from its counterpart for ECTL ([PWZ02]) in the
points 6 and 7. In case of the point 6, we need to consider two cases. The first
case deals with the situation when α is checked along a finite path of length υ(η)
smaller or equal than the depth k of the unfolding of the model. Each such a
finite path is then a prefix of some k-path. In the second case we deal with the
situation when α should be checked along a finite path of length strictly greater
than k. Therefore we have to check α along the loop – hence we have the loop
condition. Both the cases are combined in the disjunction. In case of the point
7, we check the existence of such a k-path πk that the subformula β is valid on
its position πk(i) where i ≤ min(k, υ(η)), and for all positions πk(j) where j < i
we have πk(j) |=υ α.

Definition 10. (Bounded semantics for PRTECTL)
Let Mk be a k-model of M, s – a state, α – a sentence of PRTECTL and a ∈ N.
Define the relation |= as follows:

1. Mk, s |= ∀Θα(Θ) iff
∧

iΘ≥0Mk, s |= α(iΘ),
2. Mk, s |= ∀Θ≤aα(Θ) iff

∧
0≤iΘ≤aMk, s |= α(iΘ),

3. Mk, s |= ∃Θα(Θ) iff
∨

iΘ≥0Mk, s |= α(iΘ),
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4. Mk, s |= ∃Θ≤aα(Θ) iff
∨

0≤iΘ≤min(a,k)Mk, s |= α(iΘ),

where iΘ is a fresh integer variable.

The next two lemmas bring forward the essential properties of bounded seman-
tics. Basically they state that the truth of a formula in some k-model is main-
tained also in a larger l-model and in the whole model M. Therefore if we prove
that a formula holds in the k-model (hopefully k is much smaller than |M |), then
we obtain also the validity of the formula in the model M. These lemmas form
a base for the idea of Bounded Model Checking. Namely, we start the search for
a proof in a k-model with k = 0, then the length k of the paths is incremented
until the proof is found or k reaches |M |. Then, the conditions 2 of Lemmas 2
and 3 guard that the property holds also in the model M. On the other hand,
the conditions 3 of Lemmas 2 and 3 show, that if k = |M | is reached and no
proof was found, the considered property is not valid in M.

Lemma 2. Let Mk be a k-model of M, s – a state, υ – a parameter valuation,
and α – a formula of vRTECTL. Then, the following conditions hold:

1. ∀l≥k

(
Mk, s |=υ α implies Ml, s |=υ α

)
,

2. Mk, s |=υ α implies M, s |=υ α,
3. M, s |=υ α implies M|M|, s |=υ α.

Proof. (Sketch) The proof is straightforward. The first and second condition is
proved by induction on the length of a formula. In order to prove the third
condition notice that each infinite path in the model M contains a looped prefix
of length smaller or equal than |M |.
Notice that Lemma 2 has its counterpart concerning PRTECTL as stated below.

Lemma 3. Let M be a model, s – a state and α – a PRTECTL sentence. Then,
the following conditions hold:

1. ∀l≥k

(
Mk, s |= α implies Ml, s |= α

)
,

2. Mk, s |= α implies M, s |= α,
3. M, s |= α implies M|M|, s |= α.

Proof. (Sketch) The proof is based on the observation that the existential and
universal quantifiers can be replaced by disjunctions and conjunctions, respec-
tively. Then, the results of Lemma 2 are applied.

4.1 Example

Recall the formulae and the model M from Example 3.3. One can check that

M2, start |= ∀Θ1≤1∃Θ2≤2EF
≤Θ1+Θ2(w1 ∧ EG¬c1),

while this property does not hold in the bounded semantics for the k–models
with k strictly smaller than 2. Similarly, we have

M2, start |= ∃Θ1≤3∀Θ2E
(
w1U

≤Θ1EG≤Θ2r2
)
,

while this does not hold for the k–models with k strictly smaller than 2.

104 PNSE’09 – International Workshop on Petri Nets and Software Engineering



5 Bounded Model Checking

The algorithm of the bounded model checking is based on the idea of a transla-
tion of a part of the model and the formula to a propositional formula. Satisfi-
ability of the result means that the translated formula is true in the model. In
the first part of this section we formulate definitions and theorems concerning
submodels, the second part presents the rules for the translation, whereas the
last part includes the description of the BMC algorithm.

5.1 Submodels

We aim at giving a method of checking the validity of temporal formulae in
k-models. In order to obtain the acceptable efficiency, the algorithm works on
submodels of the k-model.

Definition 11. Let Mk = (Pathk,L) be the k-model. A substructure
M ′

k = (Path′k,L′), where Path′k ⊆ Pathk and L′ is the restriction of L to the
states present in the paths of Path′k is called a submodel of Mk.

The bounded semantics of vRTECTL formulae and PRTECTL sentences over
submodels is defined as for k-models. IfM ′

k = (Path′k,L′) andM ′′
k = (Path′′k ,L′′)

are submodels of some k-model Mk, such that Path′′k ⊆ Path′k, we write M ′′
k ⊆

M ′
k.

Lemma 4. Let Mk be a k-model, M ′
k and M ′′

k – its submodels, such that M ′′
k ⊆

M ′
k and s a state present in some path of M ′′

k . Then, we have:

1. M ′′
k , s |=υα⇒M ′

k, s |=υα for α∈vRTECTL and any parameter valuation υ,
2. M ′′

k , s |= α⇒M ′
k, s |= α, for α ∈ PRTECTL.

Proof. (Sketch) The first part of the lemma is easily proved by the structural
induction. In order to prove the second part, notice that in the bounded se-
mantics the non-modal quantifiers are rewritten as, respectively, conjunctions or
disjunctions, and use the result of the first part.

It was proven in [PWZ02] that in order to determine the truth of an ECTL
formula in Mk it is sufficient to consider only submodels of a size given by a
special function on the checked formula. We extend these results to vRTECTL
and PRTECTL.

Definition 12. Let α, β ∈ vRTECTL, p – an atomic proposition, η – a linear
expression and υ – a parameter valuation. Recall that Υ is the set of all parameter
valuations. We define recursively the special function gk : vRTECTL× Υ −→ N
as follows:

1. gk(p, υ) = gk(¬p, υ) = 0,
2. gk(α ∨ β, υ) = max(gk(α, υ), gk(β, υ)),
3. gk(α ∧ β, υ) = gk(α, υ) + gk(β, υ),
4. gk(EXα, υ) = gk(α, υ) + 1,
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5. gk(EG≤ηα, υ) = (min(υ(η), k) + 1) · gk(α, υ) + 1,
6. gk(EαU≤ηβ, υ) = min(υ(η), k) · gk(α, υ) + gk(β, υ) + 1.

Definition 13. Let α ∈ PRTECTL. We define recursively the special function
fk : PRTECTL −→ N as follows:

1. if α ∈ RTCTL then fk(α) = gk(α, υ) for any υ,
2. if α = ∀Θ≤cβ(Θ) then fk(α) =

∑
iΘ≤c fk(β(iΘ)),

3. if α = ∃Θ≤cβ(Θ) then fk(α) = maxiΘ≤min(c,k){fk(β(iΘ))}
where iΘ is a fresh integer variable.

As the RTCTL formulae considered in the condition 1 of Definition 13 contain
no free parameters, the above definition is unambiguous. The following lemmas
state that we can determine the truth of vRTECTL and PRTECTL formulae
in the k-model using submodels of size bounded by the value of the appropriate
function fk or gk.

Lemma 5. Let α ∈ vRTECTL, Mk be the k-model and υ – a parameter valu-
ation. For any state s present in some path of Mk, Mk, s |=υ α if and only if
there exists a submodel M ′

k of Mk such that M ′
k, s |=υ α and |Path′k| ≤ gk(α, υ).

Proof. (Sketch) The ”if” part follows directly from Lemma 4. For the ”only if”
part, use induction on the length of a formula and Lemma 4.

Lemma 6. Let β be a PRTECTL sentence and Mk be the k-model. For any
state s present in some path of Mk, Mk, s |= β if and only if there exists a
submodel M ′

k of Mk such that M ′
k, s |= β and |Path′k| ≤ fk(β).

Proof. (Sketch) The proof uses the similar observation as in the proof of Lemma
1 – by recalling the results of Lemma 5 for one-parameter vRTECTL formulae
and the structural induction on the number of the nonmodal quantifiers.

From Lemmas 5,6, Lemma 4 (notice that the k-model is also a submodel) and
Lemmas 2,3 we obtain that the truth of a formula in some submodel of size
bounded by the appropriate gk or fk function implies the truth in a model. On
the other hand, Lemmas 2,3 state that if a formula is true in a model, then it
is also true in some k-model, or equivalently, by Lemmas 2,3 in its submodel of
size bounded by the value of appropriately gk or fk.

5.2 Translation to SAT

In order to translate the problem of validity of a sentence α ∈ PRTECTL in the
submodel M ′

k to the problem of satisfiability of a propositional formula
[
α
]
k

we
have to encode M ′

k and α, and then combine the results together. We present
an adapted version of the efficient translation introduced in [Zbr08].

Consider the model M. As the number of the states of M is finite, they can be
perceived as a bit vectors of the length r = ⌈log|M |⌉. Therefore, we can perceive
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the states as the valuations of the vector w = (w1, . . . , wr). This vector is called
a global state variable while each its member wi is called a state variable. Denote
by SV a set of state variables, then a valuation V : SV −→ {0, 1} naturally
extends to the valuation of global state variables V̂ : SVr −→ {0, 1}r in such a
way that V̂ (w1, . . . , wr) = (V (w1), . . . , V (wr)). With a slight notational abuse,
we denote by V̂ (w) a state encoded by bit vector. The symbolic k-path is a vector
of global state variables. As we need a number of symbolic k-paths to represent
the k-paths in a translated submodel, by (w0,i, w1,i, . . . , wr,i) we denote the i-th
symbolic k-path, where wj,i is a global state variable.
Let w,w′ be global state variables, s a state and p a proposition. In the rules of
the translation the following propositional formulae are used:

1. p(w) denotes a formula such that V |= p(w) iff p ∈ L(V̂ (w)),
2. T (w,w′) denotes a formula such that V |= T (w,w′) iff V̂ (w) → V̂ (w′) (i.e.,

there exists a transition between V̂ (w) and V̂ (w′) in the model M),
3. H(w,w′) is a formula such that V |= H(w,w′) iff V̂ (w) = V̂ (w′) (encoding

the equality of states),
4. Lk(j) =

∨k
i=0 T (wk,j , wi,j) encodes a loop, that is V |= Lk(j) iff

loop((V (w0,j), . . . , V (wk,j))) 6= ∅,
5. Is(w) is a formula such that V |= Is(w) iff V̂ (w) = s (encoding the initial

state).

Let M be a model and A be a finite subset of N. Then the unfolding of the
transition relation is defined as

[
M

]A

k
:=

∧
j∈A

k−1∧
i=0

T (wi,j , wi+1,j).

It is easy to see that V |= [
M

]A

k
iff for each j ∈ A, (V (w0,j), . . . , V (wk,j)) is a k-

path inM. As the translation introduced in [Zbr08] was an essential improvement
over the original one of [PWZ02], we follow A. Zbrzezny’s approach in our work.
We recall the following definitions from [Zbr08].
Let A and B be finite subsets of N. By A ≺ B we denote, that x < y for all
x ∈ A and y ∈ B. Let k,m, p ∈ N and m ≤ |A|, then:

1. ĝL(A,m) is the subset B of A such that |B| = m and B ≺ A\B,
2. ĝR(A,m) denotes the subset B of A such that |B| = m and A\B ≺ B,
3. hX(A) is the set A\{min(A)},
4. if k + 1 divides |A| − 1 then hG(A, k) is the sequence of sets (B0, . . . , Bk)

such that
⋃k

i=0 Bi = A\{min(A)}, |Bi| = |Bj | and Bi ≺ Bj for every
0 ≤ i < j ≤ k,

5. if k divides |A|−1−p, then hU (A, k, p) denotes the sequence of sets (B0, . . . , Bk)
such that

⋃k
i=0 Bi = A\{min(A)}, Bi ≺ Bj for every 0 ≤ i < j ≤ k,

|B0| = . . . = |Bk−1| and |Bk| = p.

We also need a sequence element selector, that is if hG(A, k) = (B0, . . . , Bk)
then define hG(A, k)(i) = Bi for 0 ≤ i ≤ k and if hU (A, k, p) = (B0, . . . , Bk),
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define hU (A, k, p)(i) = Bi for 0 ≤ i ≤ k.
The functions ĝL and ĝR are used to divide the set of path indices into the two
parts of the sizes sufficient to perform the independent translation of subformulae
α and β of formula α∧ β. Similarly, the functions hG and hU are used to divide
the set of path indices into the sequences (hence the use of the selector) of subsets
which are of the sizes sufficient to perform the translation of subformulae α and
α together with β of, respectively, formulae EG≤ηα and EαUηβ. For a more
in-depth description we refer to [Zbr08].

Definition 14. (Translation of vRTECTL)
Let α, β ∈ vRTECTL, p – an atomic proposition, υ – a parameter valuation, η
– a linear expression, (m,n) ∈ N× N, and A ⊆ N.ˆ

p
˜[m,n,A,υ]

k
:= p(wm,n) and

ˆ¬p
˜[m,n,A,υ]

k
:= ¬p(wm,n),ˆ

α ∧ β
˜[m,n,A,υ]

:=
ˆ
α

˜[m,n,ĝL(A,gk(α,υ)),υ] ∧ ˆ
β

˜[m,n,ĝR(A,gk(β,υ)),υ]
,ˆ

α ∨ β
˜[m,n,A,υ]

:=
ˆ
α

˜[m,n,ĝL(A,gk(α,υ)),υ] ∧ ˆ
β

˜[m,n,ĝL(A,gk(β,υ)),υ]
,ˆ

EXα
˜[m,n,A,υ]

:= H(wm,n, w0,min(A)) ∧
ˆ
α

˜[1,min(A),hX (A),υ]

k
.

The translation of the formula EG≤ηα depends on the value of υ(η). If υ(η) > k,
then:

ˆ
EG≤ηα

˜[m,n,A,υ]
:= H(wm,n, w0,min(A)) ∧ Lk(min(A)) ∧

k̂

j=0

ˆ
α

˜[j,min(A),hG(A,k)(j),υ]

k

and if υ(η) ≤ k, then

ˆ
EG≤ηα

˜[m,n,A,υ]
:= H(wm,n, w0,min(A)) ∧

υ(η)^
j=0

ˆ
α

˜[j,min(A),hG(A,υ(η))(j),υ]

k
.

The translation of EαU≤ηβ is defined as follows:ˆ
EαU≤ηβ

˜[m,n,A,υ]
:= H(wm,n, w0,min(A))

∧
min(υ(η),k)_

i=0

`ˆ
β

˜[i,min(A),hU (A,min(υ(η),k),gk(β,υ))(min(υ(η),k)),υ]

k

∧
min(υ(η),k)−1^

j=0

ˆ
α

˜[j,min(A),hU (A,min(υ(η),k),gk(β,υ))(j),υ]

k

´
.

The above encoding is based on the definition of the bounded semantics for
vRTECTL – see the Definition 9 together with the associated comment.

Definition 15. (Translation of PRTECTL)
Let α ∈ PRTECTL, A ⊆ N, (m,n) ∈ N × N, and c ∈ N. If α contains no
quantifiers and no free parameters, then:ˆ

α
˜[m,n,A]

k
:=

ˆ
α

˜[m,n,A,υ]

k
, where υ is any parameter valuation.
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As in the above case α ∈ vRTECTL and it contains no free parameters, the
choice of υ is irrelevant.ˆ∀Θ≤cα(Θ)

˜[m,n,A]

k
:=

ˆ
α(c)

˜[m,n,ĝL(A,fk(α(c)))]

k
∧ˆ∀Θ≤c−1α(Θ)

˜[m,n,ĝR(A,fk(∀Θ≤c−1α(Θ)))]

k
,

Let d = min(c, k), then:ˆ∃Θ≤cα(Θ)
˜[m,n,A]

k
:=

ˆ
α(d)

˜[m,n,ĝL(A,fk(α(d)))]

k
∨ˆ∃Θ≤d−1α(Θ)

˜[m,n,ĝL(A,fk(∃Θ≤d−1α(Θ)))]

k
.

Let Mk be the k-model. If α ∈ vRTECTL and υ is a parameter valuation, then
define Gk(α, υ) := {i ∈ N | 1 ≤ i ≤ gk(α, υ)}. Similarly, if β ∈ PRTECTL then
define Fk(β) := {i ∈ N | 1 ≤ i ≤ fk(β)}. The sets Gk and Fk contain the indices
of symbolic k-paths used to perform the translation. The formulae

[
M

]Gk(α,υ)

k

and
[
M

]Fk(β)

k
encode all the Mk submodels of the size not greater than needed

to validate the truth of formulae α, β as indicated in Lemmas 5, 6.
Now we are in the position to complete the translation of the problem of validity
in vRTECTL and PRTECTL to the problem of satisfiability of propositional
formulae. Let Mk be a k-model, α ∈ vRTECTL and υ be a parameter valuation.
Denote [

M
]α,υ

k
:=

[
M

]Gk(α,υ)

k
∧ Is(w0,0) ∧ [

α
][0,0,Gk(α,υ),υ]

k
.

Similarly, let β ∈ PRTECTL, then denote[
M

]β

k
:=

[
M

]Fk(β)

k
∧ Is(w0,0) ∧ [

β
][0,0,Fk(β)]

k
.

The following theorems ensure completeness and correctness of the translation.

Theorem 2. Let Mk be a k-model of M, υ – a parameter valuation, α– a for-
mula of vRTECTL containing at least one modality, and s a state. Then, the
following equivalence holds: Mk, s |=υ α iff

[
M

]α,υ

k
is satisfiable.

Proof. (Sketch) The modification of the proof of Theorem 3.1 from [Zbr08].
The proof is divided into two parts – the proof of correctness and the proof of
completeness of the translation, both obtained by the induction on the length
of the formula.

Theorem 3. Let Mk be a k-model of M, β – a sentence of PRTECTL contain-
ing at least one modality, and s – a state. Then, the following equivalence holds:
Mk, s |= β iff

[
M

]β

k
is satisfiable.

Proof. (Sketch) Replace the non-modal quantifiers in a formula of PRETCTL
with, appropriately, conjunctions or disjunctions. To conclude, use Theorem 2.

5.3 Example

Consider the model M from Example 3.3 and the formula:

α = ∀Θ1≤1∃Θ2≤2EF
≤Θ1+Θ2(w1 ∧ EG¬c1).
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The number of the paths needed to encode α in the 2–model is computed as
following:

fk(α) =
∑

iΘ1≤1

maxiΘ2≤2{fk(EF≤iΘ1+iΘ2 (w1 ∧ EG¬c1))}.

Let β = EF≤iΘ1+iΘ2 (w1 ∧ EG¬c1)), and observe that if iΘ1 ≤ 1 and iΘ2 ≤
2 are fixed, then fk(β) = gk(β, υ) where υ(Θ1) = iΘ1 and υ(Θ2) = iΘ2 . As
gk(true, υ) = 0, we have gk(β, υ) = gk(w1∧EG¬c1, υ)+1 = 2, therefore fk(α) =
4. Thus, the encoding in the 2–model of M is as follows:[∀Θ1≤1∃Θ2≤2EF

≤Θ1+Θ2(w1 ∧ EG¬c1)
][0,0,{1,2,3,4}]
2

=
[∃Θ2≤2EF

≤Θ2(w1∧EG¬c1)
][0,0,{1,2}]
2

∧[∃Θ2≤2EF
≤1+Θ2(w1∧EG¬c1)

][0,0,{3,4}]
2

=
2∨

i=0

[
EF≤i(w1 ∧ EG¬c1)

][0,0,{1,2}]
2

∧
2∨

j=1

[
EF≤j(w1 ∧EG¬c1)

][0,0,{3,4}]
2

.

As the illustration of the further steps of the translation, consider:

[
EF≤2(w1 ∧ EG¬c1)

][0,0,{3,4}]
2

= H(w0,0, w0,3) ∧
2∨

i=0

[
w1 ∧ EG¬c1

][i,3,{3,4}]
2

= H(w0,0, w0,3) ∧
2∨

i=0

([
w1

][i,3,∅] ∧ [
EG¬c1

][i,3,{4}]
2

)
= H(w0,0, w0,3) ∧

2∨
i=0

(
pw1(wi,3) ∧H(wi,3, w0,4) ∧ L2(4) ∧

2∧
j=0

¬pc1(wj,4)
)
.

5.4 The BMC algorithm

Let M be a model and α ∈ PRTECTL.

BMCverifyPRTECTL(α)
for k := 1 to |M |

compute the translation
[
M

]α,υ

k

if
[
M

]α,υ

k
is satisfiable return true

end for
return false

Checking the satisfiability of a propositional formula is delegated to an efficient
SAT-solver. Obviously the algorithm terminates in a finite number of iterations.
By Theorem 2 and Lemma 3 the result is positive (that is – the translation of
the formula α is satisfiable) if and only if α is valid in the state s of a model M.
It is easy to present similar algorithm for checking the validity of vRTECTL
formulae under a parameter valuation υ – the only difference is the choice of the
appropriate translation.
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6 Implementation of Parametric BMC for Elementary
Net Systems

In this section we recall some basic definitions concerning Elementary Net Sys-
tems (called also Elementary Petri Nets) and present the implementation of
BMC for a model generated by a net. The formulations of this section originate
from [PWZ02]. We consider only the safe Petri Nets, i.e., each place can be
marked with at the most one token.

6.1 Elementary Net Systems

Definition 16. A net is a triple N = (B,E, F ), where B (the places) and E
(the transitions) are finite sets satisfying B ∩ E = ∅, the relation (called a flow
relation) F ⊆ (B × E) ∪ (E × B) has the property that for every t ∈ E there
exists p, q ∈ B such that (p, t), (t, q) ∈ F .

Let N be a net and t ∈ E, then •t = {p ∈ B | (p, t) ∈ F} is called the pre-set of
t and t• = {p ∈ B | (t, p) ∈ F} is called the post-set of t. A configuration of a
net N = (B,E, F ) is a subset C of B. An usual method of visualisation of nets
is where the places are rendered as circles, the transitions as boxes, the elements
of flow relation as arrows, and the configuration C is represented by placing a
”token” in every circle corresponding to a place in C. A place not marked by a
token is called free.

Definition 17. A quadruple EN = (B,E, F,Cin), where (B,E, F ) is a net and
Cin ⊆ B is the initial configuration, is called an elementary net system.

Definition 18. Let EN = (B,E, F,Cin) be an elementary net system and t ∈
E.

1. Let C ⊆ B be a configuration. If t is a transition, •t ⊆ C, and (t• \ •t)∩C =
∅, then the transition t is enabled in C (denoted by C

[
t
〉
).

2. Let C,D ⊆ B be configurations. A transition t fires from C to D (denoted
by C

[
t
〉
) if C

[
t
〉

and D = (C \ • t) ∪ t • .
3. Let t1, . . . , tn ∈ E. A configuration C ⊆ B is reachable if there are config-

urations C0, C1, . . . , Cn ⊆ B with C0 = Cin, Cn = C and Ci−1

[
ti

〉
Ci for all

1 ≤ i ≤ n. We denote the set of all the reachable configuration by CEN .

Informally, the arrows of the flow relation can be thought of as the directed
paths of movement of tokens. If there is an arrow directed from a place b to a
transition t, then we say that b enters t. If there exists an arrow directed from
a transition t to a place b, then we say that t fills b. The transition t is enabled
if all the places entering t are marked with tokens and all the places filled by t
and not entering the transition t are free. If a transition t fires, then the tokens
from all the places entering t disappear and the tokens appear in all the places
filled by t.
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6.2 Implementation

Our goal is to construct a Kripke model reflecting the states (markings) and
actions (firings) in an elementary net system. Consider an elementary net system
EN = (B,E, F,Cin) and number the places of the net with integers smaller
or equal than n = |B|. We use a set {p1, . . . , pn} of propositions, where pi is
interpreted as the presence of a token in the place number i. If w is a state,
then by pi ∈ w we mean that the i-th place is marked in the corresponding
configuration.
We define the model M = (S,→,L) for EN by placing S = CEN (the reachable
configurations are the states), w → v iff there exists t ∈ E such that w

[
t
〉
v (the

transitions model the firings) for w, v ∈ S, and pi ∈ L(w) iff pi ∈ w (the labelling
models the markings).
It is easy to see, that we can encode the states of S by valuations of a vector of
the state variables w = (w[1], . . . , w[n]), where w[i] = pi for 0 ≤ i ≤ n. Moreover,
let P = {1, . . . , n} and let pre(t), post(t) ⊆ P be finite sets of the indices of the
places of, respectively, pre−set(t) and post−set(t). Denote the initial state Cin

by s and let ξ(s) ⊆ P be the set of indices of the places in s.
We are in the position to present the definitions:

1. Is(w) :=
∧

i∈ξ(s) w[i] ∧∧
i∈P\ξ(s) ¬w[i],

2. T (w, v) :=
∨

t∈E

(∧
i∈pre(t) w[i]∧∧

i∈(post(t)\pre(t))¬w[i]∧∧
i∈(pre(t)\post(t))¬v[i]

∧∧
i∈post(t) v[i] ∧∧

i∈(P\(pre(t)∪post(t)))∪(pre(t)∩post(t)) w[i] ⇐⇒ v[i]
)
,

3. pi(w) := w[i],
4. H(w, v) :=

∧
1≤i≤n w[i] ⇐⇒ v[i].

7 Experimental Results

We have implemented the presented algorithm on top of the BMC module of
Verics model checking tool. The Elementary Net Systems are used as an input
specification formalism, and PRTECTL is used as an input logic.

In order to show the performance and present some case studies we use
standard scalable benchmarks. The detailed descriptions of these examples can
be found in [PWZ02].

The tables with results show the following data in the columns from left
to right: the formula verified, the number of processes (denoted by NoP), the
depth k of the unfolding of the model, the size of the corresponding propositional
formula (numbers of variables and clauses) together with the description of how
much resources (time and memory) does the translation take, the time it took
for MiniSat SAT solver to check the satisfiability, and finally the SAT? column
indicating whether the tested formula is satisfiable (√) or not satisfiable (×).

The experiments were performed on a Linux machine with dual core 1.6
GHz processor. We tested satisfiability using the MiniSAT solver [Min06]. The
presented models are relatively simple, yet classical, and the considered formulae
were chosen as to show the difference between the expressive power of CTL and
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PRECTL. As our work is still in its preliminary stage, we do not include any
real-world example, however it should be mentioned that many of problems lead
to models similar to presented in Examples 7.1 and 7.2. Tables 1 and 2 show
some quantitative details of the experiments.

7.1 Mutual Exclusion

The elementary net system of Figure 2 models the well-known mutual exclusion
problem. The system consists of n+ 1 processes (where n ≥ 2) of which n com-
pete for the access to the shared resource and one, called the permission process,
guards so that no two processes use the resource simultaneously. The presence
of a token in the place labelled by wi means that the i-th process is waiting
for the access to the critical section while the token in ci means that the i-th
process has acquired the permission and entered the critical section. The place
ri models the unguarded part of the process and the presence of token in place
p indicates that the resource is available.

The Kripke structure constructed for 3 processes along the lines of Subsection

Fig. 2. Mutual exclusion

6.2 is presented in Figure 1. Let us consider the formula ϕb
1 = ∀Θ≤bEF (¬p ∧

EG≤Θc1). We explore the validity of this formula with respect to the value of
b. We can see that in order for the restricted EG operator to hold we need to
have a path on which the first process enters its critical section and then other
processes execute their local transitions di.

Let us explain how the verification works for this formula. For example, for
3 processes and b = 2, first the processes 2 and 3 enter their places r2 and r3
resp., then the process 1 enters its place c1 and then 2 and 3 execute d2 and
d3 respectively along the path of the length 2 on which c1 holds. Of course,
the order between 2 and 3 may be different. Notice that for b = 3 this formula
does not hold in this model. Note that the non-parameterized counterpart of the
formula ϕ1, i.e., EF (¬p∧EGc1) does not hold in our model, as there is no cycle
in which c1 is true starting in a state where p is false.
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formula NoP k PBMC MiniSAT SAT?

vars clauses sec MB sec √/×
ϕ1

1 3 2 1063 2920 0.01 1.3 0.003 ×
ϕ1

1 3 3 1505 4164 0.01 1.5 0.008 √
ϕ2

1 3 4 2930 8144 0.01 1.5 0.01 ×
ϕ2

1 3 5 3593 10010 0.01 1.6 0.03 √
ϕ2

1 30 4 37825 108371 0.3 7.4 0.2 ×
ϕ2

1 30 5 46688 133955 0.4 8.9 0.52 √
ϕ3

1 4 6 8001 22378 0.06 2.5 0.04 ×
ϕ3

1 4 7 9244 25886 0.05 2.8 0.05 √
Table 1. Mutual exclusion, testing the formula ϕb

1

7.2 Dining Philosophers

Another benchmark we consider is the Dining Philosophers Problem. Consider
n (n ≥ 2) philosophers sitting around a round table. Each philosopher has a
plate in front of him, and between the two neighbouring plates there lies a fork.
Whenever a philosopher eats, he uses both the forks from both the sides of his
plate. When a philosopher has finished eating, he lays backs both of his forks on
the table and starts thinking. The elementary net system modelling the system
described above is shown in Fig. 3. The conditions ri, wi, si denote that i-th
philosopher is thinking, waiting for both the forks and eating, respectively; ci
represents that the i-th fork is not taken.
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Fig. 3. Dining Philosophers
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Let us consider the following properties: ϕb
2 = ∀Θ≤bEF (s1 ∧ EG≤Θ(¬c1 ∧

¬cn ∧
∧

1<i<n ci)) and ϕb
3 = ∀Θ≤bEF (s1 ∧ EG≤Θ

∧
1≤i≤n ¬ci). The formula ϕb

2

expresses that it is possible that in the future there exists a state where for the
b time units the first philosopher is eating (therefore his forks are taken) while
all the remaining forks are laid on the table. The formula ϕb

2 states the similar
property, namely that there exists a future state in which for the b time units
the first philosopher eats while all the remaining forks are taken.

Note that ϕ3
3 does not hold in the model, because there is no path of length

3 along which the first process can stay in the s1 state.

formula NoP k PBMC MiniSAT SAT?

vars clauses sec MB sec √/×
ϕ1

2 4 1 1240 3347 0.01 1.5 0.008 ×
ϕ1

2 4 2 2124 5839 0.02 1.64 0.004 √
ϕ3

2 4 1 2518 6821 0.01 1.8 0.004 ×
ϕ3

2 4 2 4298 11837 0.01 2.01 0.01 √
ϕ1

3 4 3 3014 8343 0.02 1.8 0.1 ×
ϕ1

3 4 4 3898 10385 0.03 1.9 0.2 √
ϕ2

3 4 3 4549 12600 0.04 2.07 0.008 ×
ϕ2

3 4 4 5875 16338 0.06 2.32 0.04 √
ϕ2

3 10 9 37981 107724 0.25 7.3 3.78 ×
ϕ2

3 10 10 42043 119310 0.28 8 8.97 √
Table 2. Dining philosophers, testing the formulae ϕb

2 and ϕb
3

8 Conclusions

In this paper we showed how parametric model checking can be performed by
means of Bounded Model Checking. We presented an implementation and tested
it against some benchmarks. Our work is still in its preliminary phase and can be
extended in several directions. One of them is to investigate the remaining para-
metric logics presented in [ET99], of which General Parametric CTL (GPCTL)
seems to be the most interesting. The formulae of GPCTL allow for referring
to the number of occurrences of some event. In case of GPCTL, the computa-
tional complexity of the model checking problem is at least NP-complete, which
is likely to make the BMC approach especially fruitful. Another possibility is
to include the parameters to the model. Introducing the real time can also be
considered, given that it has been done for non-parametric BMC.
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9 Appendix

The proof of Lemma 1:

Proof. Throughout this proof we denote k = |M |. We start with formulae ψ of
vPRTCTL. Let υ be a parameter valuation such that υ(Θ′) = c > k. Define
another valuation

υ′(Θ) =
{
υ(Θ), for Θ 6= Θ′

k, for Θ = Θ′. (1)

We prove that for each state s, M, s |=υ ψ ⇐⇒ M, s |=υ′ ψ. The proof goes by
the structural induction. The cases of ψ = p, ψ = ¬α, ψ = α∨ γ, ψ = α∧ γ and
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ψ = EXα are easy to prove.
Let us focus on proving M, s |=υ EG

≤βα ⇐⇒ M, s |=υ′ EG
≤βα.

If Θ′ 6∈ Parameters(β), then the equivalence is valid by υ(β) = υ′(β) and the
inductive assumption. Assume that Θ ∈ Parameters(β).
If M, s |=υ EG

≤βα, then there exists a path π such that π(0) = s and M,π(i) |=υ

α for all i ≤ υ(β). Now, from υ′(β) < υ(β) and the inductive assumption we
have M, s |=υ′ EG

≤βα. Similarly, if M, s |=υ′ EG
≤βα, then there exists a path

π such that π(0) = s and M,π(i) |=υ′ α for all i ≤ υ′(β). As υ′(β) ≥ k, there
exists a l ≤ υ′(β) such that π(l) = π(n) for some n < l. Therefore we can define
a path π′ as follows:

π′(i) =
{

π(i), for i < l
π(l − i+ n), for i ≥ l.

(2)

As π′(0) = π(0) = s and M,π′(i) |=υ′ α for all i ∈ N, by the inductive assump-
tion we obtain M, s |=υ α.
Now, let us move to the case of ψ = EαU≤βγ. We deal with the case of
Θ′ ∈ Parameters(β) only. If M, s |=υ EαU≤βγ, then there exists a path π
having π(0) = s, such that for some i ≤ υ(β) it occurs that M,π(i) |=υ γ and
M,π(j) |=υ α for all j < i. If i ≤ υ′(β), then M, s |=υ′ EαU

≤βγ follows in-
stantly from the inductive assumption. If i > υ′(β), notice that from υ′(β) > k
we get π(i) > k, thus π(i) = π(n) for some n < k < υ′(β) from which follows
M, s |=υ′ EαU

≤βγ.
Therefore, by induction on the number of the parameters we get that for for-
mulae ψ ∈ vPRTCTL, the parameter valuation υ and valuation υ′ defined as
υ′(Θ) = min(υ(Θ), k) we have M, s |=υ ψ ⇐⇒ M, s |=υ′ ψ.
In order to prove the general case, consider a one–parameter vPRTCTL formula
g(Θ). We have

M, s |= ∀Θ≤cg(Θ) ⇐⇒
∧

0≤i≤c

M, s |={Θ:=i} g(Θ).

Based on what we have already proven concerning vPRTCTL formulae, we can
substitute {Θ := i} by {Θ := min(i, k)} in the right-hand side of the above
formula, obtaining:∧

0≤i≤c

M, s |={Θ:=min(i,k)} g(Θ) ⇐⇒
∧

0≤i≤min(c,k)

M, s |={Θ:=i} g(Θ).

Therefore, we have M, s |= ∀Θ≤cg(Θ) ⇐⇒ M, s |= ∀Θ≤min(c,k)g(Θ). The equiv-
alence M, s |= ∃Θ≤cg(Θ) ⇐⇒ M, s |= ∃Θ≤min(c,k)g(Θ) is proved in the similar
way.
Finally, notice that for the formula h = Q1Θ1≤min(c1,k) . . .QtΘt≤min(ct,k)f of
PRTCTL where f ∈ vPRTCTL we can define a one–parameter subformula
µ(Θ1) = Q2Θ2≤min(c2,k) . . . QtΘt≤min(ct,k)f(Θ1). Now, this formula can be rewrit-
ten as a vPRTCTL formula µ̂(Θ1) by substituting universal and existential quan-
tifiers with, appropriately, conjunctions and disjunctions. Therefore, by induc-
tion on the number of parameters, the thesis of the lemma follows.
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Abstract. The paper presents the current stage of the development of
VerICS - a model checker for high-level languages, as well as real-time
and multi-agent systems. Depending on the type of a system considered,
it enables to test various classes of properties - from reachability to tem-
poral, epistemic and deontic formulas. The model checking methods used
to this aim include both SAT-based and enumerative ones. In the paper
we focus on new features of the verifier: model checking of time Petri nets
(TPNs) as well as of high-level languages: UML, Java, and Promela.

1 Introduction

The paper presents the current stage of the development of VerICS, a model
checker for high-level languages, as well as real-time and multi-agent systems.
Depending on the type of a system considered, the verifier enables to test various
classes of properties - from reachability of a state satisfying certain conditions
to more complicated features expressed by formulas of (timed) temporal, epis-
temic, or deontic logics. The model checking methods implemented include both
SAT-based and enumerative ones (where by the latter we mean these consisting
in generating abstract models for systems). Our previous work [18] presenting
VerICS dealt mainly with verification of real-time systems (RTS) and multi-agent
systems (MAS). In this paper we focus on VerICS’ new features, i.e., SAT-based
model checking for time Petri nets and systems specified in UML [28], Java [10],
and Promela [12]. Next, we discuss some related verification approaches and
tools.

The well-known tools for time Petri nets include the systems discussed be-
low. Tina [2] is a toolbox for analysis of (time) Petri nets, which constructs state
class graphs (abstract models) and exploits them for LTL, CTL, or reachability
verification. Romeo [34] is a tool for time Petri nets analysis, which provides

⋆ Partly supported by the Ministry of Education and Science under the grant
No. N N516 370436 and N N206 258035.
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several methods for translating TPNs to timed automata and computation of
state class graphs. CPN Tools [4] is a software package for modelling and anal-
ysis of both timed and untimed coloured Petri nets, enabling their simulation,
generating occurrence (reachability) graph, and analysis by place invariants.

There have been a lot of attempts to verify UML state machines - all of them
based on the same idea: translate an UML specification to the input language
of some model checker, and then perform verification using the model checker.
Some of the approaches [15, 20] translate UML to the language Promela and
then make use of the Spin [12] model checker. Other [7, 19] exploit timed au-
tomata as an intermediate formalism and exploit UPPAAL [1] for verification.
The third group of tools (e.g., [8]) apply the symbolic model checker NuSMV [5]
via translating UML to its input language. One of the modules of VerICS follows
this idea. An UML subset is translated to the Intermediate Language (IL) of
VerICS. However, we have developed also a symbolic model checker that deals
directly with UML specifications by avoiding any intermediate translations. The
method is implemented as the module BMC4UML.

Another situation prevails in the field of Promela verification. There exists
only a few model checkers for Promela and its time extensions. SPIN [12] is a
model checker for Promela specifications. Correctness properties can be specified
as system or process invariants (using assertions), linear temporal logic formulas
(LTL), formal Büchi automata, or more broadly as general omega-regular prop-
erties in the syntax of never claims. As the first attempt to verification of timed
systems, Real Time Promela was developed [37]. This extension of Promela in-
troduces explicit definitions of clocks that can be used in expressions and reset.
The other approach, Discrete Time Promela [3], instead of clocks, introduces a
new special type - count down timer. Timers can be set to some values and tested
if they have expired. We offer a translator of Timed Promela [23] (a large subset
of Promela extended by time annotations) to timed automata with discrete data
(TADD) [42] as a VerICS module.

Model checking of Java programs has become increasingly popular during
the last decade. However, to the best of our knowledge, there are only two
existing model checkers that can verify Java codes: JavaPathFinder (JPF) [11,
29] and Bandera [6]. JPF is a system to verify executable Java bytecode programs
and it is one of the backend model-checkers supported by Bandera. Thus, both
tools operate on the Java bytecode. On the contrary, we analyse Java programs
themselves and translate them to a network of TADDs.

The rest of the paper is organised as follows. In Section 2 we briefly present
a theoretical background of the SAT-based verification methods implemented
in our tool (i.e., bounded and unbounded model checking). The next section
contains a description of the verification system. In Section 4 we provide some
experimental results obtained for several typical benchmarks used to test ef-
ficiency of model checkers. Finally, Section 5 contains a summary and some
concluding remarks.
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2 Theoretical Background

A network of communicating (timed) automata is the basic formalism of VerICS

for modelling a system to be verified. Timed automata are used to specify
RTS (possibly with clock differences expressing constraints on their behaviour),
whereas timed or untimed automata are applied to model MAS (possibly ex-
tended in a way to handle certain features of interest, like deontic automata in
[17]). The current version of VerICS makes extensive use also of timed automata
extended by integer variables, called timed automata with discrete data (TADD)
[42]. A set (network) of timed automata with discrete data consists of n TADDs
which run in parallel. The automata communicate with each other via shared
(i.e., common for some automata) variables, and perform transitions with shared
labels synchronously. We assume the scheme of multi-synchronisation, which re-
quires the transitions with a shared label to be executed synchronously by each
automaton that contains this label in its set of labels. To obtain a clear semantics
of variable updating it is necessary to fix the order of instructions in the case
of synchronous execution of transitions. Thus, the transition whose instruction
is to be taken first (called the output transition) is marked with the symbol !,
whereas these which are to be taken later (the input ones) are marked with the
symbol ?.

The tuples of local states of the automata in a network A define the global
states of the system considered. The set of all the possible runs (i.e., infinite
evolutions from a given initial state) of a system modelled by A gives us a com-
putation tree which, after labelling the states with propositions from a given set
PV which are true at these states (i.e., changing the tree into a model), is used
to interpret the formulas of timed or untimed temporal logics. These are vari-
ants of Computation Tree Logic (CTL) or its timed version (TCTL) expressing
properties to be checked. In the case of modelling a MAS we augment the model
with epistemic or deontic accessibility relations. The resulting structure enables
us to interpret formulas involving temporal operators, epistemic operators - to
reason about knowledge of agents [9], and deontic operators - to reason about
correctness of their behaviour.

The current version of VerICS accepts also an input in the form of distributed
time Petri nets [32], which are another formalism used to specify RTS. A dis-
tributed time Petri net consists of a set of 1-safe sequential6 TPNs (called pro-
cesses), of pairwise disjoint sets of places, and communicating via joint transi-
tions. Moreover, the processes are required to be state machines, which means
that each transition has exactly one input place and exactly one output place in
each process it belongs to. A state of the system considered is given by a marking
of the net and by the values of the clocks associated with the processes7.

SAT-based verification methods represent the models and properties of sys-
tems in the form of boolean formulas in order to reduce the state explosion.
6 A net is sequential if none of its reachable markings concurrently enables two tran-

sitions.
7 A detailed description of the nets, as well as their semantics, can be found in [33].
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These for MAS involve bounded (BMC) and unbounded model checking (UMC).
Currently, VerICS implements UMC for CTLpK (Computation Tree Logic with
knowledge and past operators) [16], and BMC for ECTLKD (the existential
fragment of CTL extended with knowledge and deontic operators) [17, 30, 38,
39] as well as TECTLK (the existential fragment of timed CTL extended with
knowledge operators) [21].

Considering verification of RTS, the current version of VerICS offers BMC
for proving (un)reachability [40] (also for timed automata with clock differences
[41]), and UMC for proving CTL properties for slightly restricted timed au-
tomata [36].

Below we present some intuition behind BMC and UMC.

2.1 Bounded Model Checking

Bounded Model Checking (BMC) is a symbolic method aimed at verification of
temporal properties of distributed (timed) systems. It is based on the observation
that some properties of a system can be checked over a part of its model only. In
the simplest case of reachability analysis, this approach consists in an iterative
encoding of a finite symbolic path (computation) as a propositional formula.

In order to apply Bounded Model Checking to testing reachability of a state
satisfying a certain (usually undesired) property, we unfold the transition relation
of a given automaton/TPN up to some depth k, and encode this unfolding
as a propositional formula. Then, the property to be tested is encoded as a
propositional formula as well, and satisfiability of the conjunction of these two
formulas is checked using a SAT-solver. If the conjunction is satisfiable, one can
conclude that a counterexample (a path to an undesirable state) was found.
Otherwise, the value of k is incremented. The above process can be terminated
when the value of k is equal to the diameter of the system, i.e., to the maximal
length of a shortest path between its two arbitrary states.

2.2 Unbounded Model Checking

Unlike BMC, UMC is capable of handling the whole language of the logic. Like
any SAT-based method, UMC consists in translating the model checking problem
of a CTLpK formula into the problem of satisfiability of a propositional formula.
UMC exploits the characterisation of the basic modalities in terms of Quanti-
fied Boolean Formulas (QBF), and the algorithms that translate QBF and fixed
point equations over QBF into propositional formulas. In order to adapt UMC
for checking CTLpK, we use three algorithms. The first one, implemented by the
procedure ”forall” (based on the Davis-Putnam-Logemann-Loveland approach)
eliminates the universal quantifier from a QBF formula representing a CTLpK
formula, and returns the result in conjunctive normal form. The remaining al-
gorithms, implemented by the procedures ”gfp” and ”lfp” calculate the greatest
and the least fixed points for the modal formulas in use here. Ultimately, the
technique allows for a CTLpK formula to be translated into a propositional
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formula in CNF, which characterises all the states of the model, where the for-
mula holds. Next we apply a SAT-solver to check satisfiability of the obtained
propositional formula.

3 Implementation

Fig. 1. Architecture of VerICS

The architecture of VerICS is shown in Fig. 1. The new components are:

– UML to Intermediate Language (IL) translator, which translates
UML specification consisting of class, object and statemachine diagrams to
corresponding IL program.

– Java to TADD translator, which translates a concurrent multi-threaded
Java program to a network of TADDs.

– Promela to TADD translator, which generates a network of TADDs
corresponding to the given Promela specification, possibly extended by time
annotations.

– BMC4UML module - a Bounded Model Checker for UML, which applies
SAT-based BMC algorithm directly on UML specification, avoiding inter-
mediate translations.

– BMC4TADD module - a Bounded Model Checker for a network of TADDs.
– BMC4TPN module - a Bounded Model Checker for time Petri nets.

The remaining components, presented in [18], are listed below:

– Estelle to IL translator, which enables to handle specifications written in
a subset of Estelle [13] (the standardised language for specifying communi-
cating protocols and distributed systems);

– IL to timed automata translator, which, given an IL specification, gen-
erates the corresponding network of timed automata or the global timed
automaton;
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– BMC module, which implements BMC-based verification for the classes of
properties shown in the figure. The SAT-solver used is MiniSat [22] or RSat
[35]; the system can be configured to work with other solvers;

– UMC module, which provides preliminary implementations of UMC ver-
ification methods for properties described above. The module is integrated
with a modified version of the SAT-solver ZChaff [44];

– Splitter module, which performs reachability verification on abstract mod-
els generated for timed automata.

VerICS is implemented in C++ and Java; its internal functionalities are avail-
able via a interface written in Java. The demo of current distribution can be ac-
cessible from http://verics.ipipan.waw.pl. A more detailed description of the
tool, and in particular the new high-level languages translators, are presented in
the following subsections.

3.1 Model checking of UML

At the moment we deal with model checking of UML in two ways: either trans-
lating an input specification to IL, and then use the standard verification path
(translation to a network of TA and application of BMC, UMC or Splitting), or
use the BMC module, which performs model checking directly, without interme-
diate translations.

Both the methods require as an input a specification in the XMI format,
making use of a similar subset of UML. An input specification should consist
of: one class diagram, one object diagram, and one state machine diagram per
each class of the class diagram. The class and object diagrams define the static
structure of the system, while the state machines determine its behaviour.

Translation of UML to Intermediate Language. In this section we give
the main ideas behind our translation from UML to IL. The details can be
found in [24]. Objects are mapped onto processes of IL and the number of UML
objects corresponds to the number of IL processes. The attributes of objects are
translated into process variables. We allow boolean, integer, and object types.
The methods are translated into arrays of IL buffers, whereas each method call
is realized by placing a special element - call marker - in the corresponding
buffer, possibly followed by the method’s parameters. Each of UML simple- and
pseudo-states is mapped onto a state of an IL process. Entry and exit activities
are merged with actions of incoming and outgoing transitions. The transitions
in State Diagrams are translated directly into transitions of IL processes. A
triggered event, a guard, and a sequence of actions can be associated with the
transition. The time events in UML are translated into time constraints of IL
transitions, using delay construction. The latter allows to specify the amount of
time that may elapse before certain actions take place. The guards in UML are
formed using attributes of objects and parameters of the actions called. These
expressions are directly transformed into IL guards, using the variables that
correspond to UML attributes and parameters.
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BMC4UML - a Bounded Model Checking for UML. In order to per-
form symbolic model checking directly on an UML specification, an operational
semantics of the considered UML subset is defined [25] in terms of a labelled
transition system. Then, the transition system is symbolically encoded and the
prototype implementation is developed [26].

In general the main ideas of BMC are applied to the transition system repre-
senting the executions of UML system. However, very complex elements of the
UML state machines semantics (concerning e.g. hierarchy of states and regions,
concurrent regions, priorities of transitions and properly handling of completion
events and RTC-steps) require numerous non-trivial solutions at the level of
symbolic encoding and implementation [27].

3.2 Translation of Java to TADDs

Below we sketch the main ideas behind a translation of a concurrent multi-
threaded Java program to a network of TADDs. Each state of TADD is an
abstraction of a state of the Java program, and each transition represents the
execution of the code transforming this abstract state. The subset of Java that
can be translated to TADDs contains: definitions of integer variables, standard
programming language constructs like assignments, expressions with most op-
erators, conditional statements and loops (for, while, do while), instructions
break and continue without labels, definitions of classes, objects, constructors
and methods, static and non-static methods and synchronisation of methods
and blocks. There are recognised standard thread creation constructs as well
as special methods: Object.wait(), Object.notify(), Thread.sleep(int), and Ran-
dom.nextInt(int).

A theoretical method of constructing a network of TADDs that models a
Java program is shown in [43]. To implement the translation we first translate a
Java code to an internal assembler. Then, the resulting assembler is translated
to timed automata with discrete data.

3.3 Translation of Promela to TADDs

The translation is performed in three stages. The first one consits in a transla-
tion of control flow of each Promela process into an automaton structure. The
next one concerns representation of Promela data structures and operations on
them. Finally, a set of TADDs corresponding to all the instances of the Promela
processes is defined. The translation is inductive. The procedure starts with a
block (a sequence of statements) representing the behaviour of a whole process
and operates in a top-down fashion up to basic statements.

Each Promela process is translated to a TADD, and if it is necessary addi-
tional TADDs for init and never-claim processes are created. The local variables
are mapped into global ones, while arrays and channels are translated onto set
of global variables. Each Promela statement is represented as a transition, or -
in the case of more complex constructions (e.g. loops or selections) - as a set
of transitions. The operations on arrays and channels need also more than one
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transition. Their number depends on the size of an array or the capacity of a
channel.

Our translation covers most of Promela constructs. Moreover it is extended
by time expressions, in order to specify real-time systems. The details can be
found in [23].

3.4 Bounded Model Checking for TPNs

In order to benefit from the concurrent structure of a system, we consider dis-
tributed nets only [31], and assume that all their processes are state machines.
It is important to mention that a large class of distributed nets can be decom-
posed to satisfy the above requirement [14]. The interpretation of such a system
is a collection of sequential, non-deterministic processes with communication ca-
pabilities (via joint transitions). An example of a distributed TPN (Fischer’s
mutual exclusion protocol) is shown in Fig. 2. The net consists of three commu-
nicating processes with the sets of places Pi = {idlei, tryingi, enteri, criticali}
for i = 1, 2, and P3 = {place0, place1, place2}. All the transitions of the process
N1 and all the transitions of the process N2 are joint with the process N3.

The current implementation supports reachability checking, i.e., verification
whether the system (net) can ever be in a state satisfying certain properties. The
details of the method can be found in [33]. This solution can be also adapted to
verification of other classes of properties for which BMC methods exist and is
still to be implemented.

waiting1

setx0_1

enter1
trying1 critical1

idle2

start2

trying2 waiting2 critical2

setx0_2

place 0

place 1

place 2

idle1 start1 setx1−copy1

setx1

setx1−copy2

setx2−copy2

setx2

enter2setx2−copy1

[0,∞)

[0,∞)

[0,∞)

[0,∞)

[0, ∆]
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[0, ∆]
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[0, ∆]

[0, ∆]
[δ,∞)

Fig. 2. A net for Fischer’s mutual exclusion protocol for n = 2
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4 Experimental Results

One of the important elements taken into account while rating a model checker is
its efficiency. In this section we present some well known benchmarks: Alternating
Bit Protocol (ABP) specified in UML and Java and Fischer’s mutual exclusion
protocol specified in TPNs and Promela, as well as the Aircraft Carrier (AC)
UML specification.

(a) State machine of class Board

(b) State machine of class Plane (c) Class diagram (d) Object dia-
gram

Fig. 3. Specification of Aircraft Carrier system

Table 1(a) presents some experimental results of testing reachability of a
deadlock state in ABP version written in Java (slightly modified in order to
introduce deadlock) and Table 1(b) presents the results of the verification of
the negation of the property: “after the message and an acknowledgement have
been received, both (Sender’s and Receiver’s) internal bits are equal” for ABP
specification in UML.

Table 2 presents the results of verification of the Aircraft Carrier (AC) spec-
ification (Fig. 3). AC consists of a ship and a number of aircrafts taking off and
landing continuously, after issuing a request being accepted by the controller.
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Table 1. Experimental results of verification of ABP

(a) Java via translation to TADDs

k Clauses BMC [s] RSAT [s] SAT

0 559 0.0 0.0 NO
12 57346 0.5 0.1 NO
24 121540 1.2 0.7 NO
50 282621 2.8 82.4 YES

In total: 33.2 122.9

(b) UML via translation to IL and TA

k Clauses BMC [s] zChaff [s] SAT

1 44098 0.27 0.01 NO
5 214598 1.44 0.40 NO
10 427723 2.84 7.22 NO
13 555598 3.73 5.74 YES

In total: 25.89 35.22

The events of answering these requests may be marked as deferred. Each air-
craft refills fuel while on board and burns fuel while airborne. We check the
property whether an aircraft can run out of fuel during its flight.

Moreover, we have introduced some elements of parametric reachability check-
ing. Using our approach, we are able to verify not only that a property is reach-
able, but also to find a minimal (integer) time c, when this is the case (Table 2,
the last column). More examples and a broader comparison with other model
checkers for UML can be found in [26, 27].

Table 2. Results of verification of AC system (with/without deferred events)

N k Hugo+Uppaal [s] BMC4UML [s] Parametric [s], c = 4

3 19 1.32 / 1.25 67.59 / 51.26 31.34 / 22.64
4 20 13.15 / 11.41 101.58 / 81.28 45.44 / 42.38
5 21 147.43 / 95.67 155.63 / 132.34 60.49 / 37.01
6 22 Out of mem 257.08 / 216.42 52.23 / 75.08
7 23 - / - 686.06 / 421.85 101.86 / 199.09

We have also tested the systems modelling the standard Fischer’s mutual
exclusion protocol (Mutex). In general, the system consists of n processes which
run in parallel. Mutual exclusion means that no two processes are in their critical
sections at the same time. The preservation of this property depends on the
relative values of the time-delay constants δ and ∆. In particular, the following
holds: ”Fischer’s protocol ensures mutual exclusion iff ∆ < δ”.

A TPN model for Mutex consists of n time Petri nets, each one modelling
a process, plus one additional net used to coordinate their access to the critical
sections. The resulting distributed TPN, for the case of n = 2, is shown in
Figure 2.

We have checked that if ∆ ≥ δ, then the mutual exclusion is violated. We
considered the case with ∆ = 2 and δ = 1. It turned out that the conjunction of
the propositional formulae encoding the k-path and the negation of the mutual
exclusion property is unsatisfiable for every k < 12. The witness was found for
k = 12. We were able to test 40 processes. The results are shown in Table 3.
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Table 3. Verification of time Petri Nets - Fischer’s protocol (40 processes)

tpnBMC RSat
k n variables clauses sec MB sec MB sat

0 - 1937 5302 0.2 3.5 0.0 1.7 NO

2 - 36448 107684 1.4 7.9 0.4 9.5 NO

4 - 74338 220335 2.9 12.8 3.3 21.5 NO

6 - 112227 332884 4.2 17.6 14.3 37.3 NO

8 - 156051 463062 6.1 23.3 257.9 218.6 NO

10 - 197566 586144 7.8 28.5 2603.8 1153.2 NO

12 - 240317 712744 9.7 34.0 87.4 140.8 YES

32.4 34.0 2967.1 1153.2

Table 4 presents experimental results for a timed Promela version of Fischer’s
mutual exclusion protocol. The time parameters of the protocol have been set in
this way that the protocol is not correct. We have looked for the situation when
any pair of processes is in their critical sections at the same time. The tests are
done with latest distributions of RTSpin, DTSpin, and VerICS.

Table 4. Experimental results of verification of timed version of Fisher’s Mutual Ex-
clusion protocol specified in Promela.

Spin Verics
# proc. RTSpin DTSpin BMC SAT

mem cpu mem cpu depth mem cpu mem cpu

8 34.21 5.4 57.86 0.08 12 3.4 0.34 5.83 0.26

80 — — 146.03 2.49 12 12.0 12.57 93.65 85.67

100 — — 228.06 4.43 12 16.4 20.21 256.38 339.32

130 — — 529.19 30.76 12 24.4 32.56 103.91 48.97

135 — — — — 12 25.8 34.91 459.14 1139.66

5 Final Remarks

As it can be seen from the above results, VerICS in many cases is able to handle
relatively large examples taken from the standard scalable benchmarks. This
allows to expect the same also in the case of “real world” systems. However, it
should be said that the size of the system, which can be verified using the BMC
method, depends on the formula tested: the more shallow the counterexample
and the less paths needed to test the formula, the bigger system can be verified.
On the other hand, a strong limitation for both the SAT-based methods we use
are the capabilities of the SAT-solvers available, which, in many cases, are not
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able to handle the set of clauses generated by the method, or to solve it in a
reasonable time. This, however, proves also that the development of solvers can
result in an improvement of efficiency of our tool.
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B. Woźna, and A. Zbrzezny. VerICS 2007 - a model checker for knowledge and
real-time. Fundamenta Informaticae, 85(1-4):313–328, 2008.

19. A. Knapp, S. Merz, and C. Rauh. Model checking - timed UML state machines and
collaborations. In Proc. of the 7th Int. Symp. on Formal Techniques in Real-Time
and Fault Tolerant Systems (FTRTFT’02), volume 2469 of LNCS, pages 395–416.
Springer-Verlag, 2002.

20. J. Lilius and I. Paltor. vUML: A tool for verifying UML models. In Proc. of
the 14th IEEE Int. Conf. on Automated Software Engineering (ASE’99), pages
255–258. IEEE Computer Society, 1999.
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University of Łódź, FMCS, Banacha 22, 90-238 Łódź, Poland
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Abstract. Formal methods - among them the model checking techniques - play
an important role in the design and production of both systems and software. In
this paper we deal with an adaptation of the bounded model checking methods
for timed systems, developed for timed automata, to the caseof time Petri nets.
We consider distributed time Petri nets and parametric reachability checking, but
the approach can be easily adapted to verification of other kinds of properties
for which the bounded model checking methods exist. A theoretical description
is supported by some experimental results, generated usingan extension of the
model checker VerICS.

1 Introduction

The process of design and production of both systems and software – among others,
the concurrent ones – involves testing whether the product conforms its specification.
To this aim, various kinds of formal methods can be applied. One of the possible ap-
proaches, widely used and intensively developed, aremodel checking techniques.

In order to perform a formal verification, the system to be tested is usually modelled
using a theoretical formalism, e.g., a version of automata,Petri nets, state diagrams
etc. Obviously, the kind of the formalism depends on the features of the system to be
described. One of the approaches, used to represent concurrent systems with timing
dependencies [10, 11, 20], aretime Petri nets(TPNs) by Merlin and Farber [21]. After
modelling the system in the above way, a suitable verification method is applied.

The main problem to cope with while verifying timed systems is the so-calledstate
explosion: in order to check whether the system satisfies a property we usually need to
search through its state space, which in most cases is very large due to infinity of the
dense time domain. Furthermore, in the case of concurrent systems the size of the state
space is likely to grow exponentially when the number of the components increases.
So, searching for verification methods which are able to overcome the above problem
is an important subject of research.
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Bounded Model Checking (BMC) is an efficient verification technique whose main
idea consists in translating a model checking problem solvable on a fraction of a model
into a test of propositional satisfiability, which is then made using a SAT-checker. The
method has been successfully applied to verification of bothtimed and untimed sys-
tems [3, 4, 7, 12, 16, 27, 31, 35]. In this paper, we show how to adapt the BMC methods,
presented in [27, 34–36] and developed for timed automata, to the case of time Petri
nets. The adaptation exploits, in some sense, a method of translating a time Petri net
to a timed automaton, described in [28]. However, we performno structural translation
between these two formalisms, but use directly the transition relation defined by the
translation. In order to benefit from the concurrent structure of the system, we focus
on distributednets (i.e., sets of communicating processes), and exploit anon-standard
approach to their concrete semantics, which consists in associating a clock with each
of the processes [28]. In this work, we deal with testing whether the system (net) can
ever be in a state satisfying certain properties (i.e., withreachabilitychecking), but the
presented solutions can be also easily adapted to verification of other classes of prop-
erties for which BMC methods exist (see [23] for a survey). The algorithm has been
implemented as an extension of the model checker VerICS [13]. The next topic we dealt
with was searching for bounds on which the property tested can be reached (searching
for a value of the parameter� in formulas

�����
, corresponding to these considered in

[14]). In the final part of the paper we provide some preliminary experimental results.
To our knowledge, no BMC method for time Petri nets has been defined so far, al-

though some solutions for untimed Petri nets exist [16, 25].Therefore, the main contri-
bution of this work consists in showing how to apply and implement for TPNs the above
technique of verification (a general idea of the approach hasbeen already sketched in
[23], but no details are given there). As a result, we obtain an efficient method of check-
ing reachability, as well as searching for counterexamplesfor the properties expressible
by formulas of the logics���	
 and����	. Although the adaptation of the BMC
methods is almost straightforward, the practical consequences seem to be quite useful.

The rest of the paper is organised as follows: in Sect. 3 we introduce time Petri nets,
and the abstraction of their state spaces, i.e., anextended detailed region graphs. In the
further part we sketch the idea of reachability checking using BMC (Sect. 4), and show
its implementation for time Petri nets (Sect. 5). Searchingfor bounds on time at which
a state satisfying a property can be reached (parametric reachability) is considered in
Sect. 6. Sections 7 and 8 contain experimental results and concluding remarks.

2 Related work

The methods of reachability checking for time Petri nets, mostly consisting in build-
ing anabstract modelof the system, are widely studied in the literature [6, 5, 8, 9, 15,
19]. Detailed region graphs for time Petri nets, based on their standard semantics (i.e.,
the one associating a clock with each transition of the net) were presented in [22, 33].
Some BMC methods for (untimed) Petri Nets were described in [16, 26]. Parametric
verification for time Petri nets was considered in [32].

The current work is a modification and extension of the paper [24] (published in
proceedings of a local workshop with the status of a technical report).
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3 Time Petri Nets

Let ��� denote the set of non-negative reals,� the set of rationals, and�� (��� ) - the
set of (positive) natural numbers. We start with a definitionof time Petri nets:

Definition 1. A time Petri net (TPN, for short) is a six-element tuple� � �� 	 
 	 � 	 �  	� � � 	 � � ��, where� � �� � 	 � � � 	� �� � is a finite set ofplaces, 
 � ��� 	 � � � 	 ��� � is a
finite set oftransitions, � � �� � 
 � � �
 � � � is theflow relation,� � � is theini-
tial markingof� , and

� � � � 
 � �� , �� � � 
 � �� � �� �
are functions describing

theearliestand thelatest firing timeof the transition; where for each
� � 
 we have� � � ���  �� � ���.

For a transition
� � 
 we define itspreset!� � �� � � " �� 	 �� � � � andpostset�! � �� � � " �� 	� � � � �, and consider only the nets such that for each transition

the preset and the postset are non-empty. We need also the following notations and
definitions:

– a markingof � is any subset� � � ;
– a transition

� � 
 is enabledat� (� #�$ for short) if !� � � and
� ! % �� & !�� � ';

andleads from� to� (, if it is enabled at� , and� ( � �� & !�� � �!. The marking� ( is denoted by� #�$ as well, if this does not lead to misunderstanding;
– )* �� � � �� � 
 " � #�$� is the set of all the transitions enabled at the marking�

of � ;
– a marking� � � is reachableif there exists a sequence of transitions

�� 	 � � � 	 �+ �
 and a sequence of markings� 	 � � � 	 � + such that� � �  , �+ � � , and for
each, � �-	 � � � 	 . � �/ � )* �� /0� � and� / � � /0� #�/ $;

– a marking� concurrently enablestwo transitions
� 	 �( � 
 if

� � )* �� � and�( � )* �� & !��;
– a net issequentialif no reachable marking of� concurrently enables two transi-

tions.

It should be mentioned that the time Petri nets defined as above are often called1-safe
in the literature.

Next, we introduce the notion of adistributed time Petri net. The definition is an
adaptation of the one from [17]:

Definition 2. Let 1 � �2� 	 � � � 	 2� � be a finite ordered set of indices, and let3 � �4 5 ��� 5 	 
 5 	 � 5 	 � 5 	 � � �5 	 � � �5� " 2 � 1 � be a family of 1-safe, sequential time Petri nets
(calledprocesses), indexed with1, with the pairwise disjoint sets�5 of places, and sat-
isfying the condition�6 2� 	 2� � 1� �6 � � 
 57 % 
 58 � �� � �57 ��� � � � �58 ��� 9 �� �57 ��� ��� �58 ���� � A distributed time Petri net� � �� 	 
 	 � 	�  	 � � � 	 � � �� is the union of
the processes4 5, i.e., � � :5;< � 5, 
 � :5;< 
 5, � � :5;< � 5, � � : 5;< � 5 ,� � � � : 5;< � � �5, and�� � � : 5;< �� �5.
Notice that the function

� � �57 (�� �57) coincides with
� � �58 (�� �58 , resp.) for the joint

transitions of each two processes2� and 2� . The interpretation of such a system is a
collection of sequential, non-deterministic processes with communication capabilities
(via joint transitions).
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Fig. 1.A net for Fischer’s mutual exclusion protocol for� 	 


An example of a distributed TPN (Fischer’s mutual exclusionprotocol) is shown in
Fig. 1. The net consists of three communicating processes with the sets of places�/ ��,� .)/ 	 �� ,*� / 	 )*�)� / 	 �� ,�,�� ./ � for , � -	 �, and� � � �� .��)� 	� .��) -	� .��)��.
All the transitions of the process4 � and all the transitions of the process4 � are joint
with the process4 � .

In what follows, we consider distributed nets only, and assume that all their pro-
cesses arestate machines(i.e., for each2 � 1 and each

� � 
 5, " ! � " � "� ! " � -), which
implies that in any marking of� there is exactly one place of each process. It is impor-
tant to mention that a large class of distributed nets can be decomposed to satisfy the
above requirement [18]. Moreover, for

� � 
 we define� � ��� � �2 � 1 " !� % � 5 �� '�,
and say that a process45 is involved in a transition

�
iff 2 � � � ���.

3.1 Concrete State Spaces and Models

The current state of the net is given by its marking and the time passed since each of the
enabled transitions became enabled (which influences the future behaviour of the net).
Thus, aconcrete state� of � can be defined as an ordered pair�� 	 � .��� �, where�
is a marking, and� .��� � 1 � ��� is a function which for each index2 of a process of� gives the time elapsed since the marked place of this processbecame marked most
recently [28]. The set of all the concrete states is denoted by � . The initial state of� is
�  � ��  	 �.���  �, where� is the initial marking, and� .���  �2� � � for each2 � 1.

For� � ��� , let �.���� � denote the function given by�� .���� � � �2� � � .��� �2���,
and let�� 	 �.��� �� � denote�� 	 �.��� � � �. The states of� can change when the time
passes or a transition fires. In consequence, we introduce a labelled timed consecution
relation� �� � � �
 � ��� � � � given as follows:
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– In a state� � �� 	 �.��� � a time � � ��� can pass leading to a new state� ( �
�� 	 �.��� ( � � � (denoted� �� � � () iff for each

� � )* �� � there exists2 � � � ���
such that� .��� �2� � �  �� � ��� (time-successor relation);

– In a state� � �� 	 �.��� � a transition
� � 
 can fire leading to a new state

� ( � �� ( 	 �.��� ( � (denoted�
�� � � () if

� � )* �� �, for each2 � � � ��� we
have �.��� �2� � � � � ���, and there is2 � � � ��� such that�.��� �2�  �� � ���.
Then,� ( � � #�$, and for all 2 � 1 we have� .��� ( �2� � � if 2 � � � ���, and
�.��� ( �2� � �.��� �2� otherwise (action-successor relation).

Intuitively, the time-successor relation does not change the marking of the net, but in-
creases the clocks of all the processes, provided that no enabled transition becomes
disabled by passage of time (i.e., for each

� � )* �� � the clock of at least one process
involved in the transition does not exceed�� � ���). Firing of a transition

�
takes no time

- the action-successor relation does not increase the clocks, but only sets to zero the
clocks of the involved processes (note that each of these processes contains exactly one
input and one output place of

�
, as the processes are state machines); and is allowed pro-

vided that
�

is enabled, the clocks of all the involved processes are greater than
� � � ���,

and there is at least one such process whose clock does not exceed�� � ���.
Then, we define atimed runof � starting at a state� � � (�-run) as a maximal

sequence of concrete states, transitions and time passings� � � ��� � � � �
�
�� �

� � �7� � � � � ��
�7� � �� �8� � � � �, where� / � � ,

�/ � 
 and� / � ��� for all , � �� . A
state� 


� � is reachableif there exists a� -run � and, � �� such that� 
 � � / � � /,
where� / � � / is an element of�. The set of all the reachable states of� is denoted by� )���� .

Given a set of propositional variables� � , we introduce avaluation function� � �
� � �	 
 which assigns the same propositions to the states with the same markings.
We assume the set� � to be such that each� � � � corresponds to exactly one place� � � , and use the same names for the propositions and the places. The function� �
is defined by

� � � � �� � � � � � for each� � �� 	 �. The structure� � �� � ���
 � ��� 	� 	 �  	 � � � 	 � � � is called aconcrete(dense) model of� . It is easy to see
that concrete models are usually infinite.

3.2 Extended Detailed Region Graph

In order to deal with countable structures instead of uncountable ones, we introduce
extended detailed region graphsfor distributed TPNs. They correspond to the well-
known graphs defined for timed automata in [1] and adapted fortime Petri nets [22,
33], but involve disjunctions of constraints, the reflexivetransitive closure of the time
successor of [1], and make no use of the maximal constant appearing in the invariants
and enabling conditions. To do this, we assign a clock to eachof the processes of a net.

Given a distributed time Petri net� whose processes are indexed with a set of
indices1 with "1 " � * for some* � ��� . Let � � �� � 	 � � � 	 �� � be a finite set of
real-valued variables, calledclocks. A clock valuationon � is a*-tuple� � ��

��
. The

value of a clock� 5 in � is denoted by� �� 5 �. For a valuation� and a subset of clocks� � � , by � #� �� �� we denote the valuation� ( such that� ( �� � � � for all � � �
,
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and � ( �� � � � �� � for all � � � & �
. Moreover, for some� � ��� , by � � � we

denote the valuation� ( such that� ( �� � � � �� � � � for all � � � . The set�� of clock
constraintsover� is defined by the following grammar:�� �� ���) " � 5 � � " �� 9 �� " �� � �� 	
where� 5 � � , �� � 	 � 	 � 	 � 	 �� and � � �� . A valuation� satisfiesa constraint�� � �� (denoted� "� ��) iff

– �� is of the form
���),

– � �� 5 � � �, and�� is of the form� 5 � �,
– � "� ��� 9 � "� ��� , and�� is of the form��� 9 ��� ,
– � "� ��� � � "� ��� , and�� is of the form��� � ��� .

The set of clock valuations satisfying a given constraint�� is denoted by##���� ( ##���� ���
��

).
We assume the clock valuations to be such that for any concrete state� � �� 	 �.��� �,

for each2 � 1 we have� �� 5 � � �.��� �2�. Thus, the clock constraint expressing the con-
ditions under which the net can be in a marking� (the marking invariant) can be
written as

,*� �� � � �
�;	� 
� � s.t.� � 
���� �5;� � 
�� � 5

 �� � ��� 	
if �� � 
 " � � )* �� � 9 �� � ��� � � � �� ', and as,*� �� � � ���) otherwise, which
intuitively means that staying in� is allowed as long as for each enabled transition�

with finite latest firing time there is a process45, involved in this transition, whose
clock is not greater than�� � ��� (and therefore

�
has not been disabled by passage of

time). Moreover, for a marking� and a transition
� � )* �� � we define the constraint

� ,�)� �� � � �
5;� � 
�� � 5

� � � � ���

which expresses the condition under which
�

can be fired at� (note that the marking
invariant, which obviously holds if� is in the marking� , implies that at least one
process involved in

�
has the value of its clock not greater than�� � ���). Given a marking� and

� � )* �� �, firing
�

at� results in assigning the value� to the clocks belonging
to the set �)�)� �� 	 �� � �� 5 � � " 2 � � � ���� �

Having all the above components, we can introduce the extended detailed region
graph for� . Let �� � �� be a non-empty set of constraints defined by�� �� � 5 � � � � ��� " � 5  �� � ��(� " �� 9 �� 	
where� 5 � � , and, for a given, � 1, � � 
 5 and

�( � 
 5 % �� � 
 " �� � ��� � � �
.

Moreover, let
� ��� �� � denote the fractional part of a number� � ��� , and ��� denote

its integral part. Then, we define equivalence classes of clock valuations [37]:

Definition 3. For two clock valuations� 	 � ( � ��
��

, � �� � ( iff for all � 	 � ( � � the
following conditions are met:
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1. �� �� �� � �� ( �� ��,
2.
� ��� �� �� �� � � iff

� ��� �� ( �� �� � �,
3.
� ��� �� �� �� � � ��� �� �� ( �� iff

� ��� �� ( �� �� � � ��� �� ( �� ( ��.
The last condition implies that

� ��� �� �� �� � � ��� �� �� ( �� iff
� ��� �� ( �� �� � � ��� �� ( �� ( ��.

We call the equivalence classes of the relation�� (extended) detailed zonesfor � ,
and denote the set of all of them by�� �* �. It is easy to see from the definition of��
that the number of extended detailed zones is countable, andthat for each�� � �� and
each� � � � �* � either� "� �� for all � � � , or � �"� �� for all � � � . We say that
� � �� �* � satisfies a clock constraint�� � �� (denoted by� "� ��) iff we have
� "� �� for each� � � .

Given an extended detailed zone� � �� �* �, we introduce the operation� #� ��
�� � �� #� �� �� " � � � �. Moreover, let�  � �� � ��

�� " �6� � � � � �� � � � �.
Then, we define a successor relation on zones:

Definition 4 (Time successor).Let � and� ( be two zones in�� �* �. The zone� ( is
said to be thetime successorof � , denoted� �� �, iff for each� � � there exists� � ���
such that� � � � � (.
Definition 5 (Action successor).Let � 	 � ( � �� �* �. The zone� ( is said to be the
action successorof � by a transition

� � 
 , denoted
� �� �, if there exists a marking� �� with

� � )* �� � such that� "� � ,�)� �� � 9 ,*� �� � and� ( � � #�)�)� �� 	 �� �� � �.
An (extended detailed) region is a pair �� 	 � �, where� � � and� � �� �* �.

Notice that the set of all the extended detailed regions is countable. Given a concrete
state� � �� ( 	 �.��� ( � we define� � �� 	 � � if � � � ( and� � � , where� is the
clock valuation satisfying� �� 5 � � �.��� ( �2� for all 2 � 1. Next, we define a countable
abstraction of the concrete state space of� - anextended detailed region graph.

Definition 6. Theextended detailed region graphfor a net� is a structure� �� � ��
 � �� �	� 	�  	 � �
, where� � �	 � � � �* �, �  � ��  	 �  �, and the successor

relation�� � � �
 � �� �� � � , where� �� 
 , is defined in the following way:

– �� 	 � � �� �� 	 � ( � iff � 	 � ( "� ,*� �� � and� ( � � �� �;
– for

� � 
 , �� 	 � � �� �� ( 	 � � iff
� � )* �� �, � ( � � #�$, � ( � � �� �, � "� ,*� �� �

and� ( "� ,*� �� (�.
By anabstract modelbased on� �� �

we mean a structure� � �� � � �� �� � 	 � �,
where for each� � � and each� � � we have� �� � � � � �� �.

Notice that the definition of
�� is correct: in spite of a possibly non-convex form of##,*� �� ���, its definition ensures that if� 	 � ( � �� �* �, � 	 � ( "� ,*� �� � and�� 	 � � ���� 	 � ( �, then for any other� (( � �� �* � s.t. � (( � � �� � and� ( � � �� (( � (i.e., for

a region�� 	 � (( � “traversed” when the time passes between�� 	 � � and �� 	 � ( �) the
condition� (( "� ,*� �� � is satisfied as well. This follows from the fact that if in the
zone� some� 5 � � satisfies the condition� �� 5 � � �� � ���, then the same holds also
for all the time successors of� , and, on the other hand, if it satisfies� �� 5 �  �� � ���
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and this condition is violated for some� (( � � �� �, then there is no� ( � � �� (( � for
which it holds again.

In order to show that the model� � �� �
preserves the behaviours of the net, we

shall prove that it isbisimulation equivalentwith � � �� �
, where the bisimulation equiv-

alence is defined as follows:

Definition 7. Let � � ��� 	 � 	 � 	 � � 	 � � and � ( � ��� ( 	 � ( 	 � ( 	 � (� 	 � ( � be two
models of a time Petri net� . A relation� �� � ( � � is a simulationfrom � ( to � if
the following conditions hold:

! � ( � � � ,! for each� � � and� ( � � (, if � ( � � �, then� ��� � � ( �� ( �, and for every�� � �
such that� +

� �� for some. � � , there is� (� � � ( such that� ( +��( � (� for some
. ( � � ( and� (� � � ��.

The model� ( simulates� (� ( � � � ) if there is a simulation from� ( to � . Two
models� and� ( are calledbisimulation equivalentif � ( � � � and� �� � �

0�� (,
where�� � �0�

is the inverse of� �.
Then, we can prove the following lemma:

Lemma 1. For a given time Petri net� the models� � �� � � ��
 � ��� 	 � 	 �  	� � � 	 �� � and� � �� � � ��
 � �� �	� 	�  	 � �	 � � are bisimulation equivalent.

The proof can be found in the appendix.

4 Testing Reachability via BMC

The reachability problem for a system� consists in checking, given a property
�
,

whether� can ever be in a state where
�

holds (which can be described by the��	
formula

���
- “there exists a path s.t. at that path the property

�
finally holds”). The

property is expressed in terms of propositional variables.In the case the system� is
represented by a time Petri net� , the propositions correspond to the set of its places� . Therefore, the reachability verification can be translated to testing whether the set� )���� contains a state whose marking includes a given subset of� . Checking this
can be performed by an explicit exploration of the concrete state space (model), but due
to its infinite size such an approach is usually very inefficient in practice.

If a reachable state satisfying the property
�

exists, this can be usually proven ex-
ploiting a part of the model only. This enables us to apply thebounded model checking
approach. The basic idea of testing reachability using BMC consists in searching for a
reachability witnessof a bounded length� (i.e., for a path of a length� � ��� , called a
�-path, which leads from the initial state to a state satisfying

�
). Searching for a reach-

ability witness is performed by generating a propositionalformula that is satisfiable iff
such a witness exists. Satisfiability of this formula is checked using a SAT-solver.

To apply the above procedure, we represent the states of a model � �� �
for a given

time Petri net� as vectors of boolean variables, and express the transitionrelation
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of the model in terms of propositional formulas. Then, weencodeall the �-paths of
� �� �

starting at its initial state as a propositional formula�� , and check satisfiability
of a formula� � which is the conjunction of�� and a propositional formula expressing
that the property

�
holds at some state of a�-path. The above process is started from

� � -, and repeated iteratively up to� � "� ". It, however, can be stopped, since if
for some� the formula�� is satisfiable, then reachability of a state is proven, and no
further tests are necessary.

The above method can be inefficient if no state satisfying
�

exists, since the length
of the �-path strongly influences the size of its propositional encoding. Therefore, in
order to prove unreachability of a state satisfying

�
, another solution, shown in [36], is

applied. A sketch of the idea is as follows: using the BMC procedures, we search for a
longest�-path starting from an arbitrary state of� (a free path) such that

�
holds only

in the last state of this path. If such a path� is found, then this means that in order to
learn whether a state satisfying

�
is reachable we need to explore the model only to the

depth equal to the length of� .

5 Implementation for Time Petri Nets

In order to apply the above approach to verification of a particular distributed time
Petri net� , we deal with a model obtained by adiscretisationof its extended detailed
region graph. The model is of an infinite but countable structure, which, however, is
sufficient for BMC (which deals with finite sequences of states only). Below, we show
this discretisation, and then encode the transition relation of the model.

5.1 Discretisation of Extended Detailed Region Graphs

Let � �� � � �
 � �� �	� 	�  	 � �
be the extended detailed region graph for a dis-

tributed time Petri net� , and� be the set of clocks corresponding to its processes.
Instead of dealing with the whole extended detailed region graph� �� �

, wediscretise
this structure, choosing for each region one or more appropriate representatives. The
discretisation scheme is based on the one for timed automata[37], and preserves the
qualitative behaviour of the underlying system.

Let * be the number of clocks, and let�� �� �� �
be the largest constant appearing

in �� (i.e., the greatest finite value of
� � �

and�� �). For each� � �� , we define

� � � �� � � " ��� � �� � �  �
�
� � � 	

and � � � �) � � " ��� � �� � )  �
�
� � 9 )  �� �� �� � � -��

Thediscretised clock spaceis defined as
� �

, where
� � :

��	 �
� � � Similarly, the set

of possible values of time passings is defined as
� � :

��	 �
� � � The above definitions

give us that the maximal values of time passings are restricted to�� �� �� � � -, which
is sufficient to express the behaviour of the net. Moreover, such a clock space and the
set of lengths of timed steps ensure that for any representative of an extended detailed
region there is another representative of this region whichcan be reached by a time step
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of a length) �
�

. It should be mentioned that such a solution (different thanin [24])
allows us to compute precisely the time passed along a�-path, what is important for
the algorithms for parametric verification (and was difficult while using the so-called
“adjust transitions” of [24]).

Now, we can introduce discretised region graphs and models:

Definition 8. The extended discretised region graphbased on the extended detailed
region graph� �� �

, is a structure
�
� �� � � �
 �

�
	�� 	�  	 � � �, where

�
� � �	 �� �

,
�  � ��  	 �  �, and the labelled transition relation� �� �

� � �
 �
� � ��

� is defined
as

1. for
� � 
 , �� 	 � � �� � �� ( 	 � ( � iff

� � )* �� �,� ( � � #�$, � "� � ,�)� �� � 9 ,*� �� �,
� ( � � #�)�)� �� 	 �� �� � �, and� ( "� ,*� �� ( � (action transition);

2. for � �
�

, �� 	 � � �� � �� 	 � ( � iff � ( � � � � and� 	 � ( "� ,*� �� � (time transition).

Given an abstract model� � �� � � �� �� � 	 � � based on� �� � � �
 � �� � 	� 	�  	
� �

and the discretised model
�
� �� �

, we can define adiscretised modelbased on�
� �� �

, which is a structure
�
� � �� � � � �� �� � 	 �� �, where

�
� � �� � �	 
 is a val-

uation function such that for each
�
� � �

� being a representative of� � � we have�
� � �� � � � �� �. This model will be exploited in BMC-based reachability checking.

5.2 Encoding of the Transition Relation of the Discretised Model

In order to apply SAT-based verification methods described in Sec. 4, we need to rep-
resent (encode) the discretised model

�
� � �� �

as a boolean formula. To do that, we
assume that each state� � �

� is given in a unique binary form, i.e.,
�
� � �� 	 -�� 
� �,

where� �� � is a function of the greatest exponent appearing in the denominators of
clock values in

�
� (see [37] for details). The digits in the binary form of� are denoted

by � �-� 	 � � � 	� ���. Therefore, the elements of
�
� can be “generically” represented by

a vector� � �w #-� 	 � � � 	w #� �� ��� of propositional variables (called asymbolic state),
whose valuation (i.e., assignment of values to the variables) represents� iff for each� � �-	 � � � 	 � �� �� we have w#� � � ���) iff � �� � � -, and w#� � � � � .�) otherwise.
Moreover, each�-path in

�
� �� �

can be represented by a finite sequence�  	 � � � 	� � of
symbolic states, and again, such a representation is calledasymbolic�-path.

In what follows, bystate variableswe mean propositional variables used to encode
the states of

�
� �� �

. The set of all the state variables, containing the symbols
���) and� � .�), will be denoted by� � , and the set of all the propositional formulas built over

� � - by �� . The elements of�� are calledstate formulas.
In order to encode the transition relation of

�
� � �� �

, we introduce the following
functions and propositional formulas:

– .,� � �� 	 -� � � � � �� , which is defined by.,� �� 	� � � �� and.,� �- 	� � � �
;

– �� �� � �� ��		 � .,� �� �� � 	w #� �� which is true iff the vector� represents the state
� ;

– 
 �� 	� ( � which is true iff for the states� 	� ( � �
� , represented by vectors� and

� (, respectively, it holds�
	� � � ( for some) � 
 � �

.
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The formula which encodes all the�-paths in
�
� �� �

starting at the initial state is of the
form

�� �� �� � �� 
� 9 �0��

		

 ��	 	�	� � � 	

where�  	 � � � 	� � is a symbolic�-path. In practice, we consider�-paths with some
restrictions on repetition of the action and time transitions, and on lengths of the time
steps (see [37] for details). Encoding the fact that a state satisfies a given property is
straightforward.

6 Parametric Reachability Checking

Besides testing whether a state satisfying a property
�

is reachable, one can be interested
in finding a minimal time in which a state satisfying

�
can be reached, or finding a

minimal time after which
�

does not hold. To this aim,parametric reachability checking
can be used.

In order to be able to perform the above verification, we introduce an additional
restriction on the nets under consideration, i.e., requirethey contain no cycle� of tran-
sitions such that for each

� � � we have
� � � ��� � � (which guarantees that the

time increases when the net progresses, and is a typical assumption when analysing
timed systems). Moreover, we introduce the notations

�����
, with �� � 	 � 	 � 	 ��

and � � �� , which express that a state satisfying
�

is reached in a time satisfying the
constraint in the superscript1. The problems intuitively presented at the beginning of
the section can be expressed respectively as finding a minimal � such that

�����
(or�����

) holds, and finding a maximal� such that
�����

(or
�����

) holds.
An algorithm for finding a minimal� such that

� � ���
holds looks as follows:

1. Using the standard BMC approach, find a reachability witness of minimal length2;
2. read from the witness the time required to reach

�
(denoted�). Now, we know that

�  ��� (where
�� is theceiling function);

3. extend the verified TPN with a new process4 , which is composed of one transition�
s.t.

� � � ��� � �� � ��� � * , and two places
� /�

,
� ��� with !� � �� /� � and

�! �
�� ��� � (see Fig. 2(a)),

4. set* to
��� � -,

5. Run BMC to test reachability of a state satisfying
� 9 � /�

in the extended TPN,
6. if such a state is reachable, set* �� * � - and go to 5,
7. if such a state is unreachable, then� �� * � -, STOP.

Some comments on the above algorithm are in place. First of all, it should be ex-
plained that the BMC method described in Sec. 4 finds a reachability witness of a short-
est length (i.e., involving the shortest possible�-path). However, the shortest path is not
necessarily that of minimal time. An example can be seen in Fig. 3, where the short-

1 The full version of the logic, for a discrete semantics and with 	 restricted to
 only, can be
found in [14].

2 if we cannot find such a witness, then we try to prove unreachability of � .
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Fig. 2. The processes added to the nets to test parametric reachability

��
��� ��!

"#$%

�&
�� �!

�' �� �! �& �� �!

Fig. 3.An example net

est path leading to the place satisfying the property
� � /� consists of one time step and

one action step (i.e., passing-� time units and then firing
��), whereas minimal time

of reaching such a state is(, which corresponds to firing
��, �� and

�� , each of them
preceded by passing one unit of time. Due to this, after finding a reachability witness
for

�
in Step 1 of the algorithm, we test whether

�
can be reached in a shorter time.

Extending the net with a new process allows us to express the requirement that the time
at which

�
is reached is not greater than* (* � �� ), since at time* the transition

�
has

to fire, which unmarks the place
� /�

.
The second comment to the algorithm concerns the possible optimisations. Firstly,

the algorithm can be optimized by applying one of the well-known searching algorithms
instead of decreasing* by one in each step. Secondly, it is easy to see that if BMC finds
a reachability witness for

�
of length� , then a witness for reaching

�
in a smaller time

cannot be shorter than� (if such a witness existed, it would have been found previously).
Thus, in Step 5 of the algorithm the BMC method can start with� equal to the length
of the witness found in the previous run, instead of with� � -.

Finally, Step 7 of the algorithm should be explained. In order to decide that no state
satisfying

� 9 � /�
is reachable, we should either prove unreachability of thatstate using

the method of [36], or to find an upper bound on the length of the�-paths such that
unreachability of

� 9 � /�
on the paths up to this length allows us to decide that no

state of interest is reachable. We can do the latter in some cases only, i.e., when some
restrictions on the nets considered are assumed. This is specified by the following two
lemmas:

Lemma 2. If a net� contains no transition
�

with
� � � ��� � �, then the length of a

reachability witness for
�����

, in which time- and action steps alternate, is bounded
by �  �.
Proof. We make use of the result of [29], which states that each reachable marking
of a TPN can be reached on a path whose time steps are of integervalues only. Since
from the structure of the net and from the structure of the path we have that zero-time
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steps are not allowed, the shortest time steps are of length one. The bound�� is then
straightforward.

Lemma 3. Let� be a distributed net consisting of* processes45 � ��5 	 
 5 	 � 5 	 � 5 	� � �5 	 � � �5� (2 � 1 � �-	 � � � 	 * �), each of which contains no cycle besides (possibly)
being a cycle itself and satisfies the condition

6�� 	 �� � 
5 �!�� % �5 � !�� % �5 ���� ! %�5 � �� ! %�5�. The length of a reachability witness for
�����

, in which time-
and action steps alternate, is bounded by� � �  �

�
5	 �� 5, where each� 5, for 2 � 1, is

computed according to the following algorithm:

1. set� �� �, �,� ) �� �, and*)� �
 ��* � to such
� � 
 5 that !� � � 5 and

� � � ��� �� ,* �� � � ��( � " �( � 
 5 9 !�( � � 5 �,
2. do

� �,� ) �� �,� ) � � � � �*)��
 ��* ��;
� if

�,� )  � then set� �� � � - and�� �� *)��
 ��* �;
� set*)� �
 ��* � to such

� � 
 5 that !� � ��0�! and
� � � ��� � � ,* �� � � ��( � "�( � 
 5 9 !�( � ��0� !�,

while
�,� ) �� � and�� ! %�5 �� ',

3. while
� � � ��� � � � and �!�� % �5� �� � ��� �� �, where� ��� �� � is the set of propo-

sitions occuring in the property
�
, do� �� � � -;

4. �)�� 5 �� � .

Proof. From the structure of a process of� , we have that the algorithm for� 5 computes
first the number of transitions which can be executed in time� provided that� 5 proceeds
as fast as possible, and then optimises the value obtained byremoving a number of final
steps which influence neither the time nor reaching the property tested. The length of
the path in which time- and action steps alternate is therefore equal to�� 5. Taking the
sum of these values for all the processes corresponds to considering the worst case, in
which all the processes proceed independently, performingas many steps as possible.

An algorithm for finding a minimal� such that
�����

holds is similar to the previ-
ous one:

1. Using the standard BMC approach, find a reachability witness of minimal length3;
2. read from the witness the time required to reach

�
(denoted�). Now, we know that

�  ���;
3. extend the verified TPN with a new process4 , which is composed of two transi-

tions
��, �� s.t.

� � � ��� � � �� � ��� � � *,
� � � ��� � � �� � ��� � � �, !�� � �� /� �,��! � !�� � ��� /� � and

�� ! � �� ��� � (see Fig. 2(b)),
4. set* to

��� � -,
5. run BMC to test reachability of a state satisfying

� 9 � /�
in the extended TPN,

6. if such a state is reachable, set* �� * � - and go to 5,
7. if such a state is unreachable, set* �� * � - and run BMC to test reachability of a

state satisfying
� 9 �� /� in the extended TPN,

8. if such a state is reachable, then� �� * � -, STOP,
9. if such a state is unreachable, then� �� *, STOP.

3 if we cannot find such a witness, then we try to prove unreachability of � .
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In this case, the additional process contains the place which can be marked only if the
time passed since the net started is equal to*. The algorithm proceeds in the following
way: the Steps- - � (analogous as in the previous algorithm) are aimed at findinga
minimal* such that

�����
holds. Then, it is tested whether

�
can be reached exactly at

time*. Depending on the result of this test, the bound returned is either* or*� - (which
follows from the result of [30] stating that the minimal timeduration of a transition
sequence is an integer value). The improvements to the algorithms, as well as methods
of deciding unreachability in Steps� and�, are the same as in the previous case.

The next pair of the algorithms is aimed at finding a minimal time after which no
state satisfying

�
is reachable. This can be done by searching for a maximal� for which�����

(or
�����

) holds. The algorithm for
�����

is as follows:

1. using a standard BMC approach, test whether there is a�-path� such that
�

is
reachable from its arbitrary state (i.e., whether for� the ��	 formula

�����
holds),

2. if such a�-path can be found, then no maximal� exists, STOP.
3. if such a�-path cannot be found then, using the standard BMC approach,find a

reachability witness for
�

of a minimal length4.
4. read from the witness the time� required to reach

�
,

5. extend the verified TPN with a new process which is composedof one transition�
s.t.

� � � ��� � �� � ��� � *, and two places
� /�

,
� ��� with

�! � �� ��� � and!� � �� /� �,
6. set* to

���, and set an upper bound� (� � *) on � to be searched for5,
7. run BMC to test reachability of a state satisfying

� 9 � ��� in the extended TPN,
8. if such a state is reachable and* � - � �, then set* �� * � - and go to 7,
9. if such a state cannot be found or* � - � �, then set� �� * � -, STOP.

Testing whether there is a�-path s.t.
�

is reachable from its arbitrary state (testing�����
) is done by checking whether there is a path which has a loop, and there is a

state of this loop at which
�

holds. In order to ensure that there is no maximal�, we need
also the path to be progressive, i.e., such that its loop contains at least one non-zero time
step6.

Again, some optimisations to the algorithm can be introduced. The first one can
consist in applying a well-known searching technique instead of increasing* by one
in each step. The second is based on an observation that each reachability witness for�����

is also a reachability witness for
����0��

. Thus, no witness for
�����

can be
shorther than the shortest one found for

����0��
(if a shorter witness existed, it would

have been found while searching for a witness for
����0��

). Thus, while running

4 if we cannot find such a� , then we try to prove unreachability of�
5 the value� can be also a parameter of the algorithm
6 Formally, let� be a�-path,� �	
 be the	-th state of the path,�� �	  	 � �
 be the time passed

while moving from� �	
 to � �	 � �
, ���� �� 
 	 �� � � 
 � 
 � � � �� 
 � � ��
�, and�� ��
 be the set of all the�-paths starting at�. The bounded semantics for���� � is as
follows: � �	 ���� �  ! �"� # � � ��

 ����� �� 
 $	 % � �"� # ���� �� 
 �"� 
 & 

� 
 �� �& 
 �	 � � '()* +� �, 	 �&  & � �
 - �

.
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Step 7 of the algorithm, we can start with� equal to the length of the witness found in
the previous run, instead of with� � -.

It should be noticed that, contrary to the former cases, we cannot set any upper
bound on the length of�-paths to be tested in Step 9, besides the one which follows
from the value� assumed in the algorithm. In this case, computing the bound is done
analogously as we shown in the description of the algorithm for

�����
.

An algorithm for checking
� � ���

(and searching for a maximal�) is as follows:

1. using a standard BMC approach, test whether there is a�-path� such that
�

is
reachable from its arbitrary state (i.e., whether for� the ��	 formula

�����
holds),

2. if such a�-path can be found, then no maximal� exists, STOP.
3. if such a�-path cannot be found then, using the standard BMC approach,find a

reachability witness for
�

of a minimal length7.
4. read from the witness the time� required to reach

�
,

5. extend the verified TPN with a new process4 , which is composed of two transi-
tions

��, �� s.t.
� � � ��� � � �� � ��� � � *,

� � � ��� � � �� � ��� � � �, !�� � �� /� �,��! � !�� � ��� /� � and
�� ! � �� ��� �,

6. set* to
���, and set an upper bound� (� � *) on � to be searched for8,

7. run BMC to test reachability of a state satisfying
� 9 � ��� in the extended TPN,

8. if such a state is reachable and* � - � �, then set* �� * � - and go to 7,
9. if such a state is unreachable or* � - � �, set* �� * � - and run BMC to test

reachability of
� 9 �� /� � in the extended TPN,

10. if such a state is reachable, then� �� * � -, STOP;
11. if such a state is unreachable, then� �� *, STOP.

The idea behind the algorithm is similar to the previous approaches: first a maximal* for which
�����

is found, then the algorithm tests whether reaching
�

at time* is
possible. The final result depends on the answer to the latterquestion.

It should be mentioned that in practice all the above methodsare not complete (as
the BMC itself is not). It can happen that we are not able to prove unreachability of
a state, compute an upper bound on the length of a�-path to be tested, or, in spite of
finding such an upper bound, are not able to test the paths up tothis length using the
resources given. However, the preliminary experiments show that the methods can give
quite good results.

7 Experimental Results

The experimental results presented below are preliminary,since some methods men-
tioned in the previous sections are not represented. We haveperformed our experiments
on the computer equipped with Intel Pentium Dual CPU (2.00 GHz), 2 GB main mem-
ory and the operating system Linux 2.6.28. We have tested some distributed time Petri
nets for the standardFischer’s mutual exclusion protocol(mutex) [2]. The system con-
sists of* time Petri nets, each one modelling a process, plus one additional net used to

7 if we cannot find such a� , then we try to prove unreachability of�
8 the value� can be also a parameter of the algorithm
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coordinate their access to the critical sections. A distributed TPN modelling the system
is shown in Figure 1, for the case of* � �. Mutual exclusionmeans that no two pro-
cesses are in their critical sections at the same time. The preservation of this property
depends on the relative values of the time-delay constants� and� . In particular, the
following holds: ”Fischer’s protocol ensures mutual exclusion iff� � �”.

Our first aim was to check that if� � �, then the mutual exclusion is violated.
We considered the case with� � � and � � -. It turned out that the conjunction of
the propositional formula encoding the�-path and the negation of the mutual exclusion
property (denoted

�
) is unsatisfiable for every� � -�. The witness was found for

� � -�. We were able to test�� processes. The results are shown in Fig. 4 (left).
Our second aim was to search for a minimal� such that

�����
holds. The results are

presented in Fig. 4 (right). In the case of this net, we are notable to compute an upper
bound on the length of the�-path. Unfortunately, we also could not test unreachability,
since the method is not implemented yet. Again, we considered the case with� � �
and� � -, and the net of�� processes. The witness was found for� � -�, and the time
of the path found was between� and�. The column* shows the values of the parameter
in the additional component. For* � - and� � -� unsatisfiability was returned, and
testing the property on a longer path could not be completed in a reasonable time.

The next two (scalable) examples were the networks shown in Fig. 5. The net (a)
shown in the left-hand side of the figure was scaled by increasing

� � � ��� � and�� � ��� �,
according to the schema� � ��, � � ��, for

� � -	 � 	 � � �. The property tested was�� �� � 9 � � �
. The net (b) shown on the right was scaled by increasing the number of

components� 5 (2 � -	 � 	 � � �). In this case, reachability of a state satisfying
� � 9�	5	 �

� 5�
was checked (where

�
is a number of identical processes). For both the nets we searched

tpnBMC RSat
k n variables clauses sec MB sec MB sat
0 - 1937 5302 0.2 3.5 0.0 1.7 NO
2 - 36448107684 1.4 7.9 0.4 9.5 NO
4 - 74338220335 2.9 12.8 3.3 21.5 NO
6 - 112227332884 4.2 17.6 14.3 37.3 NO
8 - 156051463062 6.1 23.3 257.9 218.6 NO

10 - 197566586144 7.8 28.5 2603.81153.2 NO
12 - 240317712744 9.7 34.0 87.4 140.8 YES

32.4 34.0 2967.11153.2

tpnBMC RSat
k n variables clauses sec MB sec MB sat
0 - 840 2194 0.0 3.2 0.0 1.4 NO
2 - 16263 47707 0.5 5.2 0.1 4.9 NO
4 - 33835 99739 1.0 7.3 0.6 9.1 NO
6 - 51406151699 1.6 9.6 1.8 13.8 NO
8 - 72752214853 2.4 12.3 20.6 27.7 NO

10 - 92629273491 3.0 14.8 321.4 200.8 NO
12 - 113292334357 3.7 17.5 14.3 39.0 YES
12 7 120042354571 4.1 18.3 45.7 59.3 YES
12 6 120054354613 4.0 18.3 312.7 206.8 YES
12 5 120102354763 4.0 18.3 64.0 77.7 YES
12 4 120054354601 4.1 18.3 8.8 35.0 YES
12 3 115475340834 3.9 17.7 24.2 45.0 YES
12 2 115481340852 3.9 17.8 138.7 100.8 YES
12 1 115529341008 3.9 17.7 2355.4433.4 NO

40.1 18.3 3308.3433.4

Fig. 4. Results for mutex,� 	 
, � 	 �, mutual exclusion violated. Left: proving reachability
for �� processes, right: parametric verification for
	 processes. The tpnBMC column shows the
results for the part of the tool used to represent the problemas a propositional formula (a set of
clauses); the column RSat displays the results of running the RSat solver for the set of clauses
obtained from tpnBMC.
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Fig. 5. Time Petri nets tested in experiments

for a minimal time� at which a given property can be reached, and for both of them
we were able to compute an upper bound on the length of the�-path to be tested while
checking reachability in a time not exceeding*. For the net (a) the bound is� �
� �� � � �� � �� �, where� � � (* � -, �� � ( �* � ��� �� � - and�� � - (where the third
process is that added to test reachability in time*); whereas for the net (b) containing�

identical components it is given by� � � � � 	/	 �� / � �	� �, where the bound for
the first process is� � � ( �* ��� � -, the bound for each of the identical processes is
� / � (* � - (, � -	 � � � 	 � ), and the bound for the additional process is�	� � � -. The
results for the net (a), with the values of the coefficient

�
given, are presented in Fig. 6.

In the case of
� � � we were able to test the�-paths up to the upper bound� � ��,

and to show that the parameter searched for is� � �; for
� � � we can only assume

that the value of� is -�, since we were not able to test all the�-paths of the lengths up
to � � ��. Concerning the net (b), we were able to test the net containing 6 identical
processes and to show that� � �; the results are given in Fig. 7.

8 Final Remarks

We have shown that the BMC method for checking reachability properties of TPNs is
feasible. Our preliminary experimental results prove the efficiency of the method. How-
ever, it would be interesting to check practical applicability of BMC for other examples
of time Petri nets. On the other hand, it would be also interesting to check efficiency of
the above solutions for other (non-distributed) nets (which could be done by applying
the translations from [28]).
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9 Appendix

Below, we provide a proof of Lemma 1:

Proof. We shall show that the relation
� � ��� 	� � " � � � � is a bisimulation. It

is easy to see that� ��  , and that for each� � � we have� � �� � � � �� �, since
the markings of the related states are equal. Thus, consider� � �� 	 �.��� � � � and
� � �� 	 � � � � such that��� .

– If � �� � (, where� ( � �� ( 	 � ( � � � , then from� ( � � �� � we have that for
each� � � (and therefore for that given by� �� 5 � � � .��� �2� for all 2 � 1) there
exists� � ��� such that� � � � � (. Moreover, the condition� ( "� ,*� �� � implies
that for each

� � )* �� � there is2 � � � ��� such that�� � � � �� 5 �  �� � ���. Thus,

there exists a state� ( � � , given by� ( � �� 	 �.��� � � �, satisfying� �� � � ( and
� ( � � ( (i.e.,� (�� ().

– On the other hand, if� �� � ( for some� ( � �� 	 �.��� ( � � � and� � ��� , then
for each� � � �� 	 �.���� � � � one can find� ( � ��� such that the clock valuation
� (� given by� (� �� 5 � � �.���� �2� � � ( is equivalent to the clock valuation� ( given
by � ( �� 5 � � �.��� ( �2� (intuitively, � ( should be chosen such that the increase from
�.���� �2� to �.��� � �2� � � ( should “cross” as many integer bounds as the increase
from �.��� �2� to �.��� �2� � �, for each2 � 1). Moreover, from the definition of
the time-successor relation we have that for each

� � )* �� � there is2 � � � ���
such that� .��� ( �2�  �� � ���, and therefore from the definition of�� it holds also
�.���� �2� � � (  �� � ���. Thus, for the extended detailed region� ( � �� 	 � ( � such
that � ( � � ( (and therefore� (�

0�� () we have� ( � � �� � and� ( "� ,*� �� �,
which implies� �� � (.

– If �
�� � ( for some transition

� � 
 , where� ( � �� #�$ 	 � ( � � � , then
� �

)* �� � and� "� � ,�)� �� � 9 ,*� �� �. Thus, it is easy to see that the transition�
can be fired also at the state� , which leads to� ( � �� ( 	 � .��� ( � � � , with� ( � � #�$ and�.��� ( �2� � � for 2 � � � ���, and�.��� ( �2� � �.��� �2� otherwise.

Therefore, the clock valuation� ( given by� ( �� 5 � � �.��� ( �2� belongs to the zone
� #�)�)� �� 	� � �� ��, which implies� ( � � ( (and therefore� (�� ().

– If �
�� � ( for some transition

� � 
 and � ( � �� ( 	 �.��� ( � � � , then
� �

)* �� �, �.��� �2� � � � � ��� for every 2 � � � ���, and there exists2 � � � ��� such
that �.��� �2�  �� � ���. Thus, from the definition of�� the zone� satisfies the
constraints

� ,�)� �� � and,*� �� �. Considering� ( � �� ( 	 � ( � such that� ( � � (,
it is easy to see from the definition of�� that � ( � � #�)�)� �� 	 �� �� � � (the
zone� collects the clock valuations equivalent to� given by� �� 5 � � �.��� �2� for

each2 � 1; therefore from�
�� � ( and from the definition of�� the zone� (

collects the valuations which are like the elements of� but with the clocks� 5 with2 � � � ��� set to zero). Thus,� ( � � �� �. Moreover,� ( "� ,*� �� ( � in an obvious
way (we have� ( � � #�$; if a transition

�( � )* �� (� became enabled by firing�
then there exists2 � � � ��( � such that for all� ( � � ( � ( �� 5 � � � (and therefore

� �� 5 �  �� � ��( �), whereas for all the other transitions
� � )* �� (� the existence of

2 � 1 s.t. � �� 5 �  �� � ��� follows from � "� ,*� �� �, since the values of clocks
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have not been increased). Thus, for the detailed region� ( such that� ( � � ( (and

therefore� (�
0�� () we have�

�� � (, which ends the proof.
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Abstract. Nets-within-nets offer some modeling possibilities which are
not available (or only to a limited extent) in classical Petri nets for-
malisms like P/T nets or colored Petri nets. This holds especially true in
the formalism of reference nets. The extended modeling possibilities arise
from the newly come concepts, e.g. net instances generated at run-time
and synchronization between transitions.
This paper focuses on practical aspects of the new modeling possibilities
– rather than theoretical backgrounds – and demonstrates them in prac-
tical examples. As a modeling language reference nets [7] are used. This
is the only nets-within-nets formalism implemented up to now and with
Renew [8] a powerful simulation tool-set is available.
The examples presented throughout the paper can serve as an introduc-
tion to advanced modeling using reference nets.

1 Introduction

Petri nets have a long tradition as modeling means, particularly for distributed
systems. Such models serve for the purpose of analyzing the modeled systems.
However, the models theirselves can also be seen as an implementation of the
system (implementation by modeling). For both application purposes certain
modeling problems are seen as "notoriously difficult" to model with Petri nets
[1]. Suggested solutions exist, for instance, in the form of collections of so-called
net patterns or net components which suggest – more or less elegant – solutions
for different problems. From this, the collection of patterns for colored Petri
nets of Mulyar and Aalst [9] is most extensive. With the study of the patterns
introduced there, it strikes the reader’s mind that often and – from the point of
view of the author – sometimes without need, basic functionality of a pattern
is programmed in the respective inscription language. For colored Petri nets the
inscription language is ML. An example for this is the use of lists (e.g. pattern
"Aggregate Objects"1 in [9]) and similar data types (containers). This raises
the question, whether the use of non-Petri-net constructs is unavoidable. On the
other hand, it maybe the case that similar functionality can also be expressed
in the net structure itself. This question can be answered of course only for each
1 The pattern Aggregate Objects uses the built-in list type of CPN Tools.
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net formalism individually. Moreover, a profound knowledge of the respective
modeling possibilities is necessary. Therefore, the modeling will not be examined
here for colored Petri nets [5], but for reference nets [7,8]. Basically, reference
nets offer similar expressive power as colored Petri nets. Nevertheless, in detail
deviations arise, some of which are exemplarily stated here:

Colored nets (tool Design/CPN or CPN Tools)

– Inscription language ML
– global (static) place fusion
– static hierarchy concept (transition refinement)

Reference nets (tool Renew)

– Inscription language Java
– (global) synchronous channels: dynamic transition fusion
– dynamic hierarchy concept using net instances and references

Therefore, the statements and models of this paper can not or only to a
limited extent be directly transferred to colored Petri nets.

From the various modeling possibilities the following are examined in this
paper: modeling of data types (tuple, list,. . . ), special arc types, control struc-
tures (loops), and recursion. Before doing so, we now take a short look at the
formalism of reference nets. More information, especially on the practical appli-
cation of this net type can be found in the Renew guide [8] that accompanies
the Renew modeling tool.

2 Introduction to Reference Nets

Reference nets (defined in [7]) are basically higher-order nets, based on Petri nets
whose arcs are annotated by a special inscription language. Java expressions were
chosen as the primary inscription language, but with addition of tuples and some
other changes. As usual, variables are bound to values, expressions are evaluated,
and tokens are moved according to the result of arc inscriptions. Additionally,
there are also transition inscriptions.

– Guards, notated as guard expr , require that the expression evaluates to
true before the transition may fire.

– expr =expr can be inscribed to a transition, but it does not imply assign-
ment, but rather specification of equality. Variables must be bound to a fixed
value during the firing of a transition. This means that modify assignments
like x=x+1 do not make sense.

– Java expressions might be evaluated, even when it turns out that the tran-
sition is not enabled and cannot fire. This causes problems for some Java
method calls, therefore the notation action expr is provided. It guarantees
that expr will be evaluated exactly once, a feature that is needed when side
effects (e.g. changes to Java objects) come into play.
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When a net is constructed, it is merely a net template without any marking. But
it is then possible to create a net instance from the template. In fact, an arbitrary
number of net instances can be created dynamically during a simulation. Only
net instances, not the templates, have got a marking that can change over time.

– A net instance is created by a transition inscription of the form var :new
netname . It means that the variable var will be assigned a new net instance
of the template netname . The net name must be uniquely chosen for each
template that we specify.

It should be noted that Renew supports the concepts of nets-within-nets (see
[10]) which is a major research topic. In order to exchange information between
different net instances, synchronous channels were implemented. They provide
greater expressiveness compared to message passing. Unlike the synchronous
channels from [3] which are completely symmetric, we will impose a direction of
invocation. The invoking side of a channel will be known as the down-link, the
invoked side is called the up-link.

– An up-link is specified as a transition inscription :channelname(expr,...).
It provides a name for the channel and an arbitrary number of parameter
expressions.

– A down-link looks like netexpr:channelname(expr,...)where netexpr is
an expression that must evaluate to a net reference. The syntactic difference
reflects the semantic difference that the invoked object must be known before
the synchronization starts.

To fire a transition that has a down-link, the referenced net instance must provide
an up-link with the same name and parameter count and it must be possible to
bind the variables suitably so that the channel expressions evaluate to the same
values on both sides. The transitions can then fire simultaneously. Note that
channels are bidirectional for all parameters except the down-link’s netexpr .
E.g., a net might pass a value through the first parameter of a down-link and
the called net might return a result through the second parameter of the same
channel. This is similar to the undirected parameters of Prolog predicates, but
different from the invocations of Cooperative Nets by Sibertin-Blanc (see [2]).

A transition may have an arbitrary number of down-links, but at most one
up-link. (Again, the similarity with Horn Clauses in Prolog does not occur by
chance.) A transition without up-links will be called a spontaneous transition,
because it may fire without being invoked by another transition. A transition
may have (at most) one up-link and (several) down-links at the same time. A
transition may synchronize multiple times with the same net and even with the
same transition.

With this short introduction to reference nets in mind we now look at ad-
vanced modeling possibilities.
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3 Data types

All variants of high-level Petri nets2 permit the usage of different data types like
numbers, characters and strings or logical values. In addition, also composite
data types can usually be used. It has to be distinguished between finite and
infinite data types. The definition of the data types usually follows that of the
respective inscription language of the net formalism, thus, for instance, ML or
Java. Both mentioned languages are so called universal computer languages, so
that arbitrary data types can be defined – with more or less effort. Nevertheless,
the question is more interesting whether the required composite data types can
also be provided by expressive means of the net formalism itself.

For all kinds of finite data types the solution is obvious, mostly trivial: Com-
ponents of fixed length can be modeled using sub-nets or dedicated net instances,
that store the data in separate places and allow for suitable access. Examples
for such data types are records (Pascal) or structs (C).

However, such data types always show a fixed upper limit in storage space
(the number of places), so that for the case of potentially infinite data types
other solutions have to be investigated.

One modeling element for infinite data types is quickly found: Each place can
store an arbitrary number of tokens (data). Nevertheless, it is problematic that
the order of the data is lost and, even worse, (only) dis-arrayed access is possible.
The only data type which can be implemented this way is the multi-set3.

An additional common restriction is that a so-called zero test, the identifica-
tion of an empty place, is not possible in most common net formalisms4 . Thus
problems arise necessarily, for instance with the calculation of the cardinality of
a multi-set. A common and popular solution to this problem is the introduction
of an external or integrated counter. However, this solution has the disadvan-
tages of introducing an infinite data type (e.g. of type natural numbers) and
restricting possible concurrent access to the data place.

Therefore, we use the data type "list" as a starting example for our search
for alternative implementation possibilities.5

A classic of the list programming is the creation of a list of pairs nested into
each other: (elem1, (elem2, (. . .)))

2 The term "colored Petri net" is ambiguous as at refers to the general concept of nets
offering structured data types as well as the special formalism of Colored Petri Nets
as defined by Jensen [5].

3 In fact, only a restricted implementation of the multi-set is possible, see the notes
on testing for emptiness.

4 for good reasons
5 Reference nets not only offer list implementations in the inscription language Java,

but also offer a built-in data type list which will be used later in this text. Neverthe-
less, we explicitly search for alternatives using only net structures or other first-order
concepts of the net formalism.
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[]

[o,t]

t

[o,t]

t

:addElem(o) :removeElem(o)

:new()

[]

[o,t]

:leer(false):leer(true)

Fig. 1. List implementation using nested tuples

For reference nets the predefined data type “tuple” exists6. A tuple has an
arbitrary, but fixed arity and, therefore, can not be used directly as a list substi-
tute. However, 2-tuples (pairs) can be nested continuously into each other like in
Figure 1 which summarizes typical access operations of a list. A list can be gen-
erated from scratch (:new ()) by producing a new net instance (which contains
the list). The occurrence of this transition puts an empty tuple on the central
place of the net. This empty tuple can be tested by the transition at the left
bottom and returns via the channel :empty the value true. From an empty list
no element can be removed, so the transition on the right side inscribed with
the channel :removeElem is not activated. However, a new element can be put to
the list at the head via channel :addElem. Adding a new element adds another
nesting layer to the list representation. After that the test for emptiness fails
(transition with channel :empty(false)) and the element could be removed.

The claimed goal of this paper was to renounce (predefined) data types as
much as possible and whenever possible rely on description means of the net
formalism only. For the presented solution attempt, the problem is to substitute
the tuples. This is possible in reference nets by the application of net instances.
A tuple net instance for the application as a list element is to be found in
Figure 2. It allows as a specific feature also for an empty initialization. The list
implementation does not differ substantially from the model with tuples. It is to
be found in Figure 3.

In analogous ways more complicated list types can also be defined, like queues
or priority lists. This is not carried out in detail here and is recommended to the
reader as a practical assignment. From now on, in this text it is assumed that lists
can be implemented completely with nets. Therefore, the built-in list type which
leads to substantially clearer models is used for reasons of simpler representation.

6 The tuple is not predefined in the inscription language Java, but explicitly has been
designed for reference nets. It is supported by a short-hand notation using square
brackets.
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element

list

:empty(false)

:empty(true)

element

list

:new()

:head(element,list):new(element,list)

Fig. 2. List element as a net instance

l

l:empty(b)

nl

l

l

nl

:addElem(e)

l:head(e,nl)

:empty(b)

:new()

l

import de.renew.net.NetInstance;
NetInstance l,nl;
String e;
boolean b;

l: new listelem()

nl: new listelem(e,l)

:removeElem(e)

Fig. 3. A list implementation using the net instances of Fig. 2
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Nevertheless, it is assured that in each case also the implementation introduced
above could be used.

4 Special arcs

Some Petri nets formalisms offer special arcs which go beyond the functionality
of usual arcs. These are, for instance, flexible arcs, reset or clear arcs, inhibitor
arcs or transfer arcs. For this paper, of particular interest is the reference net’s
specific feature of flexible arcs. The other arc types are not treated here, but
bibliographical reference is given.

4.1 Flexible arcs

"net"
x

"arc" "transition"
"inscription"

"place"

[new String[5],4]

[a,i][a,i-1]

[a,-1]

[]
aa

a

a a

guard i>=0;
action a[i]=x;

Fig. 4. Example of flexible arcs

Flexible arcs are a specific feature of reference nets. They allow to deposit or
remove several tokens from a place at once. However, the amount of tokens has
to be specified in advance what is the difference e.g. to reset or transfer arcs.
The specification of the amount of tokens is implemented technically in Renew
with the help of a Collection (Java class, for example, Array, Vector etc.) or a
tuple or a list (built-in types). Flexible arcs activate a transition, if all tokens
which are included in the inscribed collection can be removed from or deposited
on the connected place.

The net from Figure 4, which was taken from the Renew documentation
[8] together with this explanation, illustrates the use of flexible arcs. On the
left hand side you can see a classical way to remove five tokens from a place
by looping with an explicit counter. One after another the tokens are collected
and assigned to an array, which results in a rather clumsy net structure. Now
we can see the two kinds of flexible arcs in action on the right hand side. One
transition puts five tokens onto a place and another transition removes all five
tokens atomically.
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{"a","b","c","d"}

h

l

start
this:ch(l)

link

this:ch(t)
:ch({h:t})

:ch({})
stop

Fig. 5. Simulation of a flexible arc using synchronous channels

The simulation of a flexible arc in Figure 5 shows the case of a flexible arc in
the output area of a transition - the reverse case can be constructed analogously.
In the case shown the internal list data type is used to store some example
values (strings). This is done to keep the example net simple. Nevertheless, it
is possible to use an arbitrary Java Collection7 type containing an arbitrary
number of elements.

The simulation of the flexible arc shown here is even more generic than the
original flexible arc built-in in Renew, as will be proved in the following section.
Simultaneous depositing of several tokens happens by continuous channel calls,
by every call the list head is put as a token on the place. The remainder of the
list is treated - atomically! - by a (recursive) channel call. The three transitions
handle the three distinct cases:

Start of the call chain (left transition start), is inscribed with only one down-
link. The transition link in the middle handles non-empty lists by extracting the
list’s head h, putting it on the place below and recursively call the channel again
with the tail t of the list as a parameter. The transition stop on the right ends
the call chain when the list is empty.

The net for simulating a flexible arc serves as a kind of pattern for several
other problems as well. This net pattern is suited for the treatment of arbitrary
loop constructs what is shown in the next section. Also well-known list oper-
ators known from functional programming languages like fold or map may be
implemented using this pattern.

4.2 Transfer, reset, and inhibitor arcs

These arc types can also be simulated by means of net instances as Michael
Köhler has already pointed out in [6].

7 Java class
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5 Control structures and recursion

Data types and control structures are closely related, because complex data
types are often constructed using (non elementary) controlling structures as for
example loops.

5.1 Elementary control structures

The modeling of sequences, branches and concurrency is a trivial task using
net formalisms like P/T nets. In addition, reference nets permit a restriction of
concurrent structures to real parallelism. This is demonstrated in Figure 6.

[] a

b

c

d

this:ch()

:ch()

Fig. 6. Forced parallel execution of two concurrent transitions

In the figure both transitions b and c which are – following standard Petri
net semantics – concurrent to each other are synchronized by the synchronous
channel :ch. They can only occur at the same time. Therefore they are executed
in parallel.

5.2 Loops

Petri nets permit the modeling of loops with the basis elements already. The
conflict between the continuation of a loop and its termination can be decided,
for instance, by a guard inscription.

As a speciality, reference nets permit the possibility of a loop processing that
can be carried out even atomically (!) in one step. This is done similar to the
simulation of the flexible arc in Figure 5.

An example of this is to be seen in Figure 7. The example net calculates the
factorial of an input number - in the figure the number on the place input. The
net simulates a for loop (loop termination or number of iterations is known in
advance). As stated before, the layout of the net is similar to that of Figure 5,
because the functionality is similar, too.

Only the case of a loop is demonstrated, where the termination takes place
after a fixed number of iterations (for-loop), but also the more general case of a
loop with a variable termination condition (while loop) can be implemented with
the same means. This means that non-terminating loops are possible – similar
to the well-known µ-operator of recursive functions.
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this:ch(n-1,n*nn)

n

n

:ch(n,nn)

Start

Weiter :ch(0,n) Ende

5

this:ch(n-1,n)

guard n>0

Fig. 7. Calculation of factorials in the style of Figure 5

5.3 List Operators

List operators known from functional programming languages8 are another ap-
plication case. The simulation of flexible arcs in Figure 5 can easily be extended
with operators inscribed to the output arc that puts the tokens contained in the
list to the output place. In this way, a so-called map operator is implemented,
that applies an operation to all elements of a list. An example can be found
in Figure 8. In 8(a) a static operation is performed: Each element of the list
is doubled. This can also be done dynamically – see Figure 8(b). The applica-
tion of the operation on every list element is done via a synchronous channel
call to an interchangeable sub-net. The name of the operation is passed as a
value. The function call has to be atomic. As an potential alternative, a triple
operation is also provided in the example. This simulates so-called higher-order
functions – functions, that serve as an parameter for other functions, especially
list functions.

Numerous other applications in the area of list programming are possible, for
instance the separation of the list elements whether they are put on the output
place or not – a so-called filter operation. Another example is the partition of a
list in two halves, as it is used in Figure 10 as part of an implementation of the
Merge sort algorithm.

8 For example the functional programming language Miranda [4] offers several list
operators, but other well-known functional languages like Lisp, ML or Haskell have
similar concepts.
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{"a","b","c","d"}

h

l

start
this:ch(l)

link

this:ch(t)
:ch({h:t})

:ch({})

stop

(a) Static

[{1,2,3,4,5},"double"]

[l,op]

start
this:ch(l,op)

link

this:ch(t,op)
:ch({h:t},op)

:ch({},op)

stop

double

triple

:f("double",n,n*2)

:f("triple",n,n*3)

r
this:f(op,h,r)

(b) Dynamic

Fig. 8. Map operator

6 Recursion

Reference nets allow to create net instances at run-time. When creating a net
instance, arbitrary parameters can be handed over. Thus net instances can call
themselves (create a new instance) in particular in a recursive manner. Therefore
they are well suited to implement recursive algorithms.

n

0 n
guard n>0

n f

n f

f:res(fn)

:res(n*fn)

:res(1)

:new(n)

f: new factorial(n-1)

Fig. 9. Recursive net for calculating factorials

As an introducing example of a recursive net, the calculation of the factorials
has been implemented once again in Figure 9. After instantiating this net with
a number, it is checked whether this number is zero or greater than zero. In case
of zero, the result (1) can be handed back. In the other case (guard n>0), a new
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a

a

:new({a})

:sorted({a})

:new({a,b:r})

{a,b:r}

l

this:split(l,{},{})

:split({a,b,c:r},l1,l2)
this:split({c:r},{a:l1},{b:l2})

:split({a,b:{}},l1,l2) :split({a:{}},l1,l2)

{a:l1}
{b:l2}

{a:l1}
l2

m:new mergesort(l) m:new mergesort(l)

m m

m:sorted(l) m:sorted(l)

mm

l1 l2

l l

l l

this:merge(l1,l2,{})

:merge({a:r1},{b:r2},l)

guard a>b
this:merge(r1,{b:r2},{a:l})

:merge({a:r1},{b:r2},l)

guard a<=b

this:merge({a:r1},r2,{b:l})

:merge({a:r},{},l)
this:merge(r,{},{a:l})

:merge({},{b:r},l)
this:merge({},r,{b:l})

:merge({},{},l)

l

l
:sorted(l)

l

l

this:rev(l,{})

:rev({},l)

:rev({a:r},l)
this:rev(r,{a:l})

termination

split the list-to-sort

recursive call

merge two (sorted) lists

reverse list

Fig. 10. Merge sort (descending order)
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net is instantiated with n-1 for calculating the factorial for n-1. The number n as
well as this net instance are stored. Later, the result of the factorial calculation
is available. This is multiplied by n to come to the result for the factorial for n.

More complicated recursive algorithms are, for example, the well-known sort-
ing algorithms like Merge sort and Quick sort in the Figures 10 and 11.

Both sorting algorithms work on lists and include some interesting list op-
erations as intermediate steps. The Merge sort algorithm in Figure 10 includes
the splitting of the list in two parts (split the list-to-sort), the recursive call of the
net, the merge of the sorted list parts and a list reversion (reverse list). These list
operations are implemented using the flexible arc pattern from Subsection 4.1
and thus demonstrate its usefulness.

{a}

:sorted(l)

:new({a,b:r})

{a,b:r}

:split(a,{b:r},l1,l2)
this:split(a,r,{b:l1},l2)

:split(a,{},l1,l2)

l2

q:new qsort(l) q:new qsort(l)

q q

q:sorted(l) q:sorted(l)

qq

l1 l2

l l

l l

{a:r}

this:split(a,r,{},{})

:split(a,{b:r},l1,l2)
this:split(a,r,l1,{b:l2})

guard a>b guard a<=b

l

:new({a})

{}

:new({})

l1

a

a

:sorted(l1.append({a:l2}))

Fig. 11. Recursive net demonstrating the Quick sort algorithm

For didactic reasons the nets are modeled with some additional net elements,
so that the steps of the algorithms building up on each other are easily to be
seen. Both sorting algorithms could be modeled in a more compact manner.
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7 Outlook and Further Work

The modeling possibilities shown here demonstrate only a small amount of what
is possible to model and how this could be done. In no way a claim for complete-
ness is raised. In particular, the examples introduced here have been collected
not in view to cover, for instance, the collection introduced by Mulyar and Aalst
[9]. The purpose was rather to introduce nets and modeling possibilities that
appeared to be “elegant” or at least unusual to the author. In this sense the
examples sometimes resemble introductory examples from the Renew manual
or fulfill similar purposes. A closer look reveals the full power of the concepts
shown here, which goes way beyond the manual examples.

The examples shown in this paper can be useful in manifold areas. They were
designed with no special application in mind. One possible area of application is
education: concepts like recursion are directly shown in the net structure rather
than hidden in an inscription language. Another purpose is to show the power
of the modeling techniques. This is done by simulating known powerful concepts
(e.g., again, recursion). In addition, the net concepts can be used to build elegant
models.

Further work could be to examine similar modeling problems in other net
formalisms than reference nets. A first candidate would be the formalism of
Colored Petri nets as defined by Jensen [5]. A more structured approach to
provide solutions to known modeling problems could lead to a complete set of
reference net patterns. Such an approach would include a complete discussion
of common Petri net elements like variants of arcs. Each net element should be
analyzed for modeling possibilities like in this paper.
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Abstract. Project engineering (as a special part of systems engineering)
is a domain where suitable formal models and tools are still needed. The
approach used for projects and resources modeling affect the way how
corresponding computerized tools are designed and implemented. The
paper presents a way how the dynamically instantiable, multilevel Petri
nets can be applied in all significant processes of project engineering,
especially in the project planning, scheduling, monitoring, and analysis.
The main emphasis is put on the resources modeling, simulation, and op-
timization during the project life time. We use the Object oriented Petri
nets (OOPN) formalism which is a kind of multi-level Petri nets with
a possibility to synchronize events at different levels. In the case of the
project modeling domain, we use two levels. The first level corresponds
to the project plans and the second level corresponds to the resources.

Key words: Object oriented Petri net, modeling, simulation, monitor-
ing, optimization

1 Introduction

Project engineering and management domain is a very specific part of business
sphere. It deals with higly dynamic business environment where only a few facts
is predictable. That is why we need to search for new methods and tools for
projects modeling, control and optimization, preferably on a clear, formal base.

Project engineering concerns conceptualisation, development, integration,
implementation and management of projects in a variety of fields. It is a part
of the broader domain - systems engineering. Systems engineering focuses on
how complex engineering projects should be designed and managed. It deals
with work-processes and tools to handle such projects, and it overlaps with both
technical and human-centered disciplines such as control engineering and project
management. It focuses on defining customer needs and required functionality
early in the development cycle, documenting requirements, then proceeding with
design synthesis and system validation while considering the complete problem,
the system lifecycle. Systems engineering encourages the use of tools and meth-
ods to better comprehend and manage complexity in systems. These tools include
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Modeling and Simulation, Optimization, System dynamics, Systems analysis,
Statistical analysis, Reliability analysis, and Decision making [1].

An important part of project engineering is resources management domain on
which this paper is focused. This domain is the most crucial part of project man-
agement because it affects success and/or failure of the whole project (project
portfolio). We keep in mind not only human resources, but material, financial
etc., too. Generally, it depends on what/how a resource (or a resources group)
is defined and evaluated.

The approach used for projects and resources modeling affect the way how
corresponding computerized tools are designed and implemented. We use object-
oriented Petri net-based framework. It is described in section 2. Our approach
to the projects and resources modeling is decribed in section 3. Before that, we
define some basic domain notions and describe motivation and related work.

1.1 Basic Notions

In the following, basic terms and relations of project management and plan-
ning/scheduling domains are given.

Project is a temporary effort undertaken to create a unique product or service,
or result conforming to certain specifications and applicable standards [4].

Process A process is a series of actions bringing about a result. It is a complex of
mutually connected resources and activities, which changes inputs to outputs. At
present, activities and resources under the project are managed almost entirely
like processes [4].

Project management [33] is a procedure of managing and directing time, ma-
terial, personnel and costs to complete a particular project in an orderly and
economical manner; and to meet established objectives in time, costs, and tech-
nical results. Project management is the application of knowledge, skills, tools,
and techniques to project activities to meet project requirements. Project man-
agement is accomplished through the use of the processes such as: initiating,
planning, executing, controlling, and closing [31].

Project Portfolio Management [9, 5, 22] is about more than running multiple
projects. Each portfolio of projects needs to be assessed in terms of its business
value and adherence to strategy. The portfolio should be designed to achieve a
defined business objective or benefit.

Planning and Scheduling [33, 29, 30] are processes dealing with tasks or activ-
ities scheduling in time and space. Their main goal is to gain necessary tasks
scheduling on limited resources by use of mathematic techniques and heuristic
methods. Planning is a process of a set of proper activities creation to gain the
predefined goals. Scheduling is a process of converting a general or outline plan
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for a project into a time-based representation given information on available
resources and time constraints.

A task is an object which is planned. It is characterized by own properties
and inherent structure. An operation or subtask, too, is a particular part of the
whole task. The task consists of one or more operations which can be realized
on one or more resources.

A resource processes the individual operations, eventually, it serves as means
an operation realization. Resources use is to be limited in a system.

Static (Off-line) scheduling [30, 18] requires a knowledge about all the re-
sources, their parameters, all the requirements, constraints and all criteria for
the scheduling process in advance, to complete the schedule before the system
starts to run.

On-line scheduling [18] represents a process of creatin a schedule in run-
time. The schedule is re-created each time the conditions in the environment are
changed or modified. The scheduling method has to be sufficiently fast in this
case.

A timetable/schedule is an organized list, usually set out in tabular form,
providing information about a series of arranged events; in particular, the time
at which it is planned these events will take place.

1.2 Motivation

The main motivation of our underlying research is to simplify the whole pro-
cess of projects engineering by means of sufficient models, techniques, and tools.
Firstly, it is necessary to use an appropriate combination of tools, methods and
techniques from different business domains to find the most effective and opti-
mized solutions (economics theory, cybernetics, systems theory etc.). The next
important goal is to maximize accuracy of duration estimates and while allowing
an adaptation to changing requirements and conditions during project life time.
The main accent is put on resources allocation optimization in context of actual
demands.

Secondary motivation is to demonstrate possibilities of OOPN use in the
project engineering domain, especially in the project scheduling and monitoring.

1.3 Related Work

There are several methods of project analysis already: CPM (Critical Path Meth-
ods), PERT, GERT, MPM, and others. These techniques are successful in an
offline model of planning – it is quite difficult to monitor and control project
(plan) performance and, moreover, to model and detect resource limitations.
Thus, it is important to find other ways and possibilities how to monitor and
control whole project realization. Especially, if any unexpected events occur is
necessary to modify some of project parameters immediately (through the online
support of project management).

Nowadays there exist many approaches, methods and formalisms which are
using formal models, simulation and optimization in the project management
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domain. Manfred Mauerkirchner is focused on human resource allocation, in
conrete, Resource Constrained Project Scheduling Problem (RCPSP) and uses
a specific non analytical multiobjective function for allocation of qualified hu-
man resources [24]. The other approach which he uses is based on mutiagent
systems [25]. Kabeh Vaziri focuses on heuristic optimization of the allocation
of skilled workers with respect to standard RCPSP problem [36, 35]. He uses
simulation-based approach. Simulation-based multiobjective optimization is also
demonstrated in [28]. In general, solving this problem has been a challenge for
researches for many years. The basic reviews can be found in Morton and Pentico
[27], Herroelen et al. [11], Hartmann and Kolish [19], Weglarz [37], Brucker, et
al. [7]. In this concepts different methods and techniques for a suitable solution
searching are used, for example simulated annealing (SA), genetic algorithms
(GA), tabu search and greedy search etc.

Dong-Eun Lee and Jonathan Jingesheng Shi in [23] are targeted on Stochastic
Project Scheduling Simulation (SPSS) in combination with statistical analysiss
tools. Their approach is based on CPM, PERT, and Discrete Event Simulation
(DES) integration into one system.

Several approaches use Petri nets for project modeling, e.g. [17, 38, 12]. Kris-
tensen et al. [20] propose a scheduling tool which is based a model specified by
Coloured Petri Nets. It employs state space analysis capability of CPNTools for
scheduling. The authors propose two algorithms. Their performance depends on
a state space size and structure.

But, an interesting possibility which is still neglected nowadays is object ori-
ented principles together with Petri nets use in the project planning, scheduling
and monitoring. It is necessary to implement it by a suitable way to realize not
only off-line scheduling, but also on-line optimization or dynamic modification
of project parameters depending on the actual external conditions which are
evolving in time (changes in resources structure, in project plans etc.).

Actually, Avanes [6] deals with adaptive workflow scheduling under resource
allocation constraints and network dynamics. He proposes a dynamic schedul-
ing procedure for distributed workflow managenent. On the other hand, we are
focusing rather on basic design patterns for projects and resources modeling by
means of a formalism based on Petri nets and objects. A the same time, we
take in account model continuity in all phases of project engineering and also
adaptation to the changing conditions in the environment.

We use the Object oriented Petri nets (OOPN) formalism [14, 8], which is a
kind of the multi-level Petri nets [34] with a possibility to synchronize events at
different levels. The OOPN formalism is very interesting for the project portfo-
lio modelling domain because it offers the concept of dynamically instantiable
method nets and shared places belonging to an object net. This feature allows for
straightforward modelling of resources shared among a set of running projects
(processes). Apart from obvious approaches in the area of project modeling, our
model is well structured and allows for dynamic instantiations of project plans
or sub-plans.
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2 Object Oriented Petri Nets

A lot of attempts to combine Petri nets and object-orientation has been done
since 1980s. The probably best known issues have been introduced by Lakos
[21], Sibertin-Blanc [32], Moldt [26], and Valk [34]. One of the approaches is a
formalism called Object Oriented Petri nets (OOPN) and PNtalk language and
system that was developed in 1994 and published in [14, 8]. It combines pure
object-orientation inspired by Smalltalk [10] with high-level Petri nets.

Following the Smalltalk-like style, all objects are instances of classes, every
computation is realized by message sending, and variables can contain references
to objects. A class defines structure and behavior of its instances. A class is de-
fined incrementally, as a subclass of some existing class. In OOPN, this classical
kind of object-orientation is enriched by concurrency. Concurrency of OOPN is
accomplished by viewing objects as active servers. They offer reentrant services
to other objects and at the same time they can perform their own independent
activities. Services provided by the objects as well as the independent activities
of the objects are described by means of high-level Petri nets - services by method
nets, object activities by object nets. Tokens in nets are references to objects.
Apart from the concurrency of particular nets, the finest grains of concurrency
in OOPN are the transitions themselves (they can represent concurrency inside
a method or object net).

An example illustrating the important syntactic elements of the OOPN for-
malism is shown in Figure 1. In the following, the OOPN syntax and semantics
are briefly described.

Stack is_a PN

push: x
x

return

x

.
()

t

(x|t)

..

return

xt

(x|t)

pop

Main is_a PN

(x|t)t

..
5‘ .

s := Stack new
s

s s

5‘.
..

.

s syncpop: #wantedToken

s

synchronous portreturn place

class name class ascendant initial markingmessage pattern

object nettransition action

testing arc

transition guard

parameter place

method net

syncpop: x

x := self produce.
s push: x

y := s pop.
self consume: y

st

3‘.

Fig. 1. An OOPN example

An Object Oriented Petri Net (OOPN) consists of Petri nets organized in
classes. Each class consists of an object net and a set of dynamically instantiable
method nets. Places of the object net are accessible for the transitions of the
method nets. Object nets as well as the method nets can be inherited. Inher-
ited transitions and places of the object nets (identified by their names) can be
redefined and new places and/or transitions can be added in subclasses. Inher-
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ited methods can be redefined and new methods can be added in subclasses.
Classes can also define special methods called synchronous ports, which allow
for synchronous interactions of objects. Message sendings and object creations
are specified as actions attached to transitions. The transition execution is poly-
morphic — the method which has to be invoked is chosen according to the class
of the message receiver that is unknown at the compile time. A token in a place
represents either a primitive object (e.g., a number or a string) or an instance of
an OOPN class. The instance consists of an instance of the appropriate object
net and possibly several concurrently running instances of the invoked method
nets.

x > 0

x

x

y := x + 1

x

y

y := x + 1

x

y

x > 0

guard

action

Fig. 2. Transition guard and action.

The transition guards and actions (Figure 2) can send messages to objects.
The way how transitions are executed depends on the transition actions. A
message that is sent to a primitive object is evaluated atomically (thus the
transition is executed as a single event), contrary to a message that is sent
to a non-primitive object. In the latter case, the input part of the transition is
performed and, at the same time, the transition sends the message. Then it waits
for the result. When the result is available, the output part of the transition can
be performed. Each method net has parameter places and a return place. These
places are used for passing data (object references) between the calling transition
and the method net (Figure 3).

y := o msg: x

msg: arg

arg

return

send

receive

wait

return

arg
x

y

Fig. 3. Client-server interaction.
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o msg: x
msg: arg

x = arg

Fig. 4. Atomic synchronous interaction.

In the case of the transition guard, the message sending has to be evaluable
atomically. Thus, the message sending is restricted only to primitive objects,
or to non-primitive objects with appropriate synchronous ports. Synchronous
ports allow for synchronous interactions of objects. This form of communication
(together with execution of the appropriate transition and synchronous port)
is possible when the calling transition (which calls a synchronous port from its
guard) and the called synchronous port are executable simultaneously (Figure
4). A special variant of the synchronous port concept is negative predicate. Its
semantics is inverted—the calling transition is firable if the negative predicate
is not firable.

2.1 PNtalk

The OOPN formalism is implemented by a tool called PNtalk. PNtalk allows for
a specification and simulation of OOPN-based models. In PNtalk, it is possible
to specify delayed transition execution (in simulation time). Similarly to Simula-
67, the delay is accomplished by sending hold: to self from a transition action.
It is also possible to send the message hold: to self in a transition guard. In the
former case, the execution of the output part of the transition is delayed, in the
later case, it specifies the required enabling time for the transition. Note that it
is possible to synchronize the simulation time with real time. A more detailed
description of the PNtalk system can be found e.g. in [13, 15, 16].

3 Projects and Resources Modeling

The concept of OOPN-based modeling of the projects distinguishes two-levels in
the model. The first level corresponds to the project plans and the second level
corresponds to the resources. In the following, we explain the concept in more
detail.

Actually, an OOPN object can model multiple projects (project portfolio [22]
[5]). Tokens in the object net’s places represent the shared resources. They are
distributed in the places according to their roles. Method nets correspond to the
individual project plan templates. Their instances can be dynamically created
and destroyed (it corresponds to a start and a finish of a project) and they
share an access to the object net’s places containing pointers to the resource
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objects. Project start is modelled by the appropriate message sent to the project
portfolio object, possibly with parameters. At the same time a new instance of
the method net (i.e. project plan) is created and starts to run. Note that it is
possible to invoke a method (i.e. instantiate a project template) several times
(with specific parameters) and the invocations can run in parallel. It corresponds
to the situation where the project templates are instantiated.

projectA: x

projectC: x

projectB: x

ProjectPortfolio is_a PN

x

y

r1

r2

r3

Fig. 5. Basic idea of project portfolio modeling.

An example of the approach is shown in Figure 5. There are described three
different project templates (OOPN methods) which share the same resources.
Actually, the resource types (their roles) are modelled by places of an object
net). Project templates A and B are collapsed (their structure is not shown).
Invocation of the methods, i.e. the individual projects creation, is accomplished
by sending messages of type self projectA: x to the project portfolio object.

Resources are modelled by individual objects which are available as tokens
in the places. Actually, the tokens are references to the objects. So it is possible
to have a resource available under two and more roles modelled by the places.
Class Resource is depicted in Figure 6.

Each activity (modeled as a transition of a method net which models a
project) attempts to allocate all the resources it needs (by means of the cor-
responding synchronous ports calling) and if it succeeds, it uses the resources
for some time (by means of an invocation of the corresponding method of the
resource). Figure 7 depicts a simple example showing how a resource having two
roles is used by two activities.

The above sketched model demonstrates only the core idea. Actually, it is
necessary to model the resources in the context of some constraints, such as
actual availability, skills, compatibility with the activities etc. In the case of
multiple resources allocated to an activity, we must take in account also the
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Resource is_a PN

allocFor: a duration: d

use

.

self hold: d

(a,d)

(a,d)

.

.

allocated idle

.
return

Fig. 6. Resource – base model.

..
R1 R2

projectA

r

A1

r allocFor: #A1 duration: 10

r use

projectB

r

A2

r allocFor: #A2 duration: 5

r use

a Resource
allocFor: a duration: d

use

.
self hold: d

(a,d)

(a,d)

.

.
allocated idle

.
return

Fig. 7. Conflict of two activities requesting one resource having two roles.

quality of their team collaboration. All these attributes can be expressed using
OOPN formalism effectively. Figure 8 depicts a definition of a resource with
skills specified in a form of a set of tokens (activity, skills) in the correponding
place. Note that the shadow parts of the class specification are inherited from the
superclass. Figure 9 depicts a definition of a resource with availability specified
in a form of a set of tokens (time, duration) in the correponding place.1 Figure
10 depicts an example of multiple resources allocation.

3.1 Scheduling and Monitoring

The above sketched model can serve as a basis for scheduling [29]. A scheduling
process generates a schedule satisfying the specified criteria, e.g. availability,
skills, experience, and costs of the resources. We can use genetic algorithm (GA)
for scheduling. As part of the fitness function, a simulation is performed in order

1 It is possible to define a resource with both skills and availablility defined. But, for
sake of simplicity, we take in account only availability in the following enhancements
of the resource model (as depicted e.g. in Figures 11 and 12).
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SkilledResource is_a Resource

allocFor: a duration: d

.
(a,d)

(a,d)

.

.

allocated idle

use

self hold: (1/s)*d
.

return
skills

(a, s)

Fig. 8. Resource with skills specified.

AvailableResource is_a Resource

.

self hold: d

(a, d)

(a, d)

.

.
allocated idle

allocFor: a duration: d
self isAvailableNowDuration: d

availability

(at, ad)

isAvailableNowDuration: d
t := (DateAndTime now). 
(t >= at) & ((t+d) < (at+ad)) 

.
return

use

Fig. 9. Resource with availability specified.

projectA

a Resource

a Resource

a Resource

a Resource

A1

r allocFor: #A1 duration: 10.
s allocFor: #A1 duration: 10.
t allocFor: #A1 duration: 10

r useWith: s with: t

.
R1

r, s

.
R2

t .
.

Fig. 10. Multiple resource allocation.

to check the feasibility of each candidate schedule and for gaining the essential
performance results such as time and costs.
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SheduledResource is_a Resource

.
(a,d)

.

allocFor: a duration: d
self isScheduledFor: a 
      time: (DateAndTime now) 
      duration: d

schedule

(sa, st, sd)

isScheduledFor: a time: t duration: d
(a = sa) & (t >= st) & ((t+d) <= (st+sd)) 

self hold: d

(a, d) .
allocated idle

.
return

use

Fig. 11. ScheduledResource.

SheduledResource is_a AvailableResource

use

.

self hold: d

(a, d)

(a, d)

.

.
allocated idle

allocFor: a duration: d
self isAvailableNowDuration: d

availability

(at, ad)

t := (DateAndTime now). 
(t >= at) & ((t+d) < (at+ad)) 

.
return

(a|t)

t

(a|t)

t

scheduled
activities

finished
activities

isAvailableNowDuration: d

()

Fig. 12. Resource with another schedule representation (usable by GA).

All the scheduling objectives are weighted and aggregated to a single ob-
jective through weighted sum function: v = Σn

i=1wiui, where ui is subutility
produced through objective i, wi is relative importance of objective i. The goal
of the schedule optimization strategy is to maximize v.

The resulting schedule can be attached to the corresponding resource r as
a set of triples (activity, time, duration) in a form of tokens in the the place
schedule (see Fig. 11). When a resource with a schedule is being allocated (by
the appropriate synchronous port calling), it checks whether it is scheduled for
the requested activity, current time and the requested duration.

Nevertheless, we rather use another implementation of ScheduledResource
class (see Fig. 12). It is used also for simulations performed as part of fitness
function during the scheduling process. It uses a schedule representation which
is compatible with the schedule genome used by GA (we use the schedule rep-
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resentation from [28]). It is represented as a list of scheduled activities in the
appropriate place. During simulation, a resource checks (besides availablilty)
whether it is allocatted for the activities in the defined order. In the following,
we explain the shedule representation (genome) in more detail.

Let us have activities A = {a1, a2, ..., am} and resources R = {r1, r2, ...rn}.
A candidate schedule representation (a genome) is represented as n lists of vari-
able length ((a11, a12, ...a1i1), ..., (an1, an2, ..., anin)). A list represents scheduling
information for a specific resource. Each list entry represents an activity sched-
uled on the resource. The genome is a permutation of all activities, an activity
is present in only one of the lists. It contains no timing information; timing is
generated from the genome using simulation. Simulation also checks feasibility
of the schedule, i.e. it answers the question whether the project can reach its
end state. It is possible because the model with a schedule is deterministic and
the project plans contain no loops.

For a feasible schedule, it is possible to do a stochastic simulation with a
probabilistic specification of the durations of the activities. It generates statistics
about resource usage, costs, and project duration. Such an informatin can be
used as part of fitness function.

A model with the scheduled resources can be used in the monitoring process.
In that case, the model is simulated in real time2 and is being dynamically
updated according to the actual state of the reality. If necessary, a repeated
scheduling is performed on-line. In that case, a clone of the model is used as a
basis for the scheduling process. When a new schedule is found, it is incorporated
back to the model as tokens in appropriate places in all the resource objects.

3.2 On the Implementation

The OOPN-based model of projects and resources is implemented using PNtalk
tool [13, 15, 16].

Allthough PNtalk is a class-based object-oriented language, it is not used here
purely as s typical class-based language. Instead, the above shown application
rather needs to deal with individual instances. It concentrates more on dynamic
evolution of objects in run time than on conceptual design before the system
starts tu run.

As PNtalk is a dynamic language and an operating system which follows the
Smalltalk tradition, it is possible to inspect and manipulate individual instances
in run time in a way that is not known at the time when the instances are
created. The inspection and manipulation with individual instances, i.e. objects
and method invocations, as well as with their classes and methods is possi-
ble thanks to the PNtalk reflective interface (metaobject protocol, MOP) [13].
OOPN/PNtalk MOP allows for inspection and edition of particular nets which
define classes, as well as individual net instances implementing the actually liv-
ing objects and actually running method invocations. It also allows to make a

2 Since it a a very long and slow simulation, a snapshot ot the model can be stored in
a database for most of the time.
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clone of the whole running system or its part and to store/restore it to/from a
database in a serialized form.

It is possible to use PNtalk directly as part of a tool for decision support
in project engineering. As part of future research, we are going to interconnect
it with appropritate user interfaces to make usabe i practice. In future we also
plan to investigate possibilities of PNML [3] representation of the models and
tranformations to/from other tools such as CPNTools [2].

4 Conclusion

The main contribution of the paper is a presentation of a concept of projects
and resources modeling by means od object oriented Petri nets. Projects are
modeled by dynamically instantiable Petri nets (method nets). Their processes
are parts of the project portfolio object. Resources are modeled as objects, which
are available as tokens in the project portfolio object net places. The places
can represent roles of the resources. Allocation and use of the resources are
implemented using OOPN communication mechanisms.

The main advantages of using OOPN in project engineering we see in (1) for-
mal nature of the model enabling potentially an analysis of projects using math-
ematical methods, (2) intuitively understandable model representation thanks
to the visual nature of the formalism, (3) well structured model with clear map-
ping to the notions of the domain by means of simple design patterns, and (4)
model continuity – an OOPN-based model is used as the main model which it
is being dynamically updated continuously during the monitoring process, while
its transformation to/from other views (models) is potentially possible at any
time. The model evolution and its use in the dynamic scheduling process is pos-
sible thanks to the PNtalk open architecture (meta-object protocol), allowing
for cloning, inspection end edition of the model at run time.
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Abstract. PNtalk is a tool based on Object Oriented Petri nets. It
is intended for systems modeling, simulation and prototyping. In some
situations, it is also possible to use it as a programming language and a
framework for final implementation of the systems. The paper presents
a meta-level architecture of the PNtalk kernel and and demonstrates its
reflective features. These features are crucial for the systems development
process as well as for the systems maintenance. The usage of the PNtalk
metaobjects are demonstrated by examples.

Key words: Object-oriented Petri nets, meta-level architecture, mod-
eling, simulation, rapid prototyping

1 Introduction

PNtalk is a tool for modeling, simulation, and prototyping complex systems. It
is based on a formalism called Object Oriented Petri Nets (OOPN). OOPN [8]
combine advantages of object orientation and Petri nets. The OOPN formalism is
based on high level Petri nets allowing to describe the work-flow and parallelism
in the systems. Object orientation of the OOPN formalism allows for better
structuring of the models, which is conform with current software development
methodologies. OOPN define objects in a very similar way like other object
oriented languages but with one important difference – the methods are not
described as the sequences of commands but by means of high-level Petri nets.
At a method call, a new instance (a copy) of the appropriate net is created and
made ready for running.

The current version of the PNtalk tool allows for a higher level of dynamism
and a higher level of control over the OOPN interpretation. PNtalk classes
are special objects which can be built incrementally during run time (like in
Smalltalk [5]). A method is then understood as the least unit constituting the
basic block of the class. Along with considering the method to be a pattern
and the invoked method to be a copy of that pattern, we can also think about
dynamic changes of those structures. By the pattern change, we obtain new be-
havior of its new copies (invocations). The copies originated till this time are
not changed. Nevertheless, the copy itself can be modified according to the same
principle.
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To achieve features described above, the open implementation issue including
the reflective and meta-level architectures was taken into account. The feasibility
of the open implementation approach depends on the degree of its implementa-
tion (thus on what the designers do consider as a profitable limit of the open
implementation degree). The PNtalk system architecture is based on the idea of
having the system as open as possible. The paper does not bring complex case
study featurign reflection. It rather concentrates on the explanation of main
architectural features using simple examples.

The idea of object-oriented computational reflection (including structural
and behavioral changes of objects at run time) was proposed in 1970s [5] but
roots of this concept are much older (Lisp, Universal Turing machine). As the
examples of recent activities the following projects can be cited – Kiczales [12]
and Maes [16] introducing aspect-oriented programming, Actalk [3] introducing
concurrency via reflection in Smalltalk, Apertos [22] and TUNES [1] are attempts
to develop a highly flexible operating system using computational reflection. As
to the reflection in modeling and simulation, the most important (from the
PNtalk point of view) are Barros [2] and Uhrmacher [20] introducing reflectivity
to DEVS [23] in order to allow for structural changes of models. These approaches
are important especially for modeling and simulation of intelligent agents.

Our attempts to incorporate reflection to the Petri nets also are not alone.
Lakos [15] presents a reflective approach to Object Petri Nets implementation.
He emphasizes the advantages of that approach in a clean, flexible and efficient
implementation, and also in a possibility to investigate alternative scheduling
schemes, interaction policies, etc.

The paper is organized as follows. First, we briefly describe the OOPN formal-
ism and its important elements. The third chapter deals with the basic principle
of the PNtalk architecture. The next three chapters describe the main archi-
tectural elements and features of the OOPN classes, OOPN objects, including
simulation, and the inter-object communication at different levels.

2 Object Oriented Petri Nets

A lot of attempts to combine Petri nets and object-orientation has been done
since 1980s. The probably best known issues have been introduced by Lakos
[14], Sibertin-Blanc [19], Moldt [17], and Valk [21]. One of the approaches is
a formalism called Object Oriented Petri nets (OOPN) and PNtalk language
and system that was developed in 1994 and published in [7, 4]. It combines pure
object-orientation inspired by Smalltalk [5] with high-level Petri nets.

Following the Smalltalk-like style, all objects are instances of classes, every
computation is realized by message sending, and variables can contain references
to objects. A class defines structure and behavior of its instances. A class is de-
fined incrementally, as a subclass of some existing class. In OOPN, this classical
kind of object-orientation is enriched by concurrency. Concurrency of OOPN is
accomplished by viewing objects as active servers. They offer reentrant services
to other objects and at the same time they can perform their own independent
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activities. Services provided by the objects as well as the independent activities
of the objects are described by means of high-level Petri nets - services by method
nets, object activities by object nets. Tokens in nets are references to objects.
Apart from the concurrency of particular nets, the finest grains of concurrency
in OOPN are the transitions themselves (they can represent concurrency inside
a method or object net).

An Object Oriented Petri Net (OOPN) consists of Petri nets organized in
classes. Each class consists of an object net and a set of dynamically instantiable
method nets. Places of the object net are accessible for the transitions of the
method nets. Object nets as well as the method nets can be inherited. Inher-
ited transitions and places of the object nets (identified by their names) can be
redefined and new places and/or transitions can be added in subclasses. Inher-
ited methods can be redefined and new methods can be added in subclasses.
Classes can also define special methods called synchronous ports, which allow
for synchronous interactions of objects. Message sendings and object creations
are specified as actions attached to transitions. The transition execution is poly-
morphic — the method which has to be invoked is chosen according to the class
of the message receiver that is unknown at the compile time. A token in a place
represents either a primitive object (e.g., a number or a string) or an instance of
an OOPN class. The instance consists of an instance of the appropriate object
net and possibly several concurrently running instances of the invoked method
nets.

The transition guards and actions can send messages to objects. The way
how transitions are executed depends on the transition actions. A message that is
sent to a primitive object is evaluated atomically (thus the transition is executed
as a single event), contrary to a message that is sent to a non-primitive object.
In the latter case, the input part of the transition is performed and, at the same
time, the transition sends the message. Then it waits for the result. When the
result is available, the output part of the transition can be performed. Each
method net has parameter places and a return place. These places are used for
passing data (object references) between the calling transition and the method
net.

In the case of the transition guard, the message sending has to be evaluable
atomically. Thus, the message sending is restricted only to primitive objects,
or to non-primitive objects with appropriate synchronous ports. Synchronous
ports allow for synchronous interactions of objects. This form of communication
(together with execution of the appropriate transition and synchronous port)
is possible when the calling transition (which calls a synchronous port from its
guard) and the called synchronous port are executable simultaneously. A special
variant of the synchronous port concept is negative predicate. Its semantics is
inverted—the calling transition is firable if the negative predicate is not firable.

An example illustrating the important elements of the OOPN formalism is
shown in Figure 1. Two classes C0 and C1 are depicted there. The object net of
the class C0 consists of places p1 and p2 and one transition t1. The object net
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of the class C1 is empty. The class C0 has a method init:, a synchronous port
get:, and a negative predicate empty. The class C1 has the method doFor:.

o

o := Rand next
t1

p2

p1

#e

C0 is_a PN

init: x
x

x
t1

x

return

x‘#e

o

get: o

o

C1 is_a PN

doFor: x

return

x

c := C0 new.
c init: x.

x t1

t2

c

c get: n
s := s + nc empty

t3

c

s

c

ss s

p1

p20

empty

Fig. 1. An OOPN example.

Let us have an expression C1 new doFor: 3. Its execution leads to the creation
of an instance (object o) of C1 and an instance of doFor: belonging to the object
o. When t1 belonging to the instance of doFor: inside the object o leads to the
instantiation of C0 (let the instance be named o′) and init: inside the object o′.
Then, t1 inside o′ can be executed for three times. Consequently, t2 inside the
instance of doFor: inside o can be executed. Its guard invokes synchronous port
get : of o′. The variable n is boud to the value of the token from the place p2
belonging to o′. When the place p2 of o′ is emptied, t3 belonging to the instance
of doFor : inside the object o can be fired because the negative predicate empty
of o′ is satisfied.

Each OOPN model has its text representation (source code). It is very impor-
tant for the meta level manipulation with models. We will demonstrate it on the
previous example. The Figure 2 shows the text representation of the class C0,
its object net (the keyword object), its synchronous port (the keyword sync),
its negative port (the keyword negative), and its method net (the keyword
method).

Every transition, synchronous port, and negative predicate define its precon-
ditions, conditions, and postconditions. For instance, the synchronous port get:
o is conditioned by the precondition precond p2(o). It means, that the port is
firable if the place contains at least one object and if the port will be fired it
will remove this object from the place p2. In addition, transitions and ports can
have guards (the keyword guard) and actions (the keyword action) as we can
see in the Figure 3 of the class C1 source code.
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class C0 is_a PN

object

place p1()

place p2()

trans t1

precond p1(#e)

action{o := Rand next}

postcond p2(o)

sync get: o

precond p2(o)

negative empty

cond p2(o)

method init: x

place x()

place return()

trans t

precond x(x)

postcond p1(x‘#e), return(x)

Fig. 2. The source code of the class C0.

class C1 is_a PN

method doFor: x

place x()

place p1()

place p2(0)

place return()

trans t1

precond x(x)

action {

c := C0 new.

c init: x.}

postcond p1(c)

trans t2

precond p2(s)

cond p1(c)

guard {c get: n}

action {s := s + n.}

postcond p2(s)

trans t3

precond p2(s)

cond p1(c)

guard {c empty}

postcond return(s)

Fig. 3. The source code of the class C1.

3 PNtalk System Architecture

PNtalk (Petri N et talk) is the tool based on the formalism of OOPN. Its pur-
pose is to make a framework for experiments with simulations as well as formal
approaches to the system design [10, 11]. Both OOPN and PNtalk are closely
associated with the Smalltalk environment. Smalltalk is the inscription language
of the OOPN formalism (actions and guards are described using Smalltalk) and
the PNtalk system is implemented in Smalltalk. The PNtalk system is incorpo-
rated into the other experimental tool named SmallDEVS [6] which is based on
the DEVS formalism [23]. PNtalk uses hierarchical repositories of SmallDEVS
to store OOPN classes and allows for joining models described by OOPN and
DEVS formalisms.

This chapter discusses basic ideas behind the PNtalk system architecture. It
is based on the principles of open implementations [9], namely the meta-level
architecture. These principles are also shown on the examples. They are written
in the Smalltalk environment, but they can be used inside models too.
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3.1 Open implementations

The recent systems for complex application support allow the applications not
only to use the services offered by the system, but they also offer means to
control how these services are provided and processed. The traditional approach
(the black-box abstraction) says that some abstraction (object) should expose its
functionality but hide its implementation. It has many attractive qualities and
brings a possibility of portability, reusing or simplicity of the design process.
Nevertheless, it does not allow to adapt parts of the system according to the
changing requirements, and/or to develop the applications during their life-time
etc. The open implementation principle offers a solution of the problems.

The basic idea of an open implementation is to allow a model to inspect
inner aspects of the domain objects (introspection) and to work upon these as-
pects (reflection). The classic case of an open implementation is the meta-level
architecture partitioning a model into two layers – the domain (or basic) level
and the meta-level [16]. All the objects describing the domain problem represent
the domain level. To each object at the domain level there is a special object
(or a set of objects) at the meta-level – metaobject. The meta-level should be
understood as a denotation of something what stays behind an object and re-
flects (or describes) its features and properties—de facto describes information
about information. A metaobject offers the metaobject protocol for inspecting
and changing the selected aspects of its domain object. The meta-level archi-
tecture allows not only to work upon structures of the domain objects but also
to modify their computational behavior, e.g. the way how the objects react to
messages, what other operations are to be processed in a consequence of sending
or receiving messages, etc.

meta
level

domain
level

PNtalk
class

PNtalk
class
PNtalk
objectPNtalk

object

PNClass
PNObject

PNObject

Fig. 4. The PNtalk meta-level architecture – basic overview.

3.2 Meta-level Architecture

The PNtalk architecture introduces a new meta level between the domain ob-
jects (i.e., PNtalk classes and PNtalk objects) and Smalltalk. Objects belonging
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to the meta-level are implemented by classes of Smalltalk (a basic overview of
the PNtalk architecture is presented in Figure 4). While the Smalltalk meta-level
architecture is based on classes (i.e., objects are instances of their metaobjects),
the PNtalk meta-level architecture is based on objects (i.e., object are not in-
stances of metaobjects, but metaobjects implement the corresponding domain
objects).

The PNtalk meta-level comprises metaobjects which control PNtalk classes
and PNtalk objects. The metaobjects of the first kind describe the structure of
PNtalk classes and define the ways of the manipulation with them. The metaob-
jects of the second kind describe the computational behavior of the PNtalk ob-
jects (instances of PNtalk classes).

3.3 Metaobjects composition

Repository

PNCompiledClass

PNCompiledNet

PNObject

PNCompiledTransitionPNCompiledPlace

PNtalkProcess

PNTransition

PNtalkWorld

PNPlace

PNThread

Fig. 5. The basic composition of the metaobjects.

Before we describe the metaobjects and their protocol, we should pay atten-
tion to the basic composition of them (see the Figure 5). We will not discuss
all parts of the composition, but we will just deal with the most important
ones. As we have already said each OOPN class or object is represented by
its metaobjects. These metaobjects are instances of the suited classes. These
classes are part of the framework implemented, in this case, in Smalltalk. For
instance, the OOPN class is represented by the instance of the framework class
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PNCompiledClass (since the instance is a result of some compilation process we
call it with a prefix Compiled).1

Each OOPN class (the metaobject PNCompiledClass) consists of nets (the
metaobject PNCompiledNet), each net consists of places and transitions, etc.
Each OOPN class is placed in a repository which serves as a name space for
the domain classes. The metaclass for the repository is specified by italic font in
the Figure 5—the repository is a part of the SmallDEVS system to which the
PNtalk system is incorporated. This part is not very important for the way how
the PNtalk system is explaned here; for more details about this please see [6].

Each OOPN object (the metaobject PNObject) is an instance of its OOPN
class. In the architecture, the metaobject PNObject knows about its class reprte-
sented by the metaobject PNCompiledClass. So that if we send a message to the
OOPN object at the domain level, the object looks for the method in the dic-
tionary described by the instance of the class PNCompiledClass at the meta
level.

Each OOPN object consists of processes (the metaobject PNProcess rep-
resents an invocaion of a method or an object net), each process consists of
transitions (the metaobject PNTransition), places (the metaobject PNPlace),
and thread (the metaobject PNtalkThread). Threads represent fired transitions,
the transition can be fired for more times simultaneously. The simulation is rep-
resented by the metaobject PNtalkWorld. Each OOPN object has to be placed
into some world in order to be runnable (i.e. can be simulated).

In addition to this, there is the special metaobject accessible via the name
PNtalk (it is an instance of the class PNtalkSystem) supporting special services
and requirements (garbage collecting, getting other auxiliary metaobjects etc.).
This metaobject is not shown in the presented hierarchy because it is not im-
portant for this paper.

4 Representation of the Domain Classes

This section discusses the part of the PNtalk architecture describing the OOPN
classes. This part consists of objects (and their classes) representing appropri-
ate elements of OOPN classes (i.e., the PNCompiledClass for OOPN class, the
PNCompiledNet for method net, etc.) and other auxiliary metaclasses. The in-
heritance hierarchy of classes ot these metaobjects is shown in the Figure 6. The
auxiliary class PNClassComponent is a root of this inheritance hierarchy and
supplies basic services for all other classes of the PNtalk metaobjects. We will
deal only with the PNCompiledClass in this paper because of two reasons: first,
the other classes from this part is not used in our examples, and, second, due to
the limited space of this paper.

1 For the text simplicity, when we will talk about, e.g., the metaobject
PNCompiledClass, we will understand it as an instance of the framework class
PNCompiledClass.
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Fig. 6. The inheritance hierarchy of the classes of the OOPN class metaobjects.

PNCompiledClass Instances of PNCompiledClass represent the domain classes
of the OOPN formalism. The list of selected meta-operations from the metaob-
ject protocol follows:

compile: compiles a source code of the method (or object) net or synchronous
(or negative) port and adds the compiled one (i.e., the instance of the meta-
class PNCompiledNet, or PNCompiledPort, or PNCompiledNegativePort)
into this PNtalk class

new creates the instance of this PNtalk class
newIn: creates the instance of this PNtalk class and placed it into the specified

simulation space

4.1 Example: Creating the New OOPN Class

Let us have simple example shown in the Figure 7. It demonstrates creating
of the new metaobject representing the new PNtalk class C0. We can see that
OOPN have their text representation (source code) which can be used to the
class description and construction. The figure shows the resulting class in graphic
notion. This example creates one object net and one method net. The object net
consists of the place p1 and the synchronous port get:. The method net consists
of the transition t1 which increments a content of the place p1 and returns the
result (the place return).

5 Representation of the Domain Objects and Simulation

This section discusses the part of the PNtalk architecture describing OOPN
objects and their simulation. This part consists of the classes of the metaob-
jects representing appropriate elements of OOPN objects (i.e., the PNObject for
OOPN object, the PNProcess for running method net, etc.) and other auxiliary
metaobjects. The inheritance hierarchy of these classes is shown in the Figure
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C0 is_a PN

n >= 0

nn := n + 1

get: o
o

inc

return

n nn

nnt1

p1 0

cls := PNCompiledClass new.

cls name: ’C0’.

cls compile: ’

object

place p1(0)

sync get: o

cond p1(o)

method inc

place return()

trans t1

precond p1(n)

guard { n >=0 }

action { nn := n + 1 }

postcond p1(nn), return(nn)

’.

Fig. 7. The example of creating the new OOPN class.

8. We will deal only with the selected metametaobjects in this paper because of
reasons mentioned in the section 4.

Fig. 8. The inheritance hierarchy of the classes of the metaobjects of the OOPN objects
and simulations.

PNtalkComponent The class PNtalkComponent is a root of the inheritance
hierarchy. It offers basic metaprotocol which is common for all metaobjects.
The protocol mainly consists of operations allowing to set or to get the unique
object identification (id, id:), name (name, name:), and parent object (parent,
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parent:) from the metaobject composition point of view (e.g., a place is a
component of some process).

PNPlace Instances of the class PNPlace represent places in object or method
nets. The list of the selected meta-operations from the metaobject protocol fol-
lows:

add:mult: adds multiple copies of specified object into the place
take:mult: gets and removes multiple copies of specified object from the place
contains: tests if the place contains specified object

PNtalkContainer The important metaclass is PNtalkContainer. It offers ba-
sic metaprotocol for such metaobjects which can store other metaobjects. The
metaprotocol allows for adding, removing, and searching of subcomponents. The
list of the selected meta-operations from the metaobject protocol follows:

addComponent: adds a specified component
removeComponentNamed: remove a component identified by the specified name
componentID: gets a component identified by the specified id
componentNamed: gets a component identified by the specified name
componentNames gets a collection of components names

PNProcess Instances of the metaclass PNProcess represent evoked method or
object nets. The list of selected meta-operations from the metaobject protocol
follows:

placeNamed: gets a metaobject of PNPlace specified by its name
transitionNamed: gets a metaobject of PNTransition specified by its name

PNtalkWorld The instance of this class represents one simulation space which
is called world. To be simulated (executed), each OOPN object has to be placed
into some world. The simulation algorithms are implemented by this metaobjects
in coordination with the metaobject of PNObject. The list of selected meta-
operations from the metaobject protocol follows:

start starts a simulation. This operation is asynchronous and enables inner
simulation mechanism. This mechanism calls the step operation in the cycle
until there is at least one event or if the new one occurs.

stop stops a simulation. This operation is asynchronous and disables inner
simulation mechanism.

step does one simulation step. In each step, it sends the message step to the
each object having at least one event to perform.

test tests transitions and event for firability (needed after every changes from
outside).
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PNObject Instances of the class PNObject represent domain objects, i.e., ob-
jects of the OOPN formalism. It offers means for its simulation too. The list of
selected meta-operations from the metaobject protocol follows:

yourClass gets a metaobject representation (the metaobject PNCompiled-
Class) of the OOPN class.

compile: compiles a source code and adds newly created elements (changed
object net, method net, ports, etc.) into the object. These changes do not
take effect in the OOPN class but only in this instance (an OOPN object).

performDomainMessage: performs a domain message. The message is in a spe-
cial form (special metaobject). The operation is asynchronous—it looks for
appropriate method net, creates its instance, i.e., the process as an instance
of the metaobject PNProcess, and returns. The process execution is then
under the control of PNObject and is independent of the other processes. At
the domain level, the message sending is synchronous, i.e., the calling thread
or object waits until this process finished.

testPort: tests a port. The argument is a special metaobject representing the
name of the port and its arguments. If the port can be fired, this method
returns a set of bindings of possible ways of firing.

performBoundPort: performs the bound port. This operation is called after the
operation testPort: and its argument is a special metaobject representing the
name of the port and the binding the port should be fired for.

step performs one firable event. The event can be
– to fire a transition (creating the thread) including performing its first

command
– to perform next command of the thread. The thread is finished along

with the last command (it is taken as an atomic event). If the transition
has no command, it is fired and finished as one atomic event.

– to finish the message processing. If some object is placed into the place
return of the called process, it notifies the calling thread (the new event
is created). When this event is performed, the thread acquires the return
object and destroys called process.

5.1 Example: Simulation

Let us have simple example shown in the Figure 9. It creates new simulation
world (PNtalkWorld new), new instance of the OOPN class C0 (the class is
shown in picture on the left) and puts this object into the world (newIn:).
Because this operation returns a special proxy-metaobject (it will be explained
in the section 6) we have to get the metaobject PNObject by calling meta. Then
we get metaobjects stepwise: the object net (componentID: 1; each object net
is always first process so that it has the number 1) and the place named p1
(placeNamed: ’p1’). Now we put the object 11 into the place (put: 11 mult:
1) and have to test the changed object (we can test the whole simulation too
as it is shown in out example—world test). Now we call the operation step of
the world. This operation is called twice. The first calling causes the transition
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t2 is fired and the operation inc is evoked (the process is created). The second
calling causes the transition t1 is fired and the operation inc is finished along
with the transition t2 (transition firing and ending as well as process creating
and finishing are understood as atomic operations from the one simulation step
point of view). At the end, we can test if the place p1 contains the object 12
(contains: 12).

C0 is_a PN

n >= 0

nn := n + 1

get: o
o

inc

return

n nn

nnt1

p1

0n >= 10

self inc

t2 n
world := PNtalkWorld new.

cls := rep componentNamed: ’C0’.

obj := cls newIn: world.

mobj := obj meta.

objnet := mobj componentID: 1.

place := objnet placeNamed: ’p1’.

place put: 11 mult: 1.

world test.

world step. world step.

place contains: 12. "=> true"

Fig. 9. The example of the OOPN simulation.

6 Communication mechanisms

As we already said, the formalism of OOPN and PNtalk are closely associated
with Smalltalk environment. It implies that there can be native cooperation
between OOPN and Smalltalk objects, so that it is possible to transparently
access OOPN objects from Smalltalk and vice versa. It is also possible to use
Smalltalk objects as the tokens in OOPN and to use PNtalk objects as Smalltalk
objects.

To achieve the general communication between objects at different levels,
the concept of proxyobjects is introduced. The proxyobject does not define the
computational behavior of the receiver, but it ensures message passing in the
requested way and it conforms the response to sent messages in accordance with
the requirements of the sender. Thus, the proxyobject adapts the computational
behavior of the receiver to the computational behavior of the sender.

Using proxy is standard Smalltalk technique to control message passing. A
proxy is obviously implemented in such a way that it handles the exception
messageNotUnderstood. The handler (implemented in the proxy) decides how
to react to the message. However, the PNtalk proxyobjects have to implement
additional properties necessary for the metaobject protocol.

The PNtalk architecture distinguishes several kinds of proxyobjects: a proxy
for Smalltalk object, a proxy for PNtalk object (thus a domain level point of
view) and a proxy for PNtalk metaobject (thus a meta-level point of view). Each
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object is referenced by means of the appropriate proxyobject (mostly the prox-
yobject is either for PNtalk object or for Smalltalk object) devolving incoming
messages on the receiver in the suitable form. The class hierarchy of proxyobjects
is shown in the Figure 10.

Fig. 10. The composition of the metaobjects PNClass and PNObject.

PNtalkObjectProxy It serves as a basic proxy-object to the PNtalk object
represented by the metaobject PNObject. An object (potential sender of a mes-
sage) always refers to another object (potential receiver) by means of a prox-
yobject. In spite of the domain level point of view, the actual sender is either
the Smalltalk object or the PNtalk object. The receiver is always PNtalk object.
Therefore, the metaobject PNtalkObjectProxy always refers to the metaobject
PNObject. The list of selected meta-operations from the metaobject protocol
follows:

performDomainMessage: performs a domain message. The metaobject PNOb-
ject should be always the sender, therefore this operation serves for message
passing between PNtalk objects. It simply forwards the same message to the
receiver (wrapped object).

doesNotUnderstand: operates a message unknown for the proxy-object. The
message is a domain message of the receiver, the sender is not a metaobject
but a Smalltalk object. It sends the caught message via the performDomain-
Message: operation to the receiver and then waits for its result (when the
process is being finished, it notifies this metaobject, see step in the PNOb-
ject metaobject protocol list). This message servers for communication from
Smalltalk object to the PNtalk objects.

asPort returns a metaobject PNtalkPortProxy for the same receiver.

PNtalkPortProxy It servers for accessing PNtalk objects from Smalltalk ob-
jects at the level of ports. The list of selected meta-operations from the metaob-
ject protocol follows:

doesNotUnderstand: operates a message unknown for the proxy-object. The
message is a port calling of the receiver, the sender is not a metaobject but
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a Smalltalk object. It sends the caught message via the testPort: opera-
tion to the receiver. It returns a metaobject PNtalkBoundPortProxy which
represents the result of the port testing.

PNtalkBoundPortProxy It serves as an information storage for the bound
port. It can be got only via the operation testPort: of the metaobject PNtalk-
PortProxy. The list of selected meta-operations from the metaobject protocol
follows:

ifTrue: performs the specified block of commands if the port testing was
successful (there is at least one possible binding)

ifFalse: performs the specified block of commands if the port testing was
unsuccessful (there is no possible binding)

collectBindings: returns all bound variables for specified binding (the num-
ber). The operation returns it as an associated array (a.k.a. map or dictio-
nary) of pairs (name, value).

collectBindings returns a collection of all bindings, for each binding it uses
the operation collectBindings:.

collectVariable: returns a collection of all possible bindings of specified vari-
able.

variable: returns a bound value of specified variable for the first binding.
perform: performs the port for the specified binding (the number).
perform performs the port for the first binding.

6.1 Example: Object Introspection

Let us have the simple example shown in the Figure 11. It supposes that there
is a running default world and the PNtalk classes repository is accessible via
the variable rep. First, we get the metaobject representing the PNtalk class
C0 (see the picture on the left). Then we create an instance of it—in fact, we
get a proxy-object of PNObjectProxy to the metaobject of PNObject. Although
the metaobject PNObject needs to receive domain message in a special way, we
are able to send a message in the ordinary way via the proxy-object (see obj
inc—the return value will be 1).

The second part of this example shows how to use synchronous port with
free (unbound) variables. We send the message in the same way but we use a
special metaobject as the appropriate argument. In our example, we want to get a
content of the place p1 using the port get:. By calling PNtalk variableNamed:
#w, we get the special metaobject representing the variable named v. Then we
get a special metaobject for communication at the port level (obj asPort) and
send the message for port named get: with free variable named v. The result
is the metaobject PNtalkBoundPortProxy storing information about all possible
bindings for variable v (it is just one object in our example). If the test is
successful (see port ifTrue:) we can get a bound value of the variable v (see
port variable: #v).
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C0 is_a PN

n >= 0

nn := n + 1

get: o
o

inc

return

n nn

nnt1

p1 0

cls := rep componentNamed: ’C0’.

obj := cls new.

res := obj inc. "res is 1"

obj inc.

port := obj asPort get: (

PNtalk variableNamed: #v).

port ifTrue: [

res := port variable: #v.

"res is 2"

].

Fig. 11. The example of the object introspection.

6.2 Example: Object Modification

Let us have the simple example shown in the Figure 12. It supposes that there
is running default world and the PNtalk classes repository is accessible via the
variable rep. First, we get the metaobject representing the PNtalk class C0 (see
the picture on the left). Then we create an instance of it. We can compile new
elements into the objects: two synchronous ports put: and get: (see obj meta
compile: ...). The resulted object net is shown in the picture on the right.
Now, we can communicate with the object using these ports. First, we put a
number 20 into the place p1 (see a sequence of obj as Port put: 20 and p
perform). The transition t1 will be fired because the world is running and the
transition becomes firable immediately the port is performed. Second, we put a
number 30 into the place p1 by the same way.

Now, we can get the content of the place p2 using the synchronous port get:
(it is the same principle as described in the Example 11). We can get a collection
of all bindings of the variable v (see p collectVariable: #v; the collection will
contain numbers 21 and 31). When we perform this port for the first binding
(v==21), the number 21 will be removed from the place p2.

7 Conclusion

We have presented the basis of the PNtalk system architecture and have demon-
strated its features by simple examples. The goal of the PNtalk project is not
only to make a tool intended for modeling and simulation but also to make tool
allowing the developed model to be integrated into a real environment. Such a
model can then serve as a part of the prototype or the target application. When
we take in account the reflective features, we can use this system as a framework
for interactive application development. The framework allows us to build mod-
els and prototypes, to combine different paradigms for the model specification,
to experiment with new paradigms, or to allow both interactive and automatic
evolution of the models. For instance, the reflection was used for merging OOPN
and DEVS formalisms.
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C0 is_a PN

n >= 10

nn := n + 1

t2

n
p1

nn

p2

cls := rep componentNamed: ’C0’.

obj := cls new.

obj meta compile: ’sync put: o

postcond p1(o)’.

obj meta compile: ’sync get: o

precond p2(o)’.

p := obj asPort put: 20.

p ifTrue: [ p perform ].

p := obj asPort put: 30.

p ifTrue: [ p perform ].

p := obj asPort get: (

PNtalk variableNamed: #v).

p ifTrue: [

res := p collectVariable: #v.

"res is a collection (21 31)"

res perform: 1.

"the place p1 contains 31"

].

C0 is_a PN
put: o

o

n >= 10

nn := n + 1

t2

n

get: o

o

p1

nn

p2

Fig. 12. The example of the object modification.

One of possible application domains is artificial intelligence, especially the
area of intelligent multi-agent systems. One of our experimental applications is
PNagent [13]. It is a framework for rational agents development. It uses frag-
ments of plans specified by Petri nets and the whole framework is implemented
using OOPN in PNtalk. Consequently, it is possible to continually develop both
the agents and the agent framework using the same language featuring both
visual representation and formal basis. We have experimented with simple case
studies [11, 18] in the field of software engineering, too.
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13. R. Koč́ı, Z. Mazal, F. Zbořil, and V. Janoušek. Modeling Deliberative Agents Using
Object Oriented Petri Nets. In Proceedings of the 7th ISDA, pages 15–20. IEEE
Computer Society, 2007.

14. C. A. Lakos. From Coloured Petri Nets to Object Petri Nets. In Proceedings of
the Application and Theory of Petri Nets, volume 935. Spinger-Verlag, 1995.

15. Ch. Lakos. Towards a Reflective Implementation of Object Petri Nets. In Proceed-
ings of TOOLS Pacific. Melbourne, Australia, 1996.

16. P. Maes. Computational reflection. Technical report, Artifical Inteligence Labora-
tory, Vrije Universiteit Brusel, 1987.

17. D. Moldt. OOA and Petri Nets for System Specification. In Application and Theory
of Petri Nets; Lecture Notes in Computer Science. Italy, 1995.
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Abstract. Modeling of systems is an essential part of software engineer-
ing, especially if one considers complex, dynamic systems, which can be
characterized as systems of systems. Runtime adaptation of the system
needs to be considered as a first-class concept and handled in a system-
atic way throughout the different levels of abstraction.
The formal and intuitive expression of concurrency, the possibility to
model nested systems using the nets-in-nets concept and the clearness of
the models makes Petri nets a good choice to model and implement the
aforementioned systems. However, their static structure does not sup-
port adaptation during simulation time directly.
In this paper we present the concept of units as composable building
blocks for system modeling and give an informal sketch of Unit Theory,
which states how units can be traced back to net foldings of an under-
lying net. Furthermore we derive an implementation of units as special
high-level Petri nets through stepwise refinement of a basic model. To-
gether with a set of basic operations these nets form UnitEd, a modeling
framework which provides simulation time adaptation and successive re-
finements of models.
UnitEd is aimed at modeling and implementing complex systems as
dynamic configuration of small building blocks – the units. Units can
be recursively nested to form non-disjunct hierarchies, that are ideally
suited to model systems of systems at different levels of abstraction.
UnitEd is built as a plug-in on top of Renew, a simulation engine for
Petri nets and related net formalisms.

1 Introduction

Software development faces an ever increasing complexity, which is reflected by
characterizations of modern software systems according to e.g. [1, 2]. Such sys-
tems can be characterized as follows. They are very large, measured in lines of
code, number of subsystems or people involved (as customers, developers, ad-
ministrators, programmers, etc.). But one has to go beyond the concept of size
alone to get a grasp of the systems’ nature. They are systems of systems [3],
consisting of inherently distributed and heterogeneous subsystems with poten-
tially loose coupling. Complexity takes on a hierarchic/recursive character as it
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is the case for all kinds of complex systems [4]: Systems consist of other sys-
tems and at the same time contribute to the constitution of even larger systems.
Systems of systems often lack a central control facility. Instead, control is hori-
zontally as well as vertically decentralized and subsystems display a great degree
of operational and managerial independence. The system as a whole is deeply
embedded in a real-world setting, with a dynamic and uncertain environment
that comprises a large variety of real-world actors (persons, teams, enterprises,
institutions), which all seek to exert their own particular attitudes and interests
onto the software system.

These characteristics pose great challenges for information technology. The
overhead induced by distribution, decentralization and heterogeneity has to be
managed and attenuated in a way that the actual production (sub-)systems still
efficiently produce value. One important requirement in this context is adap-
tivity. Large-scale software systems are not designed and built in a single shot.
Neither can they be evaluated and redesigned in a unified manner. Instead, func-
tionality of system parts as well as interactions between system parts have to
be added, removed and modified at run time. Given the nature of the systems
described above, adaption has to be possible in a modular way and take into
consideration different levels of granularity/abstraction.

Information technology has encountered these challenges by developing in-
creasingly powerful abstractions, approaches and paradigms of system engineer-
ing over the past decades. Structured analysis, object-orientation, patterns, com-
ponents, services, agent-orientation all try to structure and cope with complexity.
There has been great progress over the last years, and especially agent technol-
ogy is to some part ideally suited to deal with the above mentioned problems
as it embraces the notions of distribution, local autonomy and heterogeneity as
core concepts. Organization-oriented approaches to multi-agent systems (MAS)
extend the agent paradigm even further by providing system level perspectives.

Nonetheless, this does of course not mean that the problem has been settled.
In our opinion, such approaches embody the beginning of a gradual transition
from classical agent concepts and metaphors to higher-granular concepts. This
might provide the basis for completely new engineering approaches that com-
bines the earnings of the agent paradigm with a much more flexible handling of
the actor metaphor, namely in an individual as well as a corporate sense. Conse-
quently, ideas in this context still have to mature and there is still a great need
for fresh perspectives and techniques for coping with system of system structures
and the accompanying hierarchic nature of complexity. In this paper contribute
to this field of research with our proposal of a basic framework for both mod-
eling and simulating/prototyping systems of systems. Our proposal includes a
modeling framework, called UnitEd (Unit Editor). Its basic idea is to take a
very generic stance. We model units and relationships between them. We apply
this very basic conception recursively. Units are composed of and constituted
by units at each level. This generic approach allows us to systematically derive
fundamental building principles and modes of coupling. To put it different, we
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take a step back from particular object-, service- or agent-oriented views and
adopt a perspective that grants a much more general and universal perspective.

We have chosen Petri nets [5] and especially the high-level Petri net formalism
of reference [6] nets as our modeling technique. First of all, Petri nets feature
a very restricted set that allows to build very expressive models. This perfectly
suits our intention of building universal and generic models that are built up
from a restricted set of base concepts. Another advantage of Petri nets is their
ability to support rapid system prototyping, as was shown in [7]. UnitEd is built
on top of the Renew simulation environment [8]. Renew is a simulator for Petri
nets and includes supports for many different Petri net formalisms, like colored
nets, timed nets and Java reference nets. UnitEd uses Renew’s possibility of
extension through plug-ins and is realized as a plug-in. Therefore the modeled
systems can be simulated with Renew, which acts as a runtime environment for
UnitEd.
This allows us to smoothly transition from abstract unit models to executable
unit prototypes (“implementation through specification”).

Reference nets in particular add further benefits to the modeling with “or-
dinary” (colored) Petri nets. They implement the nets-in-nets concept from [9].
This provides us a elegant way of modeling dynamic composition of components
on multiple levels. One attribute of Petri nets, which make their direct use (at
least in the first instance) problematic for the goal of this paper, is the restric-
tion of dynamic to the flow of tokens – the net structure cannot be changed
during simulation. As we described above, modeling and implementing adaptiv-
ity is of central importance given the nature of the systems that are our objects
of study. It is exactly the reference net formalism that allows us address this
obstacle easily. Instead of adjusting the reference nets formalism to allow for
structural change of Petri nets during simulation time, UnitEd employs the
nets-in-nets concept to work around this characteristic. In reference nets, tokens
can be references on other nets and with the concept of synchronized channels
communication between different nets can be achieved. Therefore UnitEd al-
lows for a change of the unit system’s structure during simulation time without
changing the structure of the nets themselves. This way systems can be mod-
eled, simulated and detailed in one application as part of the same process of
development.

UnitEd draws inspiration from organization theory, multi agent systems
approaches, as well as general systems theory. The biggest advantage is the
possibility to successively refine models during simulation and thus allowing
rapid prototyping of systems. UnitEd follows the approach of “implementation
through specification” that is successfully used at the “Theoretical Foundation
Group” at the University of Hamburg (see for example [10],[11]). By successively
detailing the specification of a system one arrives at a reference net implemen-
tation of the system in question.

UnitEd conceptually builds on unit theory. Unit theory is a “thinking
tool” , which conceptualizes the simple idea of systems – which are composed
of interacting subsystems – in terms of Petri nets. Unit theory defines a set
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of basic operations, which can be used to construct complex, hierarchical unit
systems out of atomic units. This basic operations form an axiomatic system
of Unit theory. Currently there are eight basic operations: creation and re-
moval, composition and decomposition, connection and disconnection, marking
and unmarking.

Unit Theory offers principles for structuring complex systems by means
of logical units and their interactions. Although other approaches also support
structuring systems with some modeling primitives (consider for example the
agent metaphor of multi-agent systems or the notion of components) UnitEd
takes a very generic stance toward structuring. The atomic units are net elements
of a C/E-net and more complex units are made up of them through applying
the basic operations of Unit Theory.
In section 3 we propose an implementation of this logical units as special refer-
ence nets – unit nets. This nets are designed to exhibit the properties of logical
units corresponding to Unit Theory, i.e. dynamic adaptivity, composition and
interaction.

Unit Theory is a relatively new concept and still work in progress. The
first mention of it can be found in [12], another work to refer to is the Thesis
of Volker Tell [13]. The framework presented in this paper is part of ongoing
work of the authors. We seek to clarify some of the ambiguities of unit theory
and make a proposition for an operational semantic. Thus we supply a technical
understanding of the rather abstract concepts of original unit theory. Due
to the space limitations of this paper, only central aspects of this work can be
presented. Therefore we will focus on the implementation of units as unit nets.
The remaining of the paper is organized as follows. Section 2 presents the unit
theory, which laid the foundations of UnitEd. The main part of this paper –
section 3 – features a derivation of the unit nets by means of example. They are a
proposition for a reference net implementation of the concepts of unit theory.
In the remaining Section 4 the author summarizes and discuses the paper and
gives an outlook on what is left to do.

2 Unit Theory

The framework proposed in this paper is based on unit theory, which will be
described in this section. The term “Ansatz” as defined in [12] means a unified
approach toward system specification and implementation, consisting of a frame
with paradigms, principles and concepts and offering techniques, methods, tools
and applications. Unit Theory is an “Ansatz” in the broad meaning sketched
above.
Until now, there are only very few publications on the subject, see the master
thesis of Volker Tell [13] for an elaborated coverage of unit theory so far.
There is also a good report in German from Daniel Moldt, which summarizes
the basic ideas behind unit theory [12]. First we will give an informal outlook
at concepts and ideas of unit theory.
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2.1 Informal Introduction to Unit Theory

First of all, unit theory is a “thinking tool” that allows structuring a com-
plex system (e.g. the outside world) under the viewpoint of nested, interacting
units. The part of the world that is to be modeled is understood as an infinite
branching process net as defined in [14]. This branching process net is called the
underlying executing system (GAS)1 and encompasses all possible runs of the
considered part of the world. This underlying system is of arbitrary granularity
but stays discrete. Because the GAS is very unhandy, it is natural to employ net
abstractions to make it more suitable.
An example should make this clearer. Consider a globally operating corporation
with dozens of divisions, thousands of employees and millions of interactions
now and in the future. Such a corporation is a good example for a (globally)
distributed, decentralized, enormous system of systems, which is hard to model.
While the corporation’s behavior can be comprehended in terms of correspond-
ing branching processes of the GAS, the corporation’s structure (i.e. divisions,
subsidiaries, departments etc.) is not easily to be identified in the net. Unit
Theory proposes to fold appropriate subsets of elements of the branching pro-
cess net in order to receive a more abstract representation. One would identify
units like “the factory in Leipzig”, “the marketing department for Europe” or
“build a new factory”, thus overlaying the GAS with a logical superstructure.
The result of such a structuring would be a unit theoretical model consisting of
interacting units.

Unit theory is very generic, the concept of a unit applies to a broad spec-
trum of entities like a molecule, a robot, an organization or the solar system. Not
only entities can be comprehended as units, but also processes, transactions, the
instance of a running Java application inside a JVM, or even abstract things like
e.g. the thought I had last night. However, it is important to note that all units
have a representation in the underlying branching process net, thus abstracting
away some details of the GAS.
A more formal explanation of units and systems of units is given in the next
subsection.

2.2 Units and Unit Systems

At the heart of the unit theory lies the idea that all systems can be described
as interacting units, which have their foundations in the GAS. Units are thought
of as a subset of all processes that can take place in the GAS. They are concep-
tualized as net foldings of the GAS. Usually only a small subset of connected
net elements will be included in the folding operation that yields a unit. In this
way, units abstract from the structure of connected net elements and form iden-
tifiable entities. Hence, a unit is at its core a labeled entity – something that can
be named and pointed at.

1 In German it is called Grundlegendes Ausführendes System, hence the acronym.
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Complex units can be decomposed into subunits, all the way down to the net ele-
ments of the GAS – conditions and events, which are the atomic units. This yields
the possibility to conceive systems at different levels of abstraction. Returning
to the example, we can talk about a corporation at the level of departments and
interactions between them, but we can also look in more detail and observe their
internals, like bureaus, employees and procedures. In the same way a unit like
“build a car” can be divided into the subtasks that are necessary to build a car.
In this way units are embedded in other units and form non-disjunct hierarchies,
that will be introduced now as unit systems. By non-disjunct we mean that a
unit may be embedded in more than one other unit, for example a person might
be member of two different organizations.

Unit Systems We do not want to talk only about individual units. Instead
we want to be able to compose units into a unit system. A unit system is con-
ceptualized as a set of units with an embedment relation defined on it.2 With
units being net morphisms of the GAS, embedding of one unit inside another
translates into the inverse image of the subunit (which is a set of elements of the
GAS) being a subset of the inverse image of the super-unit.
Another relation establishes a connection between individual units and is sim-
ilar to the arcs of a Petri net. Therefore, a unit system can be considered as a
labeled graph, with two relations (embedment and connection) defined on the
nodes, that is, the units. Firing activity in the units thus equals transformations
of the unit graph.
We want to take a more constructive stance toward unit systems. The creation,
connection, marking and composition (and of course the inverse operations) of
individual units should be supported by the framework. This is achieved by
delivering a set of basic operations to the modeler, that are defined by unit
theory. Those operations can be viewed as interactions between the modeler
and UnitEd, but they can also be part of complex units that are able to reshape
themselves.

Adaptation We now turn to the property of runtime adaption of systems. In
the GAS all future runs of the model original are encompassed. This includes
runs that represent a restructuring or even vanishing of the system.
In the corporation example the board of directors can decide to relocate a fac-
tory. Thus, this possibility is already a branch of the GAS which is entered upon
the decision, i.e. upon the occurrence of some event. On an abstract level one
event in the GAS can abstract the whole process of negotiating, closing the fac-
tory and building and equipping a new one. The view of unit theory toward
adaptation is that new units can enter the stage and others can leave, when
the preconditions are met. During simulation conflicts in the GAS are resolved,
because decisions are made – of the possibly infinite number of enabled tran-
sitions, one is chosen. Hence while the simulation advances, the decisions what
2 Whether the marking of a unit can be viewed as a special case of this embedment
relation or defines an additional marking relation, is a point that needs further
discussion.
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transitions occur generate a process of the underlying net system.
We propose the following operationalization of this ideas: Units can be created
by adding a new net abstraction and can be composed via the composition of net
abstractions. This composition works as follows: An additional net abstraction
is added, whose range is the combined range of the two units to be composed.
The definition of connection is not so straightforward, but the idea is to identify
a process of the GAS that lead from one unit to the other.
While the formal foundation of unit theory is ongoing work, it is still possible
to formulate an operationalization of its basic operations. UnitEd proposes such
an operationalization of unit theory and backs it up with tool support.

Modeling in Unit Theory The task of modeling is to find a representation
of a section of the world using the modeling primitives a modeling language offers.
Now units are exactly the modeling primitives unit theory has to offer. In the
eyes of unit theory modeling means to choose the appropriate net foldings and
therewith structure the section of the world that is modeled. Since the concept
of units is very generic, the task of a modeler employing unit theory can
be viewed as the choice of appropriate units for a certain purpose. To achieve
this, he has to create, connect, structure and specialize the units of the model.
UnitEd offers the tool support the modeler needs to fulfill his task and therefore
is a framework for modeling in an unit theoretical manner.

Multiple Views on a System Systems of systems are hard to comprehend.
For this reason models of such systems need the possibility of taking different
views toward them. As an example imagine an inter-organizational application.
On an abstract level organizations can be viewed as units, thus omitting their
internals. But because the modeler needs the possibility to alter the internals,
the framework must offer a view of the internals and how they relate to periph-
eral interactions. This causes no problem for Unit Theory, as a unit – the
organization – is composed of subunits – its departments – which can be focused
themselves. Above some examples were given for this shif tof perspective. Hence
unit theory offers the possibility to navigate between different levels of ab-
straction. To be beneficial for the modeler the concept of embedment must be
supported by a tool, which can display the different levels. UnitEd is such a
tool.

2.3 Axiom System of Unit Theory

A set of eight basic operations forms an axiomatic system of unit theory. All
units can be built by applying the axioms. This basic operations are supported
by the UnitEd framework, so the modeler can use them to build models of unit
systems and change them while the simulation is running. The basic operations
are divided into four pairs of inverse operations. Creation adds a new atomic unit
to the model, while removal removes a possibly complex unit from the model.
Since units can be embedded in more than one unit, the removal operation needs
to assert, that all occurrences are removed.
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Composition creates a new unit, that is composed of two units that already
where part of the model. Those units are preserved. Decomposition removes a
unit and preserves its subunits.
Connection allows to introduce an interaction between units, while Disconnec-
tion removes such an interaction.
Marking puts a unit as a subunit on another unit, the identity of the embedded
unit is preserved. Unmarking is the opposite operations, it removes a subunit
out of the embedding unit, but does not delete it.

Those are a the only operations. They are only informally based on net op-
erations on the GAS so far, but a formal foundation of the basic operations is
soon to come as part of further work by the authors. Nonetheless, even with-
out formal foundation an operationalization of the basic operations is given by
UnitEd and can be applied by the modeler to model unit systems.

3 Unit Nets

This section presents the central concepts of the unit editor tool by means of
examples. This is accomplished by consecutive refinements of a very simple Petri
net model, which will lead to the proposition of unit nets as fixed building blocks
of unit systems.
Unit nets are a implementation of the logical concept of units (which was intro-
duced in section 2) using the Java reference nets formalism, which is supported
by Renew for modeling and simulation purposes. The choice of the implementa-
tion method was made for particular reasons. Petri nets in general allow to build
complex and expressive models based on a restricted and highly universal set of
modeling elements. Reference nets especially allow for modeling hierarchies in
an elegant way, utilizing the nets-in-nets concept. They a have good tool sup-
port by Renew and allow for direct simulation of net models. An introduction
to reference nets is given in the next subsection, which shows the main features
and differences of this net formalism compared to others. It is expected, that the
reader is familiar with “ordinary” colored Petri nets.

3.1 Reference Nets

Reference nets implement the nets within nets concept introduced in [9] where a
surrounding net - the system net - can have nets as tokens - the object nets. As
hierarchies of net within net relationships are allowed, the denomination of sys-
tem or object net depends on the beholder’s viewpoint. Reference semantics is
applied, thus net tokens are references to net instances. According to objects be-
ing instances of classes in object-oriented programming languages, net instances
are instantiated copies of template nets. All instances are independent from each
other. To facilitate communication between net instances, synchronous channels
as introduced in [15] permit a fusion of two transitions at a time for the duration
of one firing occurrence. In reference nets, a channel is identified by its name
and its arguments. Channels are directed, exactly one of the two transitions
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(the one with a downlink) indicates the net instance in which the counterpart
of the channel (a transition with the corresponding uplink) is located. However,
information flow between the fused transitions is bi-directional.

As for most other net formalisms there exist tools for the simulation of refer-
ence nets. The Renew tool [8] additionally allows for (mostly) arbitrary JAVA
inscriptions to transitions. This allows for a powerful approach of “implemen-
tation through specification”. In order to transform an abstract net model into
a specific implementation it is in most cases sufficient to add combined chan-
nel/JAVA inscriptions to transitions and to add certain auxiliary net elements.

3.2 Example 1: Message passing

The scenario, which is considered in this subsection is very simple. It consists of
only two entities, one of whom sends a message to the other. This is somewhat
trivial but can easily be extended to encompass distributed agents communicat-
ing over a channel with diverse characteristics.

Basic Model This scenario can be modeled at an abstract level as a Petri net
with two places and a transition connecting them, like in Fig. 1(a). The mes-
sage, which is send will be modeled simply as a black token for a start. Now the

(a) Basic Model (b) Refinement

Fig. 1. Basic Model and first Refinement

behavior of the model will be considered. This can be achieved by looking at its
Petri net processes as defined in [16]. The only possible process is isomorphic to
the net itself. This will no longer be the case anymore after the model has been
refined.
The basic model from Fig. 1(a) is a well-formed Petri net and can be simulated
with Renew. Tokens are dynamic during simulation in contrast to changes of
the net structure, which can only take place during modeling time. This is a
drawback if one considers the net not only as a model, but as an implementation
of a system. If such a system is for example critical to some production proce-
dure, it is not convenient to just stop the system, alter it and start it up again,
even if it is possible to save the current state of the system and restore it after-
ward. Supporting structural changes during runtime is a central goal of UnitEd.
Therefore, the basic model will now be refined stepwise into a UnitEd model.
We state the requirement that this refinements should not alter the behavioral
semantics (in terms of Petri net processes).
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Refinement: Asynchronism of send In the abstract model, sending and
receiving of the message happens in one net step. Now the transition send will
be replaced with the two transitions A_send and B_receive and one place. This
net refinement is shown in Fig. 1(b). In the resulting model, unit A and unit
B no longer interact directly. Instead, another unit – modeled by the place in
between – mediates. After the coupling of the units has been loosened, parts of
the net can be replaced more easily.
The transitions A_send and B_receive model the behavior of unit A, unit B
respectively. At the same time they stay part of the refinement of the transition
send – of the overarching interaction. An intuitive interpretation is obvious: The
interaction consists of two interaction shares, one for unit A and one for unit B.
Their shares can in turn be seen as internal interactions in which their (possible)
respective subunits are involved.
Accompanying this change, it is worth noting that another change in the ontology
occurred: The elements of the model are now called units. This implies all the
conceptualization that was introduced in section 2 (like identity, autonomy and
embedding, etc.).

Fig. 2. Refinement of place unit top and graphical rearrangement

Graphical Rearrangement The graphical arrangement of the elements of
a Petri net does not change the net’s semantics as long as the place-transition
relationships persist. But an appropriate graphical representation can add a lot of
clearness and insight to the model and makes it easier to understand. Therefore,
the Petri net from Fig. 1(b) will now be rearranged. The result is shown in
Fig. 2. Now the interaction shares are drawn beneath the corresponding units.
The three highlighted areas of the net are those, which will be modeled as units
in the next step.
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Notice also, that the place in between – now called unit top – has been subject
to refinement and now encompasses the transition MTS, which stand for “message
transport system”.

Refinement: Embedding The simplicity of our sample scenario is ideally
suited for illustrating the mechanics behind our next refinement step. Until now
our model consists of a flat Petri net. This will now be replaced with a hierarchy
of Petri nets. The hierarchy of units is defined by the embedding relation intro-
duced in section 2. Unit A and unit B will be considered as subunits of unit top,
as it is shown in Fig. 2. References of the net instances of unit A and unit B lie
as tokens on the place subunits of unit top. A problem with this net system is

Fig. 3. Unit A and unit B embedded in unit top represented by dotted arrow

the fact that no communication between the units is possible, because they are
different nets. The Petri net processes are different from our basic model (only
A_send can fire). This will be fixed in the next paragraph with the supplement
of synchronized channels.

Refinement: Synchronized Channels In UnitEd, different units of a unit
system are actually different nets. Each conceptual unit in the unit system is
associated with a corresponding unit net, i.e. the net that is derived stepwise
in this section. Therefore, no direct arcs can be drawn between net elements
in different nets. But to preserve the behavior of the basic model, some sort
of communication between the units is needed. To obtain this communication
mechanism, we employ the concept of synchronous channels of reference nets.
Two transitions can synchronize and transmit tokens, if they are associated via
a pair of uplink and downlink (the downlink also includes the reference to the
net where the uplink is located). As unit top has references on both unit A and
unit B, a transition of unit top should have the downlink and hence the units A
and B corresponding uplinks.
The situation is made more clear through Fig. 4(a). Here, two synchronous
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channels exist: the send- and the receive-channel. The message transport system
(transition MTS in the figure) is refined, so that it receives a message from unit A
over channel send, buffers it in the place in the middle, and then sends it further
to unit B over the channel receive.3 The downlink in unit top (unit:send(message))
is connected with the place subunits over the test arc4 inscribed with unit. So
the variable unit is bound to the token on subunits which is tested. Because
the tokens are references of net instances, and because the preconditions of both
uplink and downlink are satisfied the transitions can fire synchronously. The
binding of the two variables message (variables are local to transitions) is unified,
so that the message gets stored in the middle place of unit top.
The synchronization of the receive-channel happens in an analogous manner.

(a) Embedding with synchronized channels (b) Maximal process of net 4(a)

Fig. 4. Unit system with use of synchronized channels and one of its processes

Processes of the Refined Model Lets now take a look at the processes of the
refined model from Fig. 4(a) to determine if the behavior changed compared to
the basic model. Therefore, we need to observe processes of a set of nets, because
the unit system – our model – consists of more than one net. This raises two
questions: How to extend the definition of Petri net processes to sets of reference
nets, and how to cope with synchronized channels.
Due to space restrictions only a informal sketch of a solution to this problems can
be presented here. The definition of Petri net processes from [16] must be adapted
in order to deal with sets of nets. Therefore, the range of the function that maps
elements of a causal net onto the Petri net, whose process is considered, needs to

3 The naming of the channels includes a perspective. Unit A “sends” a message, unit
top “receives” this message synchronized over the channel send.

4 The test arc is a special construct of the reference net formalism. It allows to test for
a token without removing it from its place. Hence, it is possible for more than one
transitions to test the same token. In an extended scenario with more interactions,
this means, that several interactions of the same unit can be initiated independently.
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be extended in a way that it equals the union of the net elements of all involved
nets.
Now we turn to the second question. Since transitions that are connected via
a synchronized channel fire synchronously they have only one corresponding
preimage in the causal net of the process. The pre-set of such a transition in the
causal net consists of all pre-sets of the synchronized transitions. Analogously,
the post-set consists of the post-sets of all involved transitions. An algorithm
for constructing processes of sets of reference nets is to be found in the doctoral
thesis of Christine Reese [17].
Additionally, we do not want to consider all processes of a unit system, but only
the “maximal” ones, i.e. those which correspond to a state of the system, where is
have no activated transitions.5 Therefore we need to assert, that our model has
only finite processes. This is easily shown, after transition send fired the net is
dead. The transition with the blue boxes inside symbolizes the synchronization
that takes place.

Refinement: Interactions as Subunits In our scenario there is only one
interaction, the sending of a message. Generally, it will be the case that a unit
system will have a variety of interactions, some of which will be activated, others
will be running and still others will be inactive. Drawing them all in one unit
net, like we have done it so far, would result in confusion for the modeler and
a massive amount of arcs, if some interactions share resources (and therefore
cannot take place concurrently). On the other hand, we would like the modeling
tool to allow to add, remove and change interactions. Units already have these
properties, so it’s a natural approach to consider interactions as special subunits.
Since interactions are conceptually different from the actor-like units we have
considered so far, they will be called interaction units. Until now a synchroniza-
tion took place between a transition in one unit and a transition in an embedding
unit. This refinement extends the need of synchronization to three layers. Now
a interaction unit (unit interaction_send) needs to synchronize with its embed-
ding unit (unit A), which then synchronizes with its embedding unit (unit top),
which finally synchronizes with one of its interaction subunits that is responsible
for this interaction (unit interaction_send/receive). In this way, four transitions
in four different nets fire synchronously. Figure 5 clarifies this situation. The fir-
ing of all blue, respectively all turquoise transitions in the figure is synchronized.
The original interaction send in the basic model is shown inside the dashed rect-
angle. All net elements inside it could be folded to receive the send transition
from Fig. 1(a).

Refinement: Interaction Channels In the case of many interactions the
naming of the synchronized channels needs to be addressed. So far we used dif-
ferent synchronized channels. For example, unit top possesses the two channels
5 Later not only maximal processes need to be considered, but also “multiples” of
interactions, i.e. those processes that show the state after a interaction has been
finished and not started again – after a complete “interaction cycle”. In our scenarios,
with the interaction being non-cyclic those two subsets of processes are equal.
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Fig. 5. Interactions are embedded as subunits

send and receive, while unit A only has the channel send. This approach will lead
to problems, if we imagine a lot of interactions, all of which will need differently
named channels. Also the interface of a unit would depend on the interactions
in which it is involved. For each of this interactions, the unit net would require
to have a transition with the synchronized channel inscription. Therefore we in-
troduce the concept of interaction channels in this paragraph.
Instead of using different synchronous channels we take the more general ap-
proach of using only one channel, which is parameterized with a string indicat-
ing the name of the interaction channel. The generic synchronous channel that
realizes the interaction channels is called interact-channel. An interact-channel
realizes different interaction channels. With the introduction of interaction chan-
nels, an important feature of unit nets is achieved: the unity of their interface.
There is another point to interaction channels, namely the channel mapping
mechanism. This mechanism is responsible for mapping an interaction channel
to an associated interaction unit and vice versa. To achieve this mapping unit
nets have a place with tuples of the form [chname, IA ref.], chname being a
string and IA ref. a reference to an interaction unit.
In Fig. 6 the place for channel mappings of unit A is marked with the tu-
ple [“send”, interaction_send]. This means, if the interact-uplink in unit
interaction_send is activated (as is the case) it tries to synchronize with the
interact-downlink in unit A, which require a channel mapping. The variable ia
is bound to (a reference to) unit interaction_send and the unification can only
take place, if there is a tuple on the channel mapping place of unit A, whose sec-
ond component is identical to unit interaction_send. In this way, the associated
chname (bound to “send”) is retrieved.
This retrieved string is a parameter to the interact-uplink of unit A. So “send”
together with the message is pushed onto the next-higher level, which in our
model is unit top, and mapped to unit interaction_send/receive, which finally
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Fig. 6. Mapping of channel names to interactions. Only a part of the interaction is
shown

Fig. 7. Maximal process of net 6
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gets the message send out by unit interaction_send. So far we have described
the synchronized firing of the blue transitions, and the golden chmap-transitions.
All in all there are now 6 transitions, which need to synchronize, before a firing
can occur.
As last part of this paragraph we need to check if and how the Petri net pro-
cesses of the resulting model changed. The maximal process is shown in Fig. 6.
Its causal net consists of two transitions (the long greenish rectangles) and many
places. Notice, that the golden places are connected with a reserve arc. The pro-
cess in 6 is equivalent to the one in 1(a), if fitting channel mapping tuples lie as
tokens on the channel mappings places of the involved units.

Refinement: Adding and Removing Subunits So far, the path we followed
has led to a model that is several times more complex than the initial model.
Instead of one transition firing, now there are twelve, some of which require syn-
chronization. Instead of one net, there are six. But still the resulting model is a
behavior-preserving refinement of the original model, like it was shown in 6.
The concept of synchronized channels allowed us to split the nets. With the nets-
in-nets concept we were able to embed the nets inside each other. We singled
out interactions and realized them as interaction units. The interaction channels
supply the design of a uniform interface for units. Now finally we are in the po-
sition to cope with changes of the unit system during simulation time. Therefore
the unit nets need to be extended with two additional pairs of transitions, which
allow the addition and removal of subunits, interaction channels respectively.
This extension is shown in 8. The UnitEd framework offers the matching of

Fig. 8. Extension of units with management transitions that add and remove subunits
and interaction channels.

downlinks to uplinks in the unit nets and enables the modeler to add units and
interactions during runtime. Also, the modeler can equip some of the units of his
unit system with the interaction units for the basic operations of unit theory,
thus enabling the modeled system to adapt itself! So as part of an interaction a
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unit may remove some of its parts, or change internal interactions.
As the final point for this paragraph we will once again check the Petri net pro-
cesses of the final UnitEd model. The causal net for the maximal process is
shown in 9.

Discussion In this section a universal unit net model has been derived by
means of a simple toy example. This unit net is our basic building block for
modeling unit systems and constitutes a fixed component of UnitEd. Its net
structure cannot be changed during simulation time, but whole systems of unit
nets allow for dynamic composition and adaption through changes of their re-
spective markings. Markings represent other units and interaction channels. So
instead of changing the simulation algorithms of the reference net formalism,
runtime adaptation is built on top of reference nets.

The overhead that was introduced by our successive refinements is of course
inappropriate for the trivial example that we considered here. The example just
served its purpose to exemplify our refinement steps in an accessible way. But
we claim that the overhead actually does pay off in the context of more complex
systems where the distinction of different levels of system abstraction actually
becomes a necessity. For these cases, we have provided universal building prin-
ciples and technical mechanisms for realizing vertical and horizontal coupling in
terms of flexible interactions.

The complexity of the resulting unit nets may be staggering not only at first
glance. In fact the nets we use for our prototype are even more complex. But this
complexity is needed to encompass the possibility of dynamic change, composi-
tion and interaction without inventing a new net formalism. A new net formalism
would have been an alternative to the proposed approach of implementing unit
nets on top of Renew. Because unit nets as presented in this section are not
well fitted for direct use by the modeler, an editor that hides the complexity
and represents units in a more accessible way to the modeler is also part of the
UnitEd framework. This editor however, is out of the scope of this paper.

4 Conclusion

In this paper we have presented our modeling framework UnitEd. It targets at
modeling systems that exhibit a systems of systems character. This does not only
entail potential loose coupling between system parts but also the necessity to
respect different levels of granularity/abstraction when regarding system parts.
Consequently, we have laid specific emphasis on modeling vertical as well as hor-
izontal coupling between system parts in an integrated manner. At the heart of
our approach lies the modular comprehension of arbitrary complex systems in
terms of units. We have presented the underlying principles of unit theory.
UnitEd builds upon this theory and in particular proposes an operationaliza-
tion. Each system part is modeled as a unit that is composed of other units and
contributes itself to the composition of even higher-granular units. UnitEd mod-
els are not just abstract illustrations but executable prototypes. Consequently,
they provide a precise technical understanding of the unit theoretical concepts.

Hewelt et al: UnitEd – A Petri Net Based Framework 223



Fig. 9. Maximal process of unit system in Fig. 8. Places for subunits are yellow, data
places red. Interaction units are drawn with white net elements, units with green.
Dotted Arrows show embedment of units. The channel mapping mechanism is not
shown.
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We have chosen Petri nets in general and reference nets specifically as our
modeling means. Petri nets offer a restricted set of modeling elements from which
expressive and complex models can be build. In addition, Petri nets offer a very
close link between structure and dynamics of a system. Finally, reference nets
offer mechanisms for dynamic composition of (net) components and allow us to
circumvent the restriction of static Petri net structures. Thus, we are able to
include run-time adaption into our system models.

The work presented here is part of ongoing work at our group. For future
work, one important issue is to make our modeling framework UnitEd more
accessible, more easy to use. The excessive use of net references and synchronous
channels in some way prohibit an intuitive usage of UnitEd. However, they
build a lean and effective foundation for an operationalization. We plan to enrich
UnitEd with a graphical Editor that relieves the modeler of a great part of the
technical overhead that is involved in the specific mechanisms.

References

1. Northrop, L., Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, T.,
Kazman, R., Klein, M., Schmidtd, D., Sullivan, K., Wallnau, K.: Ultra-large-
scale systems: The software challenge of the future. Technical report, Sofwtare
Engineering Institute, Carnegie-Mellon (2006)

2. Hess, A., Humm, B., Voss, M., Engels, G.: Structuring software cities a multi-
dimensional approach. In: Enterprise Distributed Object Computing Conference,
2007. EDOC 2007. 11th IEEE International. (2007) 122

3. Maier, M.: Architecturing principles for systems-of-systems. Systems Engineering
1(4) (1999) 267–284

4. Simon, H.A.: Administrative Behavior. 4. edn. Free Press (March 1976)
5. Girault, C., Valk, R.: Petri nets for systems engineering: a guide to modelling,

verification and applications. Springer Verlag (2003)
6. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)
7. Moldt, D.: Höhere Petrinetze als Grundlage für Systemspezifikationen. Disserta-

tion, University of Hamburg, Department of Computer Science, Vogt-Kölln Str.
30, D-22527 Hamburg (August 1996)

8. Kummer, O., Wienberg, F., Duvigneau, M.: Renew – User Guide. University
of Hamburg, Faculty of Informatics, Theoretical Foundations Group, Hamburg.
Release 2.1 edn. (May 2006) Available at: http://www.renew.de/.

9. Valk, R.: Petri nets as token objects - an introduction to elementary object nets.
In Desel, J., Silva, M., eds.: 19th International Conference on Application and
Theory of Petri nets, Lisbon, Portugal. Number 1420 in LNCS, Berlin Heidelberg
New York, Springer-Verlag (1998) 1–25

10. Cabac, L., Duvigneau, M., Köhler, M., Lehmann, K., Moldt, D., Offermann, S.,
Ortmann, J., Reese, C., Rölke, H., Tell, V.: PAOSE Settler demo. In: First Work-
shop on High-Level Petri Nets and Distributed Systems (PNDS) 2005, Vogt-Kölln
Str. 30, D-22527 Hamburg, University of Hamburg, Department of Computer Sci-
ence (March 2005)

11. Cabac, L., Dörges, T., Duvigneau, M., Reese, C., Wester-Ebbinghaus, M.: Appli-
cation development with Mulan. In Moldt, D., Kordon, F., van Hee, K., Colom,
J.M., Bastide, R., eds.: Proceedings of the International Workshop on Petri Nets
and Software Engineering (PNSE’07). (2007) 145–159

Hewelt et al: UnitEd – A Petri Net Based Framework 225



12. Moldt, D.: Petrinetze als Denkzeug. In Farwer, B., Moldt, D., eds.: Report FBI-
HH-B-265/05: Object Petri Nets, Process, and Object Calculi, Vogt-Kölln Str.
30, D-22527 Hamburg, University of Hamburg, Department of Computer Science
(August 2005) 51–70

13. Tell, V.: Schaffung der Grundlagen für die prototypische Umsetzung eines Mul-
tiagentensystem basierten Leitmodells. masters thesis, University of Hamburg,
Department of Informatics (March 2005)

14. Rozenberg, G., Engelfriet, J.: Elementary net systems. In Reisig, W., Rozenberg,
G., eds.: Lectures on Petri Nets I: Basic Models, Springer (1998) 12—121

15. Christensen, S., Hansen, N.D.: Coloured petri nets extended with channels for
synchronous communication. In: Proceedings of the 15th International Conference
on Application and Theory of Petri Nets, London, UK, Springer-Verlag (1994)
159–178

16. Reisig, W.: Petri nets: an introduction. Springer-Verlag New York, Inc., New York,
NY, USA (1985)

17. Reese, C.: Prozess-Infrastruktur für Agentenanwendungen. Dissertation, Univer-
sity of Hamburg, Department of Informatics, Vogt-Kölln Str. 30, D-22527 Ham-
burg, Germany (2009) unpublished.

226 PNSE’09 – International Workshop on Petri Nets and Software Engineering



A Colored Petri Nets Model for the Diagnosis of
semantic faults of BPEL Services

Yingmin LI, Tarek MELLITI, and Philippe DAGUE

LRI, Univ. Paris-Sud, CNRS, and INRIA Saclay-̂Ile de France
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Abstract. The paper contributes to modeling an orchestrated complex
Web Service (BPEL) with Colored Petri Nets (CPNs) for diagnosis. In
the CPNs model, colored tokens are used to represent the faults (either
in inputs data or external faulty Web services) in a BPEL process. Three
I/O data dependency relations are introduced into the color functions of
the CPN models. Thus the transmitting of faults between the process
control and internal data, data and data, in a BPEL service can be mod-
eled as the execution of a CPN system. We give a concrete translation
from a BPEL service to a CPNs model and define a model-based diag-
nosis framework. Based on the marking evolution equation in Petri nets
theory, we construct an inequations system as a diagnosis problem and
solve it with an algebra algorithm. 1

Key words: Model-based diagnosis, Web service, BPEL, Colored Petri
Nets

1 Introduction

Self-healing software is one of the important challenges for Information Society
Technologies research. Our paper proposes a centralized diagnosis approach for
BPEL ([11]) services, whose goal is to design a framework for self-healing Web
services by adopting artificial intelligence methodologies to solve the diagnosis
problem by supporting online detection and identification of faults.

A Web service (WS) is a set of distributed message oriented interacting
components. We can construct complex WS systems by composing basic WSs in
two ways: orchestration and choreography (P2P). An orchestrated BPEL service
is a central process to organize (basic or complex) WSs to finish complex tasks.
A choreographed WS has not a central process while all the involved WSs are
aware of their partners but none has the global view of the whole WS application.
1 This research has been initiated in the framework of the FP6 IST project 516933,

WSDIAMOND (Web Services DIAgnosability, MONitoring and Diagnosis) and con-
tinued in the framework of the national ANR project WEBMOV (Web services
Modeling and Verification).
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Distributed WS applications make B2B engineering more convenient but raise
more challenges for handling dysfunctions. For example, how to locate the source
and reason of faults when they occur somewhere in a distributed WS application?
As orchestration is the basic of the WS composition, we focus on single BPEL
service diagnosis based on CPN ([7]) model which can be easily extended to a
distributed environment.

During the interaction of distributed WS components, subtle faults can come
from corrupted data or some functional errors. Due to the message oriented
nature of WS applications, faulty data is propagated through the execution
trace and is used to elaborate other faulty data and control decisions. In this
way the subtle faults become large ones.

Consider the following example which will be used as an illustration example
along this paper: a BPEL service FlightAgent calculates a series of business
flight costs. The FlightAgent starts with a receive activity C to receive a request
string of the series of departure cities and dates, for example, from Paris to
London on 01/03/2008, and from London to Madrid on 03/03/2008, from Madrid
to Rome on 05/03/2008, and from Rome to Paris on 09/03/2008, all the dates are
in French format. FlightAgent iteratively (by using While activity W ) invokes
an invoke activity S to split the request string to get the information for one
flight: the departure city, a departure date, and an arriving city (which is also
the departure city of next flight). Whereafter an invoke activity O reserves the
flight tickets and cumulatively calculates the flight fees.

We consider two types of faults: the faulty input data and the bad basic
WS which sometimes cannot be tested or detected immediately. For example,
bad activity S interprets the date format incorrectly as to different date formats
in English and French, 01/03/2008, 03/03/2008, 05/03/2008, and 09/03/2008
are misinterpreted as January 03, 2008, March 03, 2008, May 03, 2008, and
September 03, 2008. which is hard to test locally. As to the prizing rules of the
airline, at the end of the process, reply activity P returns the total ticket price
of the whole trip (in figure 3a) which is unreasonably huge. The client (or other
Web service which invokes FlightAgent) can arise an exception. These two types
of faults both reflect on data within the BPEL process. So we consider both of
them as data fault while the latter one is explained as the basic WS fault. Note
that we suppose the overall orchestration and choreography schema is correctly
designed.

In this paper, we address the data faults by using the model based diagnosis
approach, and more specially, the discrete event model based approach ([1], [2],
[3], [4], [10], [15], [16], [18]). Among the usual discrete event model, we use colored
Petri nets to define the diagnoser. Many works use the Petri nets to do diagnosis
([2], [10], [12], [15], [16]). Some works use high level Petri nets to modeling WS
([4], [17], [18], [3]) as they are more expressive from the aspect of data evolution.
While there are few CPN model focus on diagnosis problem.

The main originality of this work is a natural use of the colored Petri nets
(supported by CPN Tools [6]); the color domain is used to model data (states)
status and transitions are used to define transition status. The model presented
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here can be generalized to a very large software domain besides Web services.
Another originality is the diagnosis methods: unlike most of other works based
on Petri nets, we don’t use an unfolding approach ([2], [12], [15], [16]), but use the
incidence matrix and the characteristic vector of the observed trace in order to
transform the diagnosis problem to an inequations system, and then we propose
an algorithm to solve one inequation and then the inequations system.

The paper is organized as follows: in section 2, we introduce CPN model for
the BPEL services and define their firing rules. We define CPN model for typical
basic activities and structural operators of BPEL in section 3; in section 4, we
define the diagnosis problem and its solution and illustrate it with a concrete
example; in section 5, we introduce some related work, compare the different
methods, and give some directions for future research.

2 Colored Petri Net

A Petri net is a Colored Petri Net if its tokens can be distinguished by colors.
Here we restrict the definition of Colored Petri Net that we use in this paper.

Let E be a set, a multiset on E is an application m from E to Z (a multiset
is denoted as m = q0e0 + ....+ qnen where qi = m(ei), Z is the integer set). We
use M(E) to define the set of finite multisets from E to Z, and M+(E) if we
restrict it to N. Sum and subtract operators between two multisets are defined
as in [9]. For two given value domains D, D′, we denote by [D → D′] the set of
possible functions from D to D′.

Definition 1 A Colored Petri Net graph (CPN graph) is a tuple N=〈Σ,X ,F ,P ,
T ,cd,Pre,Post〉, where: Σ is a set of colors (see [9]). X is set of variables that
range over Σ. F is a set of color functions, F ⊆ ⋃

n
[Σn → Σ]. P is a set of

labeled places, and there are two types of places exists: AP , the activation places
which contains the CPN execution control, DP , which contains the data used
during the execution of CPN, especially, we denote the constant data places set
as CP ; Formally, this is represented as follows: P : AP ∪DP and CP ⊆ DP ,
AP ∩ DP = ∅. T is a set of labeled transitions, we denote Type : T ′ → T ′′

with T ′, T ′′ ⊂ T and T ′ ∩ T ′′=∅ is a type function of T . Cd : P → 2Σ, is a
function that associates to each place a color domain2. Pre, Post : are forward
and backward matrices such that Pre : P × T → M+(Σ ∪ X ), are input arc
expressions. And Post : P × T →M+(E), are output arc expressions[9].

E represents a color expression which can be a color constant, a variable, or
a color function of F (completely or partially instantiated). Given an expression
e ∈ E , we use V ar(e) to denote the set of variables which appear in e, and
Eval(e), the evaluation of e in Σ.

We denote •t and t• as the input and output places set of transition t, •p
and p• as the input and output transitions set of place p.
2 In this definition, a transition has no color domain. This restriction will be explained

in section 3.2.
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Definition 2 A CPN graph N = 〈Σ,X ,F ,P ,T ,cd,Pre, Post〉 is well formed iff:
∀t ∈ T,∀p ∈ t•, we have V ar(Post(p, t)) ⊆ V ar(Pre(., t)) with V ar(Pre(., t))
=

⋃
p′∈•t

var(Pre(p′, t)).

In a well formed CPN graph, we restrict that for each transition, the output
arc expressions must be composed by the variables which are in the input arcs
expressions.

To each CPN graph, we associate its terms incidence Matrix C (P × T →
M(E)) with C = Post− Pre.

In the following, we define the behaviors (the dynamics) of a CPN System.

Definition 3 A marking M of a CPN graph is a multiset vector indexed by P ,
where ∀p ∈ P,M(p) ∈M+(cd(p)).

Operators + and − on multisets are extended to markings in an obvious way.

Definition 4 A Colored Petri Net system (CPN system) is a pair S=〈N,M0〉
where N is a CPN graph and M0 is an initial marking.

Definition 5 A transition t is enabled in a CPN system S with present marking
M , iff ∃u, with M ≥ Pre(., t)u, V ar(Pre(., t)) → Σ, which is a binding of the
input arcs variables. 3

We use M [t〉u to denote that t is enabled in M by the use of u, and we use
the classic notation M [t〉 if u is not important (e.g. when u is unique).

Definition 6 Let M be a marking and t a transition, with M [t〉u for some u.
The firing of the transition t changes the marking of CPN from M to M ′ =
M + C(., t)u. We note the firing as M [t〉uM ′.

Definition 7 We extend the definition 6 to a sequence of transitions δ ∈ T ∗ as:
M [δ〉M if δ is the empty sequence; M [ωt〉M ′ iff ∃M ′′ such that M [ω〉M ′′ and
M ′′[t〉uM ′.

3 From BPEL to CPN model

There exist already many works dedicated to translate BPEL services into CPN
model for verifying ([3], [13]), composing ([18]), supervising ([4]), etc.. In this
section, we construct our own CPN model by introducing the faulty behaviors
into Petri nets model which is suitable not only for diagnosing BPEL services,
but also for diagnosing other large software systems.

A BPEL process consists of basic activities and structured operators. The
idea of modeling BPEL to CPN is: to map each primitive data to a place, each
basic activity to a transition. To each basic activity, input and output activation
3 u must respect the color domain of the places, i.e., ∀p ∈• t, x ∈ var(Pre(p, t)), we

have u(x) ∈ cd(p).
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places ain ∈ P and aout ∈ P are associated to identify the execution order.
To include the fault model, additional transitions are added to represent the
unobservable faulty activities either in basic WSs or in composite BPEL services.
The structured operators are modeled as CPNs which sew the structured sub-
processes by combining, disjointing, or generating the local activation places
ain

i ∈ P and aout
i ∈ P . Once a red token is generated by a faulty transition in

a basic activity, the fault is passed along the execution trace through the arc
expressions which are represented in Pre and Post matrices. In the following,
we define how to translate the static and dynamic features into CPN models.

3.1 BPEL data Variables and constants

BPEL data variables and constants
To catch maximally the dependency between data (variables, constants, etc.),
we decompose the structured data types into their elementary parts, denoted by
the leaves of their XML tree structure. For a variable X of type m (resp. an
Xpath expression), we use xi to range over the Leaves(m) (resp. Leaves(X))
and denote the xi part of X by a couple (X,xi). In our mapping, each data
variable and constant is represented by a unique place in CPNs.
Color Domain
In our CPN model, three colors are used: red (r) marks a place with faulty data
value; black (b), not faulty data value; and unknown color (∗), unknown correct-
ness of data value.
Data dependency within BPEL v.s. color functions
To specify the effect of each activity on data, we give each activity a data de-
pendency signature in term of three dependency relations ([1]): forward (FW ),
if the activity just copies the value from the input to the output; source (SRC),
if the output data is generated by the activity; and elaboration (EL), if the
output data is elaborated from the set of input data. To each of this dependency
relation, we associate a color propagation function to represent the data status
(faulty, correct, or unknown status) production.

Definition 8 Given the data relations set D = {FW , SRC, EL}, ∀d ∈ D, the
associated color propagation function dc is defined as: ∀c,c′∈Σ,∀C⊆Σ,
FW c ∈ [Σ → Σ], FW c(c)=c
SRCc ∈ [∅ → Σ], SRCc=∗

ELc ∈ [2Σ → Σ], ELc(C)=c′, with c′=

 b, iff ∀c ∈ C, c=b
r, iff ∃c ∈ C, c=r
∗, iff ∃c ∈ C, c=∗ ∧ @c′′ ∈ C, c′′=r

In the following sections, we model dynamic features, the basic BPEL activ-
ities and structured operators with CPNs.

3.2 Translate basic BPEL activities into CPNs

BPEL service is composed with a series of basic activities. We map each basic
activity to its CPN model. Due to space limitation, we restrict our definitions to
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four main basic activities (Receive,Assign,Invoke, and Reply) while the other
similar activities can be easily translated in the same way.

The main idea in mapping BPEL basic activities to CPNs is: each primitive
data is mapped to a place, each basic activity is mapped to a transition, and Pre
and Post matrices are defined based on data dependency. In order to distinguish
the activities execution order and the traces among different branches, to each
basic activity, we associate an input activation place ain and an output activation
place aout.

As we focus on the data fault diagnosis of one BPEL service, the BPEL
service code is assumed to be correct. Possible faults can be faulty data received
by Receive activities, or faulty activities which come from other WS called by
Invoke activities. So we must introduce fault models for Receive and Invoke
activities to localize the faulty data or external WS. Our approach is to introduce
additional transitions to represent the unobservable faulty activities and to define
the color functions in Pre and Post matrices which represent the propagation
of faults.
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Fig. 1. CPN models of basic activities

Receive(m,X): an activity simply copies the values from a message m to a
local variable X. In order to model the receiving of a set of faulty parts from a
message value, we add for each part of the message an internal transition (fault)
before the firing of the receive transition in figure 1(a). Note that data places
(m,mi), (x, xi) are simplified as mi, xi.

The CPN model of Receive contains two kinds of fault transitions: the ac-
tivation fault transition tf0 , and the fault transitions tfi , we define their types
as: Type(tf0)=Type(tfi)=trec. The execution of tfi is triggered by the consum-
mation of the token in the input activation place. Once tf0 (or tfi) is executed,
we can deduce that there is a faulty control (or data) input. The transmission
of the fault (red token) is illustrated on the arc expressions. Each arc expression
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represents the colored token consumed (on an arc (p, t)) or produced (on an arc
(t, p)). To keep the liveness of the CPNs, we add an arc from the output place
xi to the receive transition trec and its associated color function Cxi

is the color
of the output data place xi.

Reply(Y,m): an activity that copies values from a variable Y to a message
m for returning the response of the BPEL service to its invoker. So Reply can be
the ending of BPEL and simply forwards (FW ) values. There is no fault model
in its CPN and we simply fill Post with FW functions.

Assign(X,Y): an activity that reorganizes local variable parts inside a BPEL
process without changing the values. So its model is similar to Reply activity.
Similar operators: Throw and Rethrow. The Wait, Empty, and Exit activities
do not have relation with the variables, so their CPN model only have the input
and output activation places.

Invoke(X,Y): an activity that calls another basic or composite Web ser-
vice. It takes the value of the variable X as input and stores the output in the
variable Y . The data dependency can be FW , EL, and/or SRC. As Y can be
infected by external faulty WS which is unobservable, we introduce a series of
unobservable faulty transitions after the invoke transition to model the faults
caused by external WS as is illustrated in figure 1(b).

The CPN model of Invoke only contains the fault transitions tfi , which are
triggered by the consummation of the token in the output activation place. Once
tfi is executed, there should be a fault in its output data place and it can be
passed to the other activities along the BPEL process execution trace. Again,
we define Type(tfi) = tinv.

3.3 Translate structured BPEL activities into CPNs

In this section, we show how to obtain BPEL process CPN by a modular com-
bination of a set of CPNs. We formally define four main structural operators
(Sequence, Switch, While, and Flow) while the other similar operators can be
easily translated in the same way.

Sequence operator sequence(S1, S2)
Sequence connects different activities, and the execution order of these activities
is the same as their appearance order in the constructor. So we can generate the
resulting sequence CPN by simply merging the local intermediate output and
input activation places of contractive CPNs (in figure 2(a)).

Conditional operator Switch({(coni(Xi, Vi),Si)}i∈I)
Switch represents an alternative execution of the activities Si under the condi-
tions coni(Xi, Vi). Xi and Vi are respectively the variables and constants. For
each subprocess Si, we add a transition coni to generate its activation place.
Each coni takes the common activation input place of Switch, Xi, and Vi as in-
puts to elaborate an input activation place ain

i for subprocess Si. So the faults
in the relevant data places Xi, Vi cause the faulty choosing of subprocess. That
is, one ain

i is activated by mistake. This modeling method allow the diagnosis of
the control fault in a BPEL process. At the end of the Switch process, a new
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aout is added to replace all the aouti of subprocess Si (in figure 2(c)). Similar
operators: Link with its ”transitionCondition” ([11]).

a

a :  S e q u e n c e  ( S 1 , S 2 )

aC

a i n
1 a i n

2

i naC
1

ao u t
1

ao u t
2

d :F low ( {S i } ,  i  I )

i naC
i

CX

C
jV

a i n
iX V j

C o n n

a i n
1

a i n
n

ao u t
1

ao u t
n

i naC
1

i naC
n

C o n 1

o u ta

j
E L i na

c( C , CX , C
iV ) a i n

1
a i n

n
i naC
1

i naC
n

ao u t
n

ao u t
1

F W i na
c( C )

o u ta

i naC

ai n

E L o u ta
c
( C , C )o u ta

1 n

F W i na
c( C )

C o n

i naC
i

CX

C
jV

a i n X i V j

a i n
1

ao u t
1

j
E L i na

c( C , CX , C
iV )

j
E L i na

c( C , CX , C
iV )

 b :  W h i l e ( c o n ( X , V ) , S  )  
1

_ _

 c : S w i t c h ( { ( c o n  ( X , V ) , S ) } ,  i i i i i I )
_ _

C o n
_

Fig. 2. CPN models of the structural operators

Iterative operator while(con(X,V ), S1)
While iterates the activity S1 execution until the breaking off of the conditions
con(X). The CPN graph of While is similar to Switch in which the activation
input place of the subprocess S1 is elaborated by the activation input place of
While, X, and V . But in While, the aout of iterative subprocess is also ain

of tcon. Note that tcon represents the transition if condition con is true and
tcon represents the transition if condition con is false (in figure 2(b)). Similar
operators: RepeatUntil, ForEach.

Parallel operator flow({Si}i∈I)
Flow executes the activities Si in parallel. It terminates when all the activi-
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ties are finished (fork-join). So we add ain, aout, tin, and tout to compose the
subprocesses together in parallel (in figure 2(d)). Similar operators: Scope to-
gether with the compensation handlers, event handlers, and fault handlers; Pick
together with OnMessage.

3.4 Some remarks on the BPEL model

Observable vs unobservable transitions
To distinguish the BPEL activities transitions which are observable and the fault
transitions which are not, we divide T into observable transitions Tobs and fault
transitions TF (T=Tobs∪TF and Tobs∩TF =∅). Note that a type function over
faults has been defined in definition 1, which associates a fault to its observable
transition Type: TF→Tobs.
Initial and symptom markings of BPEL model net
The initial marking is obtained by marking P=AP ∪DP : constant places (CP ⊆
DP ) are marked as unknown as they cannot be changed by any transition; other
data places (DP\CP ) are marked as black; an activation place ap ∈ AP which
activates the first transition of CPN is marked as black (b) and the other AP are
marked as 0. The final marking is retrieved from the thrown exception. When
fault(s) occurs, an exception will be thrown to specify on which activity, there is
a faulty part(s), which corresponds to the places in DP . Specially, unmatched or
uninitiated data (variable) refers the BPEL process may chose fault execution
branch. In this case, the input activation place of the activity will be marked as
faulty (r). All the other places are marked as unknown (∗) because there is no
information of their marking.
One-boundness of the BPEL model nets
The resulted CPNs are one-bounded (or safe, means one place can at most
contain one token). Concerning the data places, the transitions always consume
one token in each input places and produce a new one token in each output
places. Concerning the activation places, the one-boundness is guaranteed by
the fact that a BPEL process does not allow a subprocess call that can lead to
more than one token production in the activation places.

3.5 Example (cont’d): CPN model and incidence matrixes

The CPN of the BPEL service FlightAgent is constructed as in figure 3. Note
that place d0 represents the request message, d1 is a null flight schedule message,
d3 and d2 are respectively the corresponding variables defined in BPEL process.
d4 stock the intermediate single flight information which is generated by invoke
activity ts. Invoke activity to continually fills t2 during the execution of process
FlightAgent. Place d5 is the output flight schedule message of d2. To keep
the visibility of the graph, the color functions which do not concern the data
dependency are omitted (e.g., color function Cain on the arc (ain, tc)).

We can see that FlightAgent CPN contains 12 places and 11 transitions, in
which 5 of them are unobservable, and 6 are observable. Table 2 is the forward
matrix, table 1 is the backward matrix, and table 3 is the incidence matrix of
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FlightAgent got by C=C+−C−. As to space limitation, in the incidence matri-
ces, we use the name of places to represent the colors of the places, for example,
ain represents Cain . Transitions tfa

, tf0 , tf1 , tf2 , and tf3 are unobservable activ-
ities (in gray boxes). Especially tfa , tf0 , and tf1 generate the input fault data
of FlightAgent, tf3 represents the external fault in the WS which is invoked by
tS , and tf2 represents the external fault in the WS which is invoked by tO.
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Fig. 3. BPEL(a) and CPN model of FlightAgent

4 Diagnosis of BPEL service using CPN

A BPEL process can be considered as a discrete event system (DES) of which
the classical diagnosis approach is the model based diagnosis ([8]). Given a DES,
the diagnosis is to compare the observed behavior of the real system and the
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Table 1. C−: backward matrix of FlightAgent

C− tfa
tf0

tf1
tC tW t

W
tS tf3

tO tf2
tP

ain ain ain ain ain

a2 a2 a2
a3 a3 a3
a4 a4 a4
a5 a5

aout

d0 d0 d0
d1 d1 d1
d2 d2 d2 d2 d2 d2
d3 d3 d3 d3
d4 d4 d4 d4
d5 d5

Table 2. C+: forward matrix of FlightAgent

C+ tfa
tf0

tf1
tC tW t

W
tS tf3

tO tf2
tP

ain r ain ain

a2 F W c(ain) F W c(a4)
a3 ELc(a2, d2) a3
a4 F W c(a3) a4
a5 ELc(a2, d2)

aout F W c(a5)
d0 r d0
d1 r d0
d2 F W c(d0) d2 d2 d2 r
d3 F W c(d1) ELc(d4) d3
d4 ELc(d2) r d4
d5 ELc(d3)

Table 3. C = C+ − C−: incidence matrix of FlightAgent

C+−
C− tfa

tf0
tf1

tC tW t
W

tS tf3
tO tf2

tP

ain r-
ain −ain

a2 F W c(ain) −a2 −a2 F W c(a4)
a3 ELc(a2 , d2) −a3
a4 F W c(a3) −a4
a5 ELc(a2 , d2) −a5

aout F W c(a5)

d0
r-
d0

d1
r-
d1

d2
FWc(d0)

-d2
r − d2

d3
FWc(d1)

-d3
ELc(d4)

-d3
−d3

d4
ELc(d2)

-d4
r- d4

d5
ELc(d3)

-d5
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simulated behavior of its abstract model to isolate, detect, and explain the faults.
After defining a CPN model of BPEL process in the former part, we will formally
define the CPN diagnose for the data fault in this section.

4.1 Diagnosis problem

During the execution of a BPEL service instance, we can record the sequence of
activities executed within this instance, that we call the trace. This trace belongs
to (Tobs)∗. When a fault occurs at some moment of the instance execution, an
exception is thrown, what we call in diagnosis literature, a symptom. Exceptions
are thrown due to some inconsistency of a part of the services state. The incon-
sistency can concern either data variables values or activation data (e.g receiving
a bad message, or not receiving an expected message). In both cases, a thrown
exception can be represented as a marking where the faulty data (or activation)
places are marked with a red token and the others can be marked either as black
or unknown.

Definition 9 Let M be a marking, M is a symptom (exception) marking iff ∃p,
M(p)(r)6=0. We denote the symptom markings by M̂ .

So a diagnosis problem is a 3-tuple of the model, observed behavior, and
symptom:

Definition 10 A diagnosis problem is a tuple D=< N, δo, M̂ >:

– N is a CPN system that represents the model of a BPEL service;
– δo is an observable trace δo ∈ (Tobs)∗;
– M̂ is a symptom marking.

As fault transitions are unobservable, an observation trace always corre-
sponds to multiple characteristic vectors. That is, different intermediate mark-
ings can lead to the same symptom marking. We say the symptom marking
”covers” all its former markings. We introduce a covering relation as follows:

Definition 11 A covering relation ¹ between colors of Σ={r, b, ∗} is a partial
ordered relation where any color covers itself and the ∗ color covers all colors
(i.e ¹={(r, r), (b, b),(∗, ∗),(r, ∗),(b, ∗)}). We extend the color covering relation
to multisets and markings as follows:

– let m,m′ ∈ M+(Σ), we have m ¹ m′ iff
∑

c∈Σ

m(c)=
∑

c∈Σ

m′(c) ∧ ∀c 6= ∗,
m′(c) > 0 ⇒ m(c) ≥ m′(c)

– let M,M ′ be two markings, we have M ¹M ′ iff ∀p ∈ P , M(p) ¹M ′(p)

We give now a definition of a diagnosis:

Definition 12 Let D=〈N ,δo,M̂〉 be a diagnosis problem, a diagnosis Sol⊆TF

and Sol 6=∅ such that: M0+C×−⇀δ ¹M̂ with
−⇀
δ is a characteristic vector defined

as follows:
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– ∀t ∈ Tobs,
−⇀
δ (t)=

−⇀
δo(t), where

−⇀
δo(t) is the occurrence number of t in δo;

– ∀tf ∈ Sol,−⇀δ (tf )=1;
– ∀tf ∈ (TF \ Sol),−⇀δ (tf )=0.

Note that we restrict the value of a fault transition to 1. This is due to
the fact that a fault transition only changes the color of token to red and has
no effect on the activation places marking. Even if a fault happens more than
once we consider only the occurrence of the fault transition that can explain the
symptom (the red token). Thus we restrict the value of the characteristic vector
of a fault transition to one or zero (happened and explains the symptom or did
not happen).

Definition 13 Let D=〈N ,δo,M̂〉 be a diagnosis problem and Sol be a diagnosis,
Sol is minimal iff ∀Sol′ ⊂ Sol, Sol′ is not a diagnosis.

Definition 14 Let D=〈N ,δo,M̂〉 be a diagnosis problem, the diagnosis solution
DS ⊆ 2F is the set of all possible minimal diagnoses.

4.2 Diagnosis of CPN by inequations system solving

The aim of diagnosis is to explain the symptoms with minimum set of fault.
That is, to find the set of traces in the CPN model all of which cover the same
observed trace, the faults that appear in those traces represents the diagnosis.

In our model, the symptom is a reachable marking of the CPN model. While
we assume that in the initial marking, data is considered as correct (black token
marking). So the inequation 1 for the observation δO does not hold.

M0+C×−⇀δO¹M̂ (1)

By extending the characteristic vector with the fault occurrences, which con-
sist the diagnosis. The covering relation in inequation 2 holds:

M0+C×−⇀δ ¹M̂ such that ∀t ∈ Tobs,
−⇀
δ (t)=

−⇀
δo(t); (2)

Let D=〈N ,δo,M̂〉 be a diagnosis problem and let ni be variables ranging over
{0, 1}, we construct the characteristic vector δ as follows:

– ∀t ∈ Tobs,
−⇀
δ (t)=

−⇀
δo(t);

– ∀tfi ∈ TF ∧ −⇀δo(Type(tfi)) 6= 0,
−⇀
δ (tfi)=ni;

– ∀tf ∈ TF ∧ −⇀δo(Type(tf ))=0,
−⇀
δ (tf )=0;

We can then construct an inequations system (one inequation for each place)
for the diagnosis problem as follows:

QM̂=


Eqp1 : M̂(p1) ºM0(p1) + C(p1, .)

−⇀
δ

· · ·
Eqpi : M̂(pi) ºM0(pi) + C(pi, .)

−⇀
δ

· · ·
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To each place p, we associate an inequation Eqp where the left part is
l(Eqp)=M̂(p) and the right part is r(Eqp)=M0(p) + C(p, .)

−⇀
δ . We divide the

set of inequations QM̂ into three subsets:

– Qr
M̂

={Eqp|l(Eqp)=r}
– Qb

M̂
={Eqp|l(Eqp)=b}

– Q∗
M̂

={Eqp|l(Eqp)=∗ ∨ l(Eqp)=0}
The diagnosis algorithm executes backward reasoning recursively (algorithm

2) for each inequation Eqp ∈ Qr
M̂

within QM̂ and then combines all the diagnosis
results (algorithm 3). In the following, we give first the solution of one inequation
and then that of an inequations system.

One inequation Qr
M̂

solving
The part on the right side of an inequation is a multi set composed by color func-
tions, constants, and the corresponding place variables which may have positive
or negative coefficients. Solving the inequation consists in canceling the negative
terms in the right part, keeping the positive color functions, and evaluating the
positive coefficient ni of red tokens (r) to 1 to explain the red token on the left
side of the inequation (algorithm 1). Algorithm 1 looks for the possible minimal
diagnosis Nr

p corresponding to one symptom place p in a symptom marking. And
at the same time, it looks for the candidate inequations Cr

p which can explain
the symptom place but should be solved further. So to completely solve Cr

p , we
to recursively back reason by reconstructing Qr

M̂
, Q∗

M̂
until getting all possible

causes of the symptom place p (algorithm 2).

Algorithm 1 Partially solving a Qr
M̂

inequation: solvAnEqu(Eqp)

Input: Eqp: a Qr
M̂

inequation concerns a place p;
Output: < Cr

p , Nr
p > {Cr

p :a set of color functions which generate red tokens; Nr
p : a

set of faulty transitions;}
1: Cr

p=∅; Nr
p =∅;

2: ForEach ni × ci ∈ r(Eqp)+=
∑

i∈I ni × ci do
3: if ni is not a constant and ci = r then
4: Nr

p =Nr
p ∪ {tfi}; {records the faulty transition tfi in Nr

p}
5: else if ci is a color function concerning place p′ then
6: Cr

p=Cr
p ∪ {cp′};{records the place cp′ if its color ci is unknown for further

solving}
7: else if ci is a color propagation function dc

i then
8: Cr

p={Cr
p} ∪ {cpi ∈ V ar(ci)};{records all the input places of ci for further

solving}
9: end if

10: end for
11: return < Cr

p , Nr
p >;

An inequations system QM̂ solving
By solving each inequation in Qr

M̂
with algorithm 2, we get the diagnosis for
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Algorithm 2 Completely solving a Qr
M̂

inequation: CSD(QM̂ , Eqp)

Input: QM̂=Qr
M̂
∪Qb

M̂
∪Q∗

M̂
: the inequations system ;

Eqp ∈ Qr
M̂

: an inequation to solve;
Output: Solp: a diagnosis solution concerning a symptom place p;
1: Solp=∅;
2: 〈Cr

p ,Nr
p 〉=solvAnEqu(Eqp);{get the first back reasoning result, Cr

p need to be re-
solve further}

3: Solp=Solp ∪Nr
p ;{record the current diagnosis}

4: if Cr
p 6= ∅ then

5: ForEach cp′ ∈ Cr
p do

6: if ∃Eqp′ ∈ Q∗
M̂

then
7: if l(Eqp′)=∗ then
8: Solp = Solp ∪CSD(Qr

M̂
∪{r º r(Eqp′)}∪ (Qb

M̂
∪Q∗

M̂
)\{Eqp, Eqp′}, r º

r(Eqp′)); {evaluates the l(Eqp′) as r, reconstructs the inequations system
and recursively back reasoning until solved all the related places}

9: else if l(Eqp′)=0 then
10: Solp=Solp ∪ CSD(Qr

M̂
∪ {r º r(Eqp′) + cp′} ∪ (Qb

M̂
∪ Q∗

M̂
) \

{Eqp, Eqp′}, r º r(Eqp′) + cp′);{evaluates the l(Eqp′) as r and add a red
token on the right side of the inequation to balance Eqp′ , reconstructs
the inequations system, and recursively back reasoning until solved all
the related places}

11: end if
12: end if
13: end for
14: end if
15: return Solp;
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a inequations system QM̂ (algorithm 3). The union set of all the Solp is the
diagnosis solution for QM̂ which can contain multiple symptoms (faults).

Algorithm 3 Diagnosis solution for an inequations system QM̂

Input: QM̂=Qr
M̂
∪Qb

M̂
∪Q∗

M̂
: the inequations system ;

Solp=∅: a diagnosis solution concerning a symptom place p;
Output: D: a diagnosis solution of QM̂ ;
1: D=∅;
2: ForEach Eqp ∈ Qr

M̂
do

3: Solp=CSD(QM̂ , Eqp); {resolve each inequation in Qr
M̂

by back reasoning}
4: D=D

∪× Solp;4

5: end for
6: return D;

4.3 Example (cont’): diagnosis problem and solution of F lightAgent

In our diagnosis scenario, each BPEL process is associated with a monitoring
platform, which records the status of the activities and variables of each exe-
cution instance, and a diagnosis is implemented as a WS, which contains the
initialed (described in subsection 3.4) CPN model of the BPEL. The diagnosis
WS it triggered by the BPEL executer (BPEL execution engine) or invoker (WS,
application, etc) once a symptom is thrown by the executer or invoker, the (ac-
tivation or data) places which correspond to the symptom is marked as r while
the other data places are marked as ∗, and activation places are marked as 0.
Now suppose we get a series of observed activities σ0: C, W , S, O, W , S, O, W ,
and P , which means the while iteration is processed twice. Then we construct a
characteristic vector

−⇀
δ T : (tfa tf0 tf1 tC tW tW tS tf3 tO tf2 tP )=(n0 n1 n2 1 2

1 2 n4 2 n3 1). Given an initial marking M0 =(ain a2 a3 a4 a5 a
out d0 d1 d2 d3

d4 d5)=(b 0 0 0 0 0 b b b b b b), we suppose that, in two diagnosis scenarios, we
got two symptom markings Mn1 = (ain a2 a3 a4 a5 a

out d0 d1 d2 d3 d4 d5)=(0
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ r), and Mn2 = (ain a2 a3 a4 a5 a

out d0 d1 d2 d3 d4 d5)=(0
0 0 0 0 r ∗ ∗ ∗ ∗ ∗ r ). For symptom marking Mn1 , we construct an inequations
system as in equation 3.

4
∪× is an operator that applies the union operator on couples resulting from the
Cartesian product.
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Eqain : 0 º (r − Cain)× n0 − Cain + b
Eqa2 : 0 º FW c(Cain)− Ca2 × 2− Ca2 + FW c(Ca4)× 2 + 0
Eqa3 : 0 º ELc(Ca2 , Cd2)× 2− Ca3 × 2 + 0
Eqa4 : 0 º FW c(Ca3)× 2− Ca4 × 2 + 0
Eqa5 : 0 º ELc(Ca2 , Cd2)− Ca5 + 0
Eqaout : ∗ º FW c(Ca5) + 0
Eqd0 : ∗ º (r − Cd0)× n1 + b
Eqd1 : ∗ º (r − Cd1)× n2 + b
Eqd2 : ∗ º FW c(Cd0)− Cd2 + (r − Cd2)× n3 + b
Eqd3 : ∗ º FW c(Cd1) + (ELc(Cd4)− Cd3)× 2− Cd3 + b
Eqd4 : ∗ º (ELc(Cd2)− Cd4)× 2 + (r − Cd3)× n4 + b
Eqd5 : r º ELc(Cd3)− Cd5 + b

(3)

Note that for final marking Mn2 , we can construct a similar inequations
system except Eqaout is different (r º FW c(Ca5) + 0) from the one in equation
system (3). By applying the diagnosis algorithms, the diagnosis that concerns
the symptom marking Mn1 is illustrated in figure 4(a) while the diagnosis that

concerns Mn2 is the
∪× product of the diagnosis illustrated in figures 4(a+b)

as the inequations system for symptom marking Mn2 contains one more red
token in the activation output place aout. In figure 4, we illustrate the diagnosis
solving process in structured trees. The nodes represent the inequations needed
to be solved and each leaf represents a diagnosis and the union of all leaves is a
diagnosis solution.
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Fig. 4. Diag: Mn1 and Diag: Eqaout in Mn2

As a result, for symptom markingMn1 , we have the diagnosis:D1={{tf0}, {tf1},
{tf2}, {tf3}} represents 4 single faults. Either the input data fault d0, or the in-
put data fault d1, or the transition fault on invoke activity S, or the transition
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fault on invoke activity O. Concerning the symptom marking Mn2 , the diagnosis

is extended as: D=D1

∪× D2, where D2 concerns the red token in activation place
aout. As illustrated in figure 4(b), D2={{tfa}, {tf0}, {tf2}}. So, we get diagnosis
D={{tf0}, {tf2}, {tfa

, tf1}, {tfa
, tf3}}, i.e., the fault is on input data place d0,

or on transition O, or on input activation place fa and invoke activity C, or on
input activation place fa and invoke activity S.

5 Related work

Automata, process algebra, and Petri nets are the most popular DES models.
We refer the reader to [14] for the surveys of formal methods of Web services
modeling. The major method for diagnosing a DES is trajectory unfolding. Un-
folding method is used on the observable trajectory of system evolution to find
the faulty states as the diagnosis. For example, [16] proposes a decentralized
model-based diagnosis algorithm based on the PNs model ([10]) by inversely
unfolding the trajectory. But in [16], local diagnoser does not support iteration
in BPEL processes.

We can also adapt the FlightAgent example according to the modeling meth-
ods of [2] by modeling the states of the BPEL service as places and activities as
transitions. As this modeling approach loses the data dependency which cannot
ensure the diagnosis is as minimal as ours. [12] models a modular interacting
system as a set of place-bordered Petri nets and proposes a distributed online
diagnosis which applies algebra calculations from the local models and the com-
municating messages between them. But when applying [12] on the FlightAgent
example gets the explosion of the state space because the partition of the vari-
ables and messages into subtle parts, and its simple Petri nets definition are too
limited to deal with the data aspects.

There are some works that model the WS system with other types of mod-
els. In [5], a system is modeled with process algebra containing faulty behavior
models. The diagnosis is done by comparing all possible action traces with the ob-
servations. All the faulty actions of the matched traces are the diagnosed faults.
But [5] models and diagnosis the general WS applications but not a concrete WS
specification language. [15] models BPEL services as enriched synchronized au-
tomata pieces and diagnose by trajectory reconstruction from observation while
the algorithm is incapable for diagnosing the control fault in the process.

A similar diagnosis approach has been proposed in [1], of which we use the
same data dependency relation. But [1] does not support loops in WS process
while we represent loops as the occurrence in a characteristic vector. In such way,
we solve the loops without extra cost. The consistency-base diagnosis approach
proposed in [1] is more abstract but loses the precision on modeling level. But
we believe that the two methods can get the same minimal diagnosis.

We use the places to represent the data instead of states of the DES in
other works. When simulating the CPN model, , the states of the data is more
intuitive. And the markings of CPN represent the different states which contain
plenteous information and can be formally analyzed.
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6 Conclusion

Our CPN modeling approach addresses diagnosis of data fault(s) of orchestrated
Web services. The paper constructs a model for the faulty data and faulty activ-
ities in a BPEL process. We construct an inequations system for the diagnosis of
a BPEL service. And a concrete inequations solving algorithm is proposed. The
diagnosis takes advantage of the matrix calculation, which helps to improve the
effectiveness of the diagnosis. The interpretation of happened (1) or not hap-
pened (0) status of the fault transitions avoids the unfolding of Petri nets or
trajectory reconstruction. So the iterative structure in BPEL services does not
increase the calculation complexity of the diagnosis.

Our diagnosis approach can be easily extended into the distributed environ-
ments according to the approach proposed in [12] by defining a proper com-
position protocol of the CPNs. And we believe that the diagnosability analysis
can also be done using algebra analysis based on the incidence matrix, which is
another ongoing work.
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Synthesis of PTL-nets with Partially Localised
Conflicts
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Abstract. We discuss the problem of constructing PT-nets with locali-
ties (PTL-nets) from transition systems with arcs labelled by multisets of
transitions (steps). We first outline how this can be done within the exist-
ing general solution based on the regions of step transition systems and
fixed co-location relations. We then drop the latter assumption and show
that this does not really matter when one aims at synthesising PTL-nets
where all conflicts involve conflicts between co-located transitions.
Keywords: Petri nets, localities, regions of transition systems, conflict.

1 Introduction

An ever growing number of computing systems behave in the ‘globally asyn-
chronous locally (maximally) synchronous (or GALS)’ manner. Examples can
be found in hardware design, where a VLSI chip may contain multiple clocks
responsible for synchronising different subsets of gates [4], and in biologically in-
spired membrane systems representing cells within which biochemical reactions
happen in synchronised pulses [9]. To capture such systems in a formal man-
ner, [6] introduced Place/Transition-nets with localities (PTL-nets), where each
locality identifies a distinct set of events which must be executed synchronously,
i.e., in a maximally concurrent manner (akin to local maximal concurrency).

To capture such systems in a formal manner, [6] introduced Place/Transition-
nets with localities (PTL-nets), where each locality identifies a distinct set of
transitions which must be executed synchronously, i.e., in a maximally concur-
rent manner (akin to local maximal concurrency).

In this paper, we aim at constructing PTL-nets from their behavioural spec-
ifications given in terms of transition systems with arcs labelled by multisets of
transitions (steps). We first outline how this can be done within the existing
general solution provided in [3] based on the regions of step transition systems
and known co-location relations. We then investigate what happens if no co-
location relation for transitions is given in advance, and show that this does not
really matter when one aims at synthesising PTL-nets where all conflicts involve
conflicts between co-located transitions.
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2 Preliminaries

Let T be a fixed finite non-empty set of (net) transitions. A co-location relation is
any equivalence relation ≏ on T . For a transition t and a multiset of transitions α
(i.e., a mapping α : T → N, called throughout the paper a step), we will denote
t ≏ α whenever there is at least one transition u ∈ α satisfying t ≏ u. Moreover,
α|t is α after deleting all the transitions which are not co-located with t.

Mappings like f : T → N or g : X × T → N, where X is a set, can accept
steps α instead of single transitions, in the following way:

f(α) =
∑
t∈T

α(t) · f(t) and g(x, α) =
∑
t∈T

α(t) · g(x, t) .

A step transition system is a triple T = (Q, A, q0) where Q is a non-empty
finite set of states, A ⊆ Q × NT × Q is a finite set of transitions (arcs), and
q0 ∈ Q is the initial state. We assume that each transition in T occurs in at least
one of the steps labelling the arcs of T . Below T is fixed.

We will write q
α−→ q′ if (q, α, q′) is a transition. Moreover, for every state q:

– allStepsq is the set of all steps labelling arcs outgoing from q.
– minStepsq is the set of all non-empty steps α ∈ allStepsq for which there is

no non-empty β ∈ allStepsq strictly included in α.
– Tq is the set of all transitions occurring in the steps of allStepsq.
– ≏q is the restriction of a co-location relation ≏ to Tq × Tq.
– Two co-location relations, ≏ and ≏′, are state consistent if the restrictions

≏q and ≏′
q are the same, for every state q.

A PT-net with localities (or PTL-net) is N = (P, T, W+, W−, ≏, M0), where
P is a set of places disjoint from transitions, W+, W− : P ×T → N are directed
arcs with non-negative integer weights, ≏ is a co-location relation, and M0 :
P → N is an initial marking (in general, any multiset of places is a marking).

A step α of transitions is resource enabled at a marking M if, for every place
p ∈ P , M(p) ≥ W−(p, α). Such a step is then control enabled if there is no
transition t such that t ≏ α and the step t+α is resource enabled at M . Control
enabled α can be fired leading to the marking M ′, for every p ∈ P defined by:

M ′(p) = M(p)−W−(p, α) + W+(p, α) .

We denote this by M [α〉M ′ or M [〉M ′. We assume that for each transition t
there is a place p such that W−(p, t) > 0 (otherwise t would never occur in a
control enabled step). As a consequence,

for every step α which is resource enabled at marking M there is a step
containing α which is control enabled at M . (‡)
The concurrent reachability graph CRG(N) of N is the step transition system

CRG(N) = ([M0〉, A, M0) where [M0〉 is the set of reachable markings (the least
set containing M0 and such that M ∈ [M0〉 and M [〉M ′ implies M ′ ∈ [M0〉),
and (M, α, M ′) ∈ A iff M ∈ [M0〉 and M [α〉M ′.
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3 From transition systems to PTL-nets

Let us consider the following net synthesis problem:

Given a finite T and a co-location relation ≏, whenever possible construct
a finite PTL-net N such that T is isomorphic to CRG(N). (†)

It was shown in [3] that synthesis problems like (†) can be solved using techniques
coming from the theory of regions of transition systems (see, e.g., [1, 5, 8]).

In this instance, a region of the transition system T is a triple of mappings

(σ : Q → N, η+ : T → N, η− : T → N)

such that, for every transition q
α−→ q′ of T , we have

σ(q) ≥ η−(α) and σ(q′) = σ(q)− η−(α) + η+(α) .

Regions are used both to check the feasibility of (†) and to construct a target
PTL-net. At the centre of the synthesis procedure outlined below is checking of
two required properties of T , called state separation and forward closure.

Assume that Q = {q0, . . . , qm} and T = {t1, . . . , tn}. We use three vectors of
non-negative variables: x = x0 . . . xm, y = y1 . . . yn and z = z1 . . . zn. We also
denote p = xyz and define a homogeneous linear system, where α · z denotes
α(t1) · z1 + · · ·+ α(tn) · zn, etc.:

P :
{

xi ≥ α · z
xj = xi + α · (y − z) for all qi

α−→ qj in T

The regions of T are determined by the integer solutions p of P assuming that
σ(qi) = xi (for 0 ≤ i ≤ m) as well as η+(tj) = yj and η−(tj) = zj (for 1 ≤ j ≤ n).

Remark 1. Let αi be the sum of the sequence of steps labelling arcs along the
path from q0 to qi in a fixed spanning tree Tree of T . One can eliminate each
xi with i ≥ 1 through a substitution xi = x0 + αi · (y − z), resulting in a
system equivalent to P (note that as ∅ ∈ allStepsqi

we do not need the inequality
x0 + αi · (y − z) ≥ 0):

P ′ :
{

x0 + αi · (y − z) ≥ α · z for all qi and α ∈ allStepsqi

(αj − αi − α) · (y − z) = 0 for all qi
α−→ qj in T but not in Tree

The set of rational solutions of P forms a polyhedral cone in Qm+2n+1 (while
that of P ′ forms a polyhedral cone in Q2n+1). Following [2], one can compute
finitely many integer generating rays of this cone p1, . . . ,pk such that each
rational solution p of P can be expressed as a linear combination with non-
negative rational coefficients,

p =
k∑

l=1

rl · pl .
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Such rays are fixed and turned into net places if (†) is feasible.
Checking state separation is carried out for each pair of distinct states, qi

and qj , and amounts to deciding whether there is an integer solution p of P with
coefficients r1, . . . , rk such that xi 6= xj . Since the latter is equivalent to

k∑
l=1

rl · xl
i 6=

k∑
l=1

rl · xl
j ,

one simply checks whether there is l such that xl
i 6= xl

j .
Checking forward closure is carried out for each state qi, and starts by cal-

culating the region enabled steps regStepsqi
. One only needs to consider steps α

with |α| ≤ max where max is maximum size of steps labelling arcs in T (note
that p = max . . .max 1 . . . 1 1 . . .1 is an integer solution of P). Such a step does
not belong to regStepsqi

iff for some integer solution p of P with coefficients
r1, . . . , rk we have xi < α · z. Since the latter is equivalent to

k∑
l=1

rl · (xl
i − α · zl) < 0 ,

one simply checks whether there is l such that xl
i−α ·zl < 0. Finally, one checks

whether allStepsqi
is the set of all α ∈ regStepsqi

for which there is no t ∈ T
such that α + t ∈ regStepsqi

and t ≏ α.

4 PTL-nets with partially localised conflicts

The synthesis procedure outlined above only works for a given co-location rela-
tion which may be unrealistic in practice. As the number of co-location relations
for n transitions is finite, one might in principle try them all. This, however,
would be impractical since this number is the n-th number in the fast-growing
sequence of Bell numbers. An important observation helping to reduce this vast
range of possibilities is that the synthesis procedure succeeds for ≏ iff it suc-
ceeds for any co-location relation with which it is state consistent (the proof of
a similar property in the context of the synthesis of ENL-systems can be found
in [7]). In a special, yet still practically important, case discussed next all one
needs to consider is a single co-location relation.

A PTL-net has partially localised conflicts (or is PTL/LC-net) if the following
holds, for all reachable markings M and steps α which are resource enabled at M :

If t is a transition resource enabled at M but the step α+t is not resource
enabled at M , then α|t + t is also not resource enabled at M . (††)

The idea behind a PTL/LC-net is that all the actual (dynamic) conflicts for
resources in reachable markings involve only local conflicts. All conflicts between
transitions that are not co-located are only static. To justify this, consider (††)
and observe that (α − α|t) + t is resource enabled at M for any PTL/LC-net.
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Indeed, otherwise we could take (††) with the same t and (α − α|t) instead of
α reaching the conclusion that (α − α|t)|t + t is not resource enabled. But this
would mean that t is not resource enabled (as (α − α|t)|t + t = ∅ + t = t),
contrary to what has been assumed.

Figure 1 shows an example of a PTL/LC-net, where co-located transitions
are depicted using the same shading. Note that it exhibits a dynamic conflict be-
tween (co-located) transitions u and v, but the conflict between (not co-located)
transitions t and u is static.

(a)

t u v

(b)

q0q1

q2

q3

q4 q5

{u}

{t}

{v}

{t, u} {t, v}{t}

{u} {v}

{t}

Fig. 1. A PTL/LC-net (a); and its concurrent reachability graph (b).

Let T be the concurrent reachability graph of a PTL/LC-net N with the
co-location relation ≏. Moreover, let q be one of its states and

max q
t = max{α(t) | α ∈ allStepsq} ,

for every transition t in Tq. Below we treat q as a marking of N .

Proposition 1. If t ∈ α ∈ allStepsq then α|t ∈ minStepsq.

Proof. Suppose that α|t /∈ allStepsq. Then (since α|t is resource enabled at q)
there is a transition u such that u ≏ α|t and α|t + u is resource enabled at
q. By (††), α + u is resource enabled at q, contradicting α ∈ allStepsq. As a
result, α|t ∈ allStepsq and so, since all the transitions in α|t are co-located,
α|t ∈ minStepsq. ⊓⊔
Corollary 1. If α ∈ minStepsq, then all the transitions in α are co-located. ⊓⊔

The next result shows that, for a concurrent reachability graph of a PTL/LC-
net, the local information at a state q about the steps enabled there will deter-
mine the co-location relation of any two transitions that are involved in all these
steps. More precisely, two transitions will be co-located if either there is no step
enabled at q where they both have the maximal number of occurrences, or there
is a minimal step at q to which they both belong.

Theorem 1. Two distinct transitions t, u ∈ Tq are co-located iff either there is
no step α ∈ allStepsq such that max q

t + max q
u = α(t) + α(u), or there is a step

in minStepsq to which the two transitions belong.
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Proof. (=⇒) Suppose that α ∈ allStepsq is such that

max q
t + max q

u = α(t) + α(u) ,

and so α(t) ≥ 1 and α(u) ≥ 1. Then t, u ∈ α|t and by Proposition 1, we obtain
that α|t ∈ minStepsq.

(⇐=) Suppose that t 6≏ u and there is no step α ∈ allStepsq such that

max q
t + max q

u = α(t) + α(u) .

Let β be a step in allStepsq such that β(t) + β(u) is maximal. Since

β(t) + β(u) < max q
t + max q

u ,

we assume, without loss of generality, that β(t) < max q
t . Since β ∈ allStepsq we

have that the step γ = β(t) · t + β(u) · u is resource enabled at q. On the other
hand, γ + t is not resource enabled as otherwise there would have been a step in
allStepsq containing it (see (‡)), contradicting the choice of β. Hence, by t 6≏ u
and t ∈ Tq and (††),

γ|t + t = β(t) · t + t

is not resource enabled at q. But this contradicts the definition of max q
t and

β(t) + 1 ≤ max q
t .

If t, u ∈ α ∈ minStepsq then we apply Corollary 1. ⊓⊔
It follows from Theorem 1 that if we can synthesise a PTL/LC-net then

the projections ≏q of all suitable co-location relations are unique and can be
computed locally for each state q from the steps in allStepsq and minStepsq.

For the transition system in Figure 1(b), we can show that the choice of a
co-location relation as in Figure 1(a) was actually the only choice to make this
transition system synthesisable to a PTL-net. To see this, let us apply Theorem 1
to states of the transition system in Figure 1(b). For the initial state, we have
Tq0 = {u, t, v} and

allStepsq0
= {∅, {u}, {t}, {t, u}, {v}, {t, v}}

minStepsq0
= {{u}, {t}, {v}} .

Consequently, t 6≏q0 u as there is no step in minStepsq0
which contains both t

and u, and there is a step α = {t, u} ∈ allStepsq0
such that

α(t) + α(u) = 2 = max q0
t + max q0

u .

Similarly, one can show that t 6≏q0 v. For the last pair of transitions, u and v,
we obtain that u ≏q0 v as there is no step α ∈ allStepsq0

such that

α(u) + α(v) = 2 = max q0
u + max q0

v .

For the remaining states we have

Tq1 = {t} Tq2 = {u, v} Tq3 = {t} Tq4 = Tq5 = ∅ ,
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and so we only need to check whether u ≏q2 v. The answer is positive since

allStepsq2
= {∅, {u}, {v}}

minStepsq2
= {{u}, {v}}

and so there is no step α ∈ allStepsq2
such that

α(u) + α(v) = 2 = max q2
u + max q2

v .

After computing the projections ≏q, for all q ∈ Q, we form the transitive
closure ≏T of their union and proceed as follows (note that in the case of our
example, ≏T = {(u, v), (v, u), (u, u), (v, v), (t, t)}).

First we check whether ≏q is equal to ≏T |Tq×Tq , for every state q. If this is
not the case, we know that the synthesis problem to PTL/LC-nets fails. Other-
wise, we proceed with the procedure outlined in the previous section with a given
co-location relation ≏T , and its outcome determines the outcome of the whole
synthesis process. Moreover, if this succeeds, then any other good co-location
relation can be obtained as follows.

Let GT be an undirected graph whose vertices are the equivalence classes
of the co-location relation ≏T , and there is an edge between vertices V and W
if there is a state q of T and two transitions, t ∈ V and u ∈ W , such that
t, u ∈ Tq and t 6≏T u. Then all feasible co-location relations are given through
different solutions of the vertex colouring problem for GT . Moreover, since the
net structure can be the same as for ≏T , we do need to re-run the synthesis
algorithm again.

5 Final remarks

The idea of considering PTL-nets with partially localised conflicts was inspired
by our recent work on the synthesis of elementary net systems with localities [7],
where a class of systems without dynamic non-local conflicts has been shown to
exhibit properties similar to those captured by Theorem 1.

In our future work we plan to investigate PTL-net synthesis from specifica-
tions other than step transition systems.

Acknowledgement We would like to thank the referees for their constructive
comments.
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Abstract. Algebraic Petri Nets (APN: Petri Nets + Abstract Algebraic
Data Types) are powerful tools to model concurrent systems. Because
of their high expressive power, allowing end-users to model complex sys-
tems, State Space Explosion is a big issue in APN. Symbolic Model Check-
ing (SMC) and particularly Decision Diagrams (DD) based symbolic
model checking is a proven technique to handle the state space explosion
for simpler formalisms such as P/T Petri nets. This paper discusses how
to use Binary Decision Diagrams’ (BDD) evolutions (Data Decision Dia-
grams, Set Decision Diagrams, ΣDD, . . . ) to tackle the aforementioned
problem in the APN world. The main contribution of this work is the
notion of the Algebraic Cluster that tackles the concurrency induced by
token multiplicity. The discussed algorithms have been implemented in
a tool that is freely accessible on http://alpina.unige.ch.

Keywords: System design and verification, Higher-level Nets Models, Alge-
braic Petri Nets, State Space Generation, Decisions Diagrams

1 Introduction

Modeling complex systems needs high-level formalisms, algebraic net is one of
the interesting approach that can be used. The Petri net part of the model is
employed to express aspects of the system related to causality, non-determinism
and concurrency while algebraic abstract data types are used to describe the
data evolving in the model as well as the modification of these values.

This paper explores how to use model checking based on decision diagrams
for algebraic Petri Nets. In particular, how to manage the inherent combinatorial
complexity imposed by data types. We focus on principles that can be used to
speed up the reachability analysis. Since we perform symbolic model checking
? This project was partially funded by the COMEDIA project of the Hasler foundation,

ManCom initiative project number 2107. We also want to thank Levi Lùcio and
Alexis Marechal for their useful comments.
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and not bounded model checking, we expect the state space to be finite. These
concepts can also be applied to more elaborated model checkers such as CTL
model checkers.

We do not explain here the internal machinery (for more details see [1]) of
the model checker but we rather focus on its usage. In particular, checking alge-
braic nets using symbolic representation based on decision diagrams requires an
additional level of symbolism with respect to P /T Petri nets model checking.
This additional layer, called algebraic clusters, is the main contribution of this
paper. Algebraic clusters are clusters [2,3] that are indexed by an algebraic do-
main. The advantage of such an approach is that it enables discovery of localities
of computation and the ability to apply saturation principles. Localities are no
longer only defined based on net structure but also on the algebraic values.

Besides, partial or total unfolding greatly speeds up the exploration of the
state space and saves memory. By unfolding we mean finding all possible values of
a user-defined algebra (if finite) and build specialised operations to handle them
instead of heavy general operations that can handle any value. This last aspect
will not be detailed in this article however interested readers can find more
information in [1]. Throughout this paper we mainly explore how the correct
use of algebraic clusters can dramatically improve the construction of the state
space both in terms of memory consumption and processing time. Comparison
to existing approach can be made on two levels:

– Comparable high-level Petri nets analyzers such as Maria[4] and Helena[5]
are completely outperformed if clusters can be mapped on significantly in-
dependent part of computation (see section 8).

– Decision diagrams on P/T nets with unfolding [6,7] and our approach are
linear in term of performance. However with a significant advantage on our
side for the modeling aspect as well as a clear separation of the heuristics
(clustering and unfolding) necessary for doing efficient model checking.

These principles are illustrated in our tool called AlPiNA (Algebraic Petri
Net Analyzer). 1

This paper is organized as follows: first we introduce algebraic abstract data
types and algebraic Petri nets, then we give an example of an algebraic Petri
net that is sufficiently complex to introduce our approach. The fourth section
shows, using said example, the kind of properties we can check. Section 5 gives
an overview of the operational aspects of model checking while the sixth section
presents an abstract definition of the decision diagrams as well as the encoding
of basic elements and operational principles. The seventh section introduces the
idea behind clustering and how algebraic clustering works. Finally, section 8 de-
scribes how clusters are applied to the example and some significant benchmarks
demonstrates the approach.

1 The engine is already available, a GUI will be released within a few months.
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2 Short Introduction to Algebraic Nets

Algebraic nets [8] are an evolution of P/T Petri nets where tokens belong to
domains defined by algebraic specifications. Although not very different from
other extensions of Petri nets such as Coloured Petri Nets [9], APN have several
significant advantages:

– The possibility to define any data structures that have first order axiomati-
sations (it is the case for usual structures that we find in classical modeling
or programming languages: integer, lists, sets,... but not reals for example);

– An abstract level of axiomatization combined with concrete operational tech-
niques based on rewriting;

– A formal notation allowing reasoning about data types and their usage. It
can be particularly useful to automatically perform proofs.

An APN definition is split into two parts: a Petri Net with places holding typed
tokens; and a set of ADT (Abstract Algebraic Data Types) representing data.

2.1 Algebraic Abstract Data Type

Algebraic Abstract Data Types (AADT or ADT for simplicity) [10] provide a
mathematical way to define properties of data types. ADT modules define data
types by means of algebraic specifications. Each module describes one or more
sorts, along with generators and operations on these sorts. The properties of the
operations are given in the axiom section of the modules, by means of positive
conditional equational axioms.

An algebraic abstract data type is then composed of a signature Σ = 〈S,OP 〉
where S is the set of sorts and OP the set of operations with their arity. In
general, there are two types of ADTs:

– Primitive data ADTs: boolean, natural, and integer are simple data types.
– Container ADTs: set, list, pair, bag, etc. They represent structured data and

allow to construct complex data types and operations. The contained types
can be data ADTs or container ADTs.

Moreover, through equations (Ax) based on terms, defined by the signature
(TΣ) and variables (X) to form the term with variables (TΣ,X), the properties are
defined. A specification is given by Spec = 〈Σ,Ax,X〉. There are no predefined
data types in ADT and all used types should be defined by ADT modules. Never-
theless, we provide a library of ADTs as part of COOPNBuilder[11]/AlPiNa[12]
framework which includes the most commonly used data types: boolean, natu-
ral, string, pair, list, etc. These types are fully axiomatized; this allows inferring
properties of models for verification purposes.

A calculus is defined through rewriting techniques [13,14], Rew : TΣ → TΣ ,
which provides a normal form for any terms. This procedure can be used for
deciding equalities between terms (the eval function evaluates terms into their
semantic domains) i.e ∀t, t′ ∈ TΣ , Rew(t) = Rew(t′)⇒ eval(t) = eval(t′). In the
rest of the paper, we only use term rewriting as semantics of ADT.
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It must be noted that while the notation where kept as minimal as possible
we support a rather powerful and useful algebraic extension of ADT, the order
sorted algebraic specification [15]. A Complete description of the support of order
sorting in our approach can be found in [16].

2.2 APN

Components are described by modular Algebraic Petri Nets which are defined
by so-called behavioural axioms, similar to the axioms of an ADT.

An APN spec is noted Apn-spec = 〈Spec, P, T,Beh,X,m0〉 where Spec is the
algebraic specification, P the set of places (with τ : P → S a typing function),
T the transitions, Beh the set of behavioural axioms (detailed below) and X
some variables and , m0 the initial marking. The (behavioural) axioms have the
following structure:

Cond⇒ event :: pre→ post

In which each one of the terms has the following meaning: 2

– Cond is a set of equational conditions, similar to a guard. The ` relation
decides based on rewriting if a closed condition is satisfied;

– event ∈ T is the name of a transition;
– pre and post are typical Petri net flow relations (indexed by P ) determining

what is consumed and what is produced in the net’s places.
– pre and post are built on multiset of terms. Multisets are built with +

(union), - (difference) and singleton [a] operators.

For instance, the multiset with two numbers 1 and 2 using the natural number
ADT described Fig. 2 is written [s(0)] + [s(s(0))] or simply [s(0), s(s(0))].

2.3 Semantics of APN

Knowing the semantics of an ADT, we can build the semantics of an APN. The
semantics of an APN is given by a transition system where labels represent what
is visible from outside i.e. the events. The states (also called the markings) are
represented by a set of multisets of tokens, indexed by the places, expressed by
algebraic terms of the ADTs.

Let M be the set of markings such that M is a P indexed family of T[Σ],[τ(p)].
The [s] extension mean the addition of sort multiset and associated operations
for each sort of the ADT[8]. This is made with empty set ε and operations
such as marking union (+), marking difference (-) and comparisons ⊆. Markings
are vector extensions of the similar operation on multisets for describing the
markings.

2 In our tool only input arcs that are labeled by closed term or isolated variables are
allowed in pre. Putting a variable in the input arc plus a condition in the guard
simulates composed terms.
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Given an axiom Cond ⇒ event :: pre → post and m,m′ ∈ M the markings,
event ∈ T , the transitions induced by that behavioural property is:
∀σ3, if ` Condσ, Rew(preσ) ⊆ m,m event−−−→ m−Rew(preσ) +Rew(postσ) 4

The resulting construction is the transition system built from the initial
marking by applying this firing rule until reaching a fix point TSapn(m0). From
the transition system, we can also consider the reachability set Reachapn(m0).

3 Modeling with apn

The model (Fig. 1) used in the rest of the paper is the distributed database man-
ager used by many authors, originally presented by Genrich and Lautenbach in
[17], working on Petri net and associated models. This model raises interesting
problems concerning domains. For instance, the number of database is finite
(type Databases) while the number of acknowledgments is modeled with natural
numbers. Limited domains will be enumerated (we say here unfolded) before the
state space computations while the domain of naturals will be explored during
the state space exploration. We call this combination “partial unfolding”. Alter-
natively, the graphical syntax can be replaced by the previous textual syntax.
For instance, the “Receive Msg” transition is modeled by the following axiom:
db1 = db2⇒ Receive Msg :: 〈([db1])Pending, ([db2])Inactive〉 → 〈([db1])Syncing〉

Inactive
[db0, db1, 

db2]
<db>

Receive Msg
Update &
Send Msg

[db1] [db2]

Mutex
[@]

<blacktoken>

Waiting

<db>

[db1]

Pending

< db >

[db1]

Syncing

<db>

Send AckFinishUp

[db1][db1][db1][db1] [@]

acks

[0]

<nat>

count
[3]

<natural>
prepare

[n]

[dec(n)]
[processOf(n)]

[@]

[3]

inc(n) 

[n]

[2]

[0]

[db1]

[db1]

n > 0

db1 = db2[0]

[db1]

[db1]

Where :
    db1, db2 : db;
    n : nat:

Fig. 1. Distributed database Algebraic Petri Net model

3 σ is a term substitution. tσ stands for applying the substition σ to the term t ∈ TΣ,X
4 Rew is the evaluation morphism extended to APN structures such as multiset and

vector of places from the algebraic morphism Rew.
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In Fig. 2, one can find a simplified version of the ADTs that describe the
data part of the model. Only the operations and axioms that are required for the
problem are written. The algebra of the booleans is composed of true and false
without any operation. The natural numbers are described using Peano arith-
metic and finally the databases are represented by a structure that is isomorphic
to the natural numbers modulo 3.

ADT Booleans
Sort bool
Generators

true : bool;
false : bool;

End Booleans

ADT Databases
Sort db
Use nat
Generators

db0 : db;
d : db -> db;

Operations
processOf : nat -> db;

Axioms
d(d(d(db0))) = db0;
processOf(s(x)) = d(processOf(x));

Where
x:nat;

End Databases

ADT Naturals
Sort nat
Use bool
Generators

0 : nat;
s : nat -> nat;

Operations
dec : nat -> nat;
inc : nat -> nat;
> : nat ,nat -> bool;
2 : nat;
3 : nat;

Axioms
inc(x) = s(x);
dec(s(x)) = x;
dec(0) = 0;
>(s(x), s(y)) = >(x, y);
>(s(x), 0) = true;
>(0, s(x)) = false;
>(0,0) = false;
2 = s(s(0));
3 = s(s(s(0)));

Where
x,y:nat;

End Naturals

Fig. 2. ADT of the Distributed Databases Protocol

4 The purpose of symbolic model checking

In order to check properties, a dedicated language is offered which check mainly
in CTL temporal logic setting the formula of the shape: AG(atmΣ,P ) i.e. de-
termines for a given property at ∈ atmΣ,P if Reachapn(m0) |= AG(at), where
atmΣ,P is an atomic formulae based on signature and place definitions, opera-
tion on sets and algebraic conditions. We currently do not support other CTL
operators such as (F , U , ...) as they require the predecessor relation (pre) as
defined in [18]. This restricts the checks to those can be verified by reachability
analysis. In our model checker, we gave some possibilities to check more detailed
properties at the atomic proposition level, such as inclusion or exclusion of par-
ticular tokens or sets of tokens. The following properties can be checked on the
model of Fig. 1:

– A process is either idle, waiting for other processes to sync or syncing:
AG(inactive∩syncing = ∅∧syncing∩waiting = ∅∧waiting∩inactive = ∅)

– At most one database process is the master process: AG(card(wating) ≤ 1)
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These properties will be satisfied for a given number of databases, in the
benchmarks we will show how many databases we can handle with our opera-
tional method. Please note the whole does not work for an arbitrary number of
databases since we have to compute the state space entirely.

5 Basic Operational Techniques

In this section we define the model checking techniques that are used to build
the set of reachable states. The usual process for computing the state space is to
successfully apply transitions on the marking until reaching a fix point. For an
account of the reachability algorithms, see [7]. Algorithm. 1 describes the brute
force approach to build the state space.

Algorithm 1: Compute the set of states reachable from m0 using Beh
Input: m0 the initial state.
Input: Beh the set of axioms to apply.
Result: the set of states reachable from the states m0 using Beh
begin

s, s′ are set of states
s := {m0} ;
repeat

s′ := s ; // Save the old set of states
foreach beh ∈ Beh do

foreach m ∈ s do
foreach σ,` Condbehσ and Rew(prebehσ) ⊆ m do

m′ := m−Rew(prebehσ) +Rew(postbehσ);
s := s ∪ {m′};

end
end

end
until s = s′ ; // Until we reach a fixpoint
return s ;

end

Decision diagrams (DD) are very efficient techniques to operationally imple-
ment the previous algorithm. Such approaches are both very efficient in term
of memory consumption and processing time. In the DD framework, the repeat
loop, both for loops as well as the application of the axioms are encoded us-
ing so called homomorphisms. The next section gives an overview of the DD
framework as well as more details on the operational implementation of said
homomorphisms. The above procedure is far from being optimized for complex
systems. We will show how to improve it by splitting up the state spaces through
clustering. The pieces are then composed afterwards to build the complete state.
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6 Decision Diagrams

Data Decision Diagrams (DDD [19]) and Set Decision Diagrams (SDD [3]) are
both evolutions of the well-known Binary Decision Diagrams (BDD)[20]. While
BDD is often seen as representing a Boolean function, it can also be seen as
a set of sequences of assignments of Boolean values to variables. DDD (resp.
SDD) are similar for assignments of any kind of values (resp. sets) of the form
(var1 := val1).(var2 := val2) . . . (varn := valn). V al will designate the possible
values and V ar the variable names.

p1

p2

1

a

b

1

bb
10 2

2 1 0

c

d

1

dd
10 2

2 1 0

The SDD on the left side represents the Cartesian product
of p1 and p2 that is 9 paths or states. SDD (esdd = {p1, p2})
embed DDD (eddd = {a, b, c, d}):
p1

a
1−→b

1−→1−−−−−−→ p2
c

1−→d
1−→1−−−−−−→ 1 + p1

a
0−→b

2−→1−−−−−−→ p2
c

1−→d
1−→1−−−−−−→ 1 +

p1
a

2−→b
0−→1−−−−−−→ p2

c
1−→d

1−→1−−−−−−→ 1 + p1
a

1−→b
1−→1−−−−−−→ p2

c
0−→d

2−→1−−−−−−→ 1 +

p1
a

0−→b
2−→1−−−−−−→ p2

c
0−→d

2−→1−−−−−−→ 1 + p1
a

2−→b
0−→1−−−−−−→ p2

c
0−→d

2−→1−−−−−−→ 1 +

p1
a

1−→b
1−→1−−−−−−→ p2

c
2−→d

0−→1−−−−−−→ 1 + p1
a

0−→b
2−→1−−−−−−→ p2

c
2−→d

0−→1−−−−−−→ 1 +

p1
a

2−→b
0−→1−−−−−−→ p2

c
2−→d

0−→1−−−−−−→ 1
Again the power of the SDD lies in the Cartesian product
symbolic encoding. Using SDD, thanks to the sets, we end
up with a two-dimensional symbolic encoding.

Fig. 3. SDD

6.1 Abstract definition of Decision Diagrams

A decision diagram (DD) is a structure DD with properties of set and the fol-
lowing operations:

– SeqAV ar,V al is the set of sequences of assignments of value V al to variables
V ar. This object will be efficiently represented by DD.

– internal operations (DD × DD → DD) such as the above mentioned set
operations ∪DD, ∩DD, \DD, one constant ∅DD,

– the encoding and decoding operations: encodeDD :
⋃
SeqAV ar,V al → DD,

decodeDD : DD→ ⋃
SeqAV ar,V al,

– specific internal operations (DD → DD) such as inductive homomorphisms
homDD.

Moreover, these operations must have the following properties:

– all operations are homomorphic i.e. op(d ∪DD d′) = op(d) ∪DD op(d′). This
fundamental property ensures that computations can be made globally on a
set avoiding costly value-by-value calculations.
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– the domain SeqA is the sequence of assignments specific to the encoded
information of the domain Val. Sequences of assignments are composable
with concatenation ′.′ or

⊗
for an indexed sequence of concatenation. For

instance ’v1:=1.v2:=2.v3:=3’ is a sequence of assignments.
– an efficient comparison is provided = : (DD×DD→ B). It works in constant

time due to the canonicity of the representations. This point is very impor-
tant in DD and the formal representation given to DD hide this point for
simplicity but the concrete realization must ensure this fundamental prop-
erty.

– encoding and decoding are reverse operations: encodeDD ◦ decodeDD =
decodeDD ◦ encodeDD = Id.

In the encoding necessary for this paper, we use various structures based on
different kind of assignment (defined in the domain
SeqAV ar,V al = {(v1 := val1).(v2 := val2)...(vn := valn)}):
– DDD (Data Decision Diagrams) where SeqA is based on v := val, v ∈ V ar,
val ∈ V alueDomain5

– SDD (Set Decision Diagrams) where SeqAV ar,V al is based on v := val,
v ∈ V ar, val ∈ P(V alueDomain)

– MSDD (Multi Set Decision Diagram) where SeqAV ar,V al is based on v :=
val, v ∈ V ar, val ∈ PMS(V alueDomain)6

– ΣDD (Signature based Decision Diagrams) k SeqAV ar,V al is based on v :=
val, v ∈ S, val ∈ P(TΣ,X) with an homomorphism implementing rewriting
RewΣDD compatible with rewriting on terms Rew. The ΣDD [16] structure
implements rewriting on set of terms very efficiently (comparisons with ref-
erence implementations such as Maude [21] show real advantages of ΣDD
for large set of terms). This means that we can perform proof of universally
quantified formula on finite domains in a reasonable time.

6.2 Computing reachable states

Computing the state space requires a basic schema of how states are encoded,
and the homomorphisms that compute new states from existing states. Without
entering into a detailed description, we give a sketch of states are encoded.

Encoding The encoding is given for transition systems following its inductive
definition:

– encodeSDD(m) =
⊗

p∈P (p := encodeMSDD(mp))
– encodeMSDD(εs) = s := ∅MSDD, s ∈ S
– encodeMSDD([t]s) = (s := encodeΣDD({t}))7 , s ∈ S and t ∈ TΣ
– encodeMSDD(ms+ms′) = encodeMSDD(ms) ∪MSDD encodeMSDD(ms′)
– encodeMSDD(ms−ms′) = encodeMSDD(ms) \MSDD encodeMSDD(ms′)
– encodeΣDD : P(TΣ,X)→ SIGDDΣ which encodes a term as a ΣDD [16].

5 Where V alueDomain is the domain of the variables.
6 The PMS notation corresponds to the power multi-set.
7 The basic encoding element of a sequence.
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Homomorphisms Homomorphisms are used to encode the transition relation.
We define in [1] homomorphisms for algebraic nets that compute successor states
of given states.

Let Beht = 〈event, pre, Cond, post〉 be a transition behaviour. 8 We define
H−Beht

, CheckBeht
and H+

Beht
, based on elementary homomorphisms H+ and

H− working on each individual places, [1] by:

– H−Beht
=©p∈P H

−(p, prep, event),

– H+
Beht

=©p∈P H
+(p, postp, event),

– CheckBeht
=©〈l,r〉∈Cond check(〈l, r〉).

The homomorphism HomBeh applies the behaviour of all transitions of T by
combining the previous operators: HomBeh =

⋃
Beht∈BehH

−
Beht

◦ CheckBeht
◦

H+
Beht

and finally we compute the transitive closure:Hom∗Beh = (HomBeh∪Id)∗.
At the end of this process, we obtain a SDD structure building the whole

transition system Reachapn(m0) from an initial marking :⋃
m∈Reachapn(m0)

encodeSDD(m) = Hom∗Beh(encodeSDD(m0))

which corresponds to the program schemata given at the beginning. When im-
plementing such a procedure we can see that the performance, while interesting,
is not as good as those of [7]. Reasons are that the processes are not well cap-
tured and non-necessary interleaving of computations are explicitly represented
while they should have been symbolically represented. In the next section we
will present algebraic clustering to overcome this problem.

7 When axioms can help discovering processes

In this section, we explain the principles that can be used for capturing processes
and modules in a model (subparts of independent behaviour) and how they
impact on the computation of the state space.

Let’s divide the model M of a system into n components such that M =
C1× . . .×Cn and thus the complexity of |M | = |C1| · . . . · |Cn|. Hence, in the best
case, that is when each and every component is independent, we end up with the
full Cartesian product of the states of the different components. This is exactly
what we get when concatenating decision diagrams representing set of states.
Therefore, to efficiently use decision diagrams, we need to split up the system in
components, consider them locally and then to compose their state space. It is
clear that in the general case, components are not completely independent and
adjustments must be made.

If well chosen, these clusters help to compute a considerably smaller number
of symbolic values whilst generating the state space. Moreover, the representa-
tion of the state space itself is dramatically reduced [2]. In the following we show

8© represent an indexed sequence of compositions.
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how to define these subparts with the concept of clusters. This approach extends
the one of [2,3] and is called algebraic clustering [1].

Notice that previous approaches tackled the problem by splitting up the
model based on structural information [2,3]. Since our work is based on alge-
braic nets, we do require managing algebraic values or colors by generalizing the
approach to algebraic values.

Our clustering function will define in an algebraic setting a mapping between
place (the structural part of the model) and algebraic values present in the
places to a dedicated finite algebraic domain of cluster identifiers. The P indexed
Cl function dispatch the tokens (the algebraic values in place’s sort) in the
clusters for each place p ∈ P . Please note that operationally only the syntactical
representation (t ∈ TΣ,τ(p)) of the algebraic values are manipulated.

ClP : TΣ,τ(p) → Clusters

For homogeneity reasons, this function is specified in the same formal frame-
work as the algebraic abstract data type. Nevertheless, we will add ‘syntactic
sugar’ to the usual syntax in order to simplify the task of the user of the model
checker tool. In order to easily manage cluster domains, order sorting is used for
specifying that each inductive cluster forms a disjoint subpart of the clusters.
This is also true for structural clusters. We will first define the domain Clusters
as union of structural (structClusters) and algebraic clusters (algClusters) and
the show how to axiomatize the Cl function.

7.1 Structural clusters

Structural clusters (a.k.a static clusters) are clusters that can be finitely enu-
merated. Typically, structural clusters represent modules (and thus the struc-
ture) of the model. Such clusters are static with regards to the algebraic values
that they contain. In other words, tokens are dispatched among the structural
clusters according to structural information such as the place they belong to.
Structural clusters in place p ∈ P have the property that ∃c ∈ Clusters,∀t ∈
TΣ,τ(p), Clp(t) = c.

7.2 Algebraic clusters

Algebraic clusters (a.k.a inductive clusters) are finite domains that can be ob-
tained by inductive definition limited by a bound formula. Typically, algebraic
clusters represent objects or groups of objects that behave together. An inductive
cluster is defined by a triple:

algClusteri = 〈clBase, clInductive, clBound〉

Where clBase is a constant, clInductive is a unary operation inductively
defining cluster names (isomorphic to natural number) and clBound is an alge-
braic condition selecting only a finite subpart of these inductively defined set.
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The defined set UnboundCli is then the least set satisfying:

clBase ∈ UnboundCli
∀c ∈ UnboundCli, clInductive(c) ∈ UnboundCli

Moreover, the bound is used to only keep values that satisfy the clBound
constraint: Clustersi = {c ∈ UnboundCli | c |= clBound}. In this paper, we
assume that such selection can be done easily in order to produce the finite set
of clusters that can be exploited in the concrete computations. Decidable logics,
that fits with this requirement, have been studied in [22,23].

7.3 Axiomatisation of clustering

Axioms must be given to semantically define the cluster mapping. As mentioned
previously, for homogeneity reasons, clustering is defined by using the AADT
framework. However, for the sake of simplicity, we simplified a bit the axioma-
tization and we provide syntactic sugar to easily define clustering properties on
set of places. The following examples show some clustering properties:

– cluster of 0 in {p1, p2, p3} is clbase
– cluster of succ(x) in {p1, p2, p3} is cluster of x in any

The first property says that the value ’0’ is dispatched in a cluster called
clbase if it occurs in the places {p1, p2, p3}. The second property is inductive
and defines that every token of the form “succ(x)” is dispatched according to
“x”. In this case, the clustering dispatched every natural numbers in the same
cluster (clbase) if it occurs in the places {p1, p2, p3}. A different set of axioms
would then dispatch values in distinct clusters:

– cluster of 0 in {p4} is clbase
– cluster of succ(x) in {p4} is cl(cluster of x in {p4})

7.4 Properties of the clustering

The properties of the cluster functions can be linked to the axioms of the apn
under study, in particular they have to express a notion of independence simi-
lar to what we have in reduction methods based on symmetry. Locality is one
important aspect. A local transition is a transition that only affects one cluster.
So given one axiom Cond ⇒ event :: pre → post, it is local if it is involved in
one cluster i.e.:

∀σ,` Condσ ⇒ ∃cl ∈ Clusters,∀p ∈ P,Clmp (prepσ) = Clmp (postpσ) = {cl}.9

Transitions are locals if all their axioms are local. In the example, we can
show that transition Receive Msg is local because we give the cluster function:
9 cluster function Cl is naturally extended to multisets with i.e Clmp (ε) = ∅, Clmp ([t]) =
{Clp(t)}, Clmp (t+ t′) = Clmp (t) ∪ Clmp (t′)
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– cluster of db0 in any is cl0
– cluster of db(x) in any is cl(cluster of x in any)

It is then necessary to prove that ∀σ s.t db1 = db2 we have Clmpending([db1]) =
Clminactive([db2]) = Clmsyncing([db1]). Using the definition of clusters and ΣDD
this proof is performed by exhaustively instantiating the domain. This will split
the set of axioms into local and non-local axioms before computing local and
global fixpoints. Exhaustive proof can be very costly when domains are large. In
some contexts, it would be interesting to have pattern of axiom that are local.
For instance, we can prove by induction on the database that we have a local
axiom:

– base case : Clmpending([db0]) = Clminactive([db0]) = Clmsyncing([db0]) = {cl0} is
obviously verified.

– induction Clmpending([db(x)]) = Clminactive([db(x)]]) = Clmsyncing([db(x)]]) =
{cl(Clpending(x))} = {cl(Clinactive(x))} = {cl(Clsyncing(x))}: which is veri-
fied using the induction hypothesis and the substitutivity property.

This pattern of axioms can be generalized to any axiom with input and
output places of the same sort and same clustering definition, where conditions
must be neutral. In this case, the axiom is local. This is used to quickly discover
localities.

7.5 The computation of the reachability set revisited

Symbolically, instead of computing the reachability set for the whole system,
Reachapn(system), we will compute the same state space using the computa-
tion of the state space of the clusters.

Algorithm 2 starts by saturating (computing the transitive closure) of each
subpart of the model then it saturates the model itself. Please note that this is a
simplified version of the saturation algorithm. The actual one does first saturate
variables that have been impacted by a previous saturation.

8 A good use of clusters to exploit processes

In our example (the distributed database), it seems natural to dispatch the
different database process among different clusters. By doing that, behaviours
that are local to a process that is without side effects on other database processes
can be juxtaposed in order to get the Cartesian product of such behaviours.

– cluster of any in {counter, mutex, acks} is semaphore
– cluster of db0 in any is cl0
– cluster of db(x) in any is cl(cluster of x in any)
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Algorithm 2: Compute the clustered set of states reachable from the states
m0 by applying Beh = ∪c∈ClustersBehc ∪ Behglobal with Behc the set of
local behaviours of the cluster c ∈ Clusters and Behglobal the set of global
transitions. It first saturates local transitions before global ones.

Input: m0 the initial set of states.
Input: HomBehc = (∪b∈BehcencodeHom(b) ∪ Id)∗

Input: HomBehglobal = (∪b∈BehglobalencodeHom(b) ∪ Id)∗

Result: the clustered set of states reachable from the states m0 using Beh
begin

s, s′ are clustered set of states
s := clusteredEncodeSDD(m0) ; ; // extends encodeSDD to clusters

repeat
s′ := s ; // Save the old set of states

foreach c ∈ Clusters do
s := HomBehc(s) ; // Apply the local axioms to sc

end
s := HomBehglobal(s) ; // Apply the global axioms to s

until s = s′ ; // Until we reach a fixpoint

return s ;
end

The first axiom tells us that any algebraic values present in one of the fol-
lowing places {counter, mutex, acks} must be put in the cluster c0. When the
clustering is independent from the algebraic values and only dependant of the
places, it is typically an example of a structural cluster. In this case, all the
values shared by all processes (semaphores) are put in the same cluster. Since
those values are shared, they can be part of any local behaviour. The second
axiom gives the base case of the algebraic clustering and the third one gives the
inductive step. Intuitively, it means that the local behaviour can be computed
by only working on a subpart of the model.

AlPiNA Maria Helena
Partial Unfold. Total Unfold.

Model States DD Mem Time DD Mem Time Mem Time Mem Time
Size # # (MB) (s) # (MB) (s) (MB) (s) (MB) (s)
10 196821 15336 10 0.8 13402 12.4 1.3 47 44.3 24 9
15 7.17E7 51E3 32.6 2.6 49E3 41 5.8 - - 1.4E3 7.5E3
35 5.84E17 993E3 544 69.4 117E4 789 278 - - - -

Table 1. State space generation
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We compared our implementation to Maria10[4] and Helena [5], both well
known in the domain of High Level Petri Net Model Checking. Thanks to clus-
tering and unfolding enabled (partial or total) AlPiNA outperforms the other
tools. Results are not as good as those for P/T nets from [7] because of the
unfolding cost and because some symmetries cannot be exploited due to token
heterogeneity (can be improved using a symbolic-symbolic approach). However,
user gains in expressivity and simplicity since APN models are more tractable
than their P/T equivalents. We used partial unfolding by ignoring naturals and
total unfolding with a bound that limits naturals numbers to the number of
databases. The cost of static analysis (included in total time in the table) starts
to be prohibitive for 35 databases and thus the partially unfolded version per-
formed better.

When performing explicit model checking, properties can be checked whilst
generating the state space. This is not the case with the presented techniques.
In the later case, properties are checked once the state space generation is com-
plete. Table 2 shows the time required to check a property. Times for state space
generation and property checking have been cumulated. Again, AlPiNA outper-
forms the competition both in terms of speed and in terms of the size of the
model.

AlPiNA Maria Helena
Model Size Prop 1 (s) Prop 2 (s) Prop 1 (s) Prop 2 (s) Prop 1 (s) Prop 2 (s)

10 1 1.4 49 46 10 9
15 2.9 3.4 - - 7.5E3 7.5E3
35 76 78 - - - -

Table 2. Property Check

The models we used, our implementation, as well as the programs for Maria
and Helena can be found under http://alpina.unige.ch.

9 Conclusion & Future Work

During this article, we provided the readers with a description on the techniques
and principles that we use for the model checking of complex system speci-
fications based on algebraic Petri Nets. We proposed methods that not only
use symbolic representation on the place structure but also on subcomponents
(structural clusters) and on the multi-flow of computation determined by alge-
braic values (algebraic clusters). These principles combined with an adequate
encoding of the states and consequently the state space by means of decision

10 with parameters –compile tmp -Y -R -Z
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diagrams of various natures leads to very efficient model checking algorithms.
Convincing benchmarks have been shown.

In this paper, several topics have been briefly mentioned for the coherence of
the explanation but never deeply explained. The interested reader is encouraged
to consult other papers about decision diagrams [19,3], our recent work on ΣDD
for term representation and computation [16], the detailed description of the
homomorphisms used for encoding and computing state space of algebraic nets
[1] and our prototype tool AlPiNA [12].

Future work are planned in various directions: generalizing the use of ΣDD,
model checking modular systems such as COOPN, extension of clusters to hier-
archy of clusters, saturation control, and prototype tool implementation.
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15. Joseph A. Goguen and José Meseguer. Order-sorted algebra 1: Equational de-

duction for multiple inheritance, overloading, exceptions and partial operations.
Theoretical Computer Science, 105(2):217–273, 1992.

16. Didier Buchs and Steve Hostettler. Sigma decision diagrams : Toward efficient
rewriting of sets of terms. In Andrea Corradini, editor, TERMGRAPH 2009 :
Premiliminary proceedings of the 5th International Workshop on Computing with
Terms and Graphs, number TR-09-05, pages 18–32. Universita di Pisa, 2009.

270 PNSE’09 – International Workshop on Petri Nets and Software Engineering



17. H. J. Genrich and K. Lautenbach. The analysis of distributed systems by means
of predicate/ transition-nets. Lecture Notes in Computer Science: Semantics of
Concurrent Computation, 70:123–146, 1979.

18. E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, pages 995–1072. Elsevier, 1990.

19. J.-M. Couvreur, E.Encrenaz, E. Paviot-Adet, D. Poitrenaud, and P. Wacrenier.
Data decision diagram for petri nets analysis. In 23rd international conference on
application and theory of Petri Nets (ATPN 2002), jun 2002, Australia., volume
LNCS vol 2360, 2002.

20. R. Bryant. Graph-based algorithms for boolean function manipulation. In Trans-
actions on Computers, C-35, pages 677–691. IEEE, 1986.

21. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. Maude: specification and programming in rewriting logic. Theor. Com-
put. Sci., 285(2):187–243, 2002.

22. M. Presburger. Ueber die vollstaendigkeit eines gewissen systems der arithmetik
ganzer zahlen, in welchem die addition als einzige operation hervortritt. In Comptes
Rendus du I congrès des Mathématiciens des Pays Slaves, pages 92–101, 1929.

23. Agnès Arnould, Pascale Le Gall, and Bruno Marre. Dynamic testing from bounded
data type specifications. In EDCC-2: Proceedings of the Second European Depend-
able Computing Conference on Dependable Computing, pages 285–302, London,
UK, 1996. Springer-Verlag.

Buchs et al: Managing Complexity in Model Checking with Decision Diagrams 271





Model Analysis via a Translation Schema to
Coloured Petri Nets

Visar Januzaj1 and Stefan Kugele21

1 Technische Universität Darmstadt, Fachbereich Informatik,
FG Formal Methods in Systems Engineering,
Hochschulstr. 10, 64289 Darmstadt, Germany

{januzaj, kugele}@forsyte.de
2 Technische Universität München, Institut für Informatik,
Boltzmannstr. 3, 85748 Garching bei München, Germany

kugele@in.tum.de

Abstract. Model-driven development (MDD) has become a success story
and a de facto standard in the development of safety-critical embed-
ded systems. The daily work in the development of such systems can-
not be imagined without industry standard CASE tools like e.g. MAT-
LAB/Simulink. Often however, the analysis capabilities of such tools are
limited. Therefore, we propose to combine them with the powerful anal-
ysis tools developed for Coloured Petri Nets (CPNs).

In this paper, we present a translation schema from COLA—a syn-
chronous data-flow language—to CPNs. We believe this approach to be
also feasible for other data-flow languages as long as they have a well-
defined syntax and semantics. The combination of both modelling lan-
guages allows us to verify properties of COLA models using algorithms
and tools designed for CPNs. An example demonstrates the viability of
this approach.

Key words: Coloured Petri Nets, Model-driven development (MDD),
embedded systems, synchronous data-flow languages

1 Introduction

Embedded systems development is seeing a surge of interest both in academia
and industry, this is due to the rapid growth of the market share of embedded
systems. About 98% [1] of all processors are nowadays used in embedded systems.
Their presence becomes ubiquitous, ranging from portable music players and
mobile phones to airbag controllers and flight control systems (FCS). For the first
mentioned consumer electronics products properties like reliability, robustness,
and correctness are circumstantial. Whereas in the field of automotive or avionics
control software, failures of any kind may be fatal or at least result in large
warranty costs.

A multitude of different development tools, frequently based on model-driven
development (MDD) approaches, have been invented to tackle the complexity
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of embedded systems design. Nowadays, modelling large system designs without
industry standard CASE tools like e.g. MATLAB/Simulink [2] or SCADE by
Esterel Technologies (A380, FCS) [3] cannot be imagined. Here, most different
aspects play a major role: due to abstraction and different model views, the
complexity apparent to the system’s developer is reduced. This helps to reduce
design errors by supporting the engineer at the daily work. In the desirable case,
that the chosen modelling technique (language) has a well-defined basis, the
use of formal methods is facilitated. This improves the quality of the system
de novo. In the automotive domain for instance, OEMs are working in a highly
competitive mass market, where the time to market is essential for the success of
a product and for the company as a last consequence. There, a reduction or—in
the best case—the absence of errors detected late in the overall development
process considerably saves money and shortens the development process, which
in return reduce development costs.

Since the widely used MATLAB/Simulink lacks a formally-defined seman-
tics [4], in a co-operation project together with an industry partner from the
automotive domain, the synchronous data-flow language COLA (Component
Language) [5] has been developed. During its development, aims like usability,
soundness, and reusability were in mind. Around this language, a fully inte-
grated tool [6–14] was created supporting the complete development process
ranging from the early requirements engineering, the system modelling, to the
system deployment phase.

Coloured Petri Nets (CPNs) [15–17]—similar to COLA—are a graphical
modelling language emerged from the combination of Petri Nets [18] and the
functional programming language Standard ML (SML) [19,20]. CPNs and their
corresponding computer tools (CPN Tools [21]) have been successfully applied
in various application areas and industry projects [17], ranging from VLSI chip
design, communication protocols [22] to military systems [23–25].

In this paper, we describe how to benefit from both modelling techniques
by first translating COLA designs into the CPN formalism and second using
analysis techniques and tools applicable to Coloured Petri Nets. This combina-
tion allows to augment the well-defined COLA syntax and semantics with the
comprehensive CPN Tools.

1.1 Related work

Coloured Petri Nets have been extensively used to model and verify business
processes. Gottschalk et al. [26] translated Protos models, i. e. a popular tool for
business process modelling, into Coloured Petri Nets for simulation, testing, and
configuration reasons. Moreover, in the field of Web services, CPNs are used.
There, questions concerning correctness and reliability arise, when composing
single Web services to more complex ones. Kang et at. [27] and Yang et al. [28]
have studied the translation of WS-BPEL (Web Services Business Process Ex-
ecution Language) or BPEL specifications into CPNs. This allows for analysis
and verification of the composed Web services using for example CPN Tools [21].
However their translations are rather informal than a formal defined translation
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schema. Hinz et al. [29] translated BPEL specifications into Petri Nets in order
to use the model checking tool LoLA to verify relevant properties.

Akin to the presented approach, the authors of [30] bring together the two
modelling languages UML and CPN. They translate Use Cases and UML 2.0
Sequence Diagrams into CPN models for formal analysis. In the automotive
domain or in the field of embedded systems design in general, Live Sequence
Charts (LSC) are widely used as specification language. The authors of [31]
claim, that LSC do not provide the possibility for analysis and verification and
thus a translation into CPN is appropriate and which is given in a well-defined
formal way.

1.2 Organisation

The remainder of this work is structured as follows: First, we will give a brief
introduction into Coloured Petri Nets in Sect. 2 followed by a more detailed
description of the Component Language COLA in Sect. 3. Sect. 4 presents the
basic contribution of this work, namely a translation schema from COLA to
CPN. An Example demonstrating the feasibility of this approach is given in
Sect. 5. Finally, we conclude in Sect. 6.

2 Coloured Petri Nets

Coloured Petri Nets (CPNs) [15–17] belong to the family of high-level Petri nets.
Their modelling power strongly relies on the composition between Petri nets and
the high-level functional programming language Standard ML (SML) [19,20]. On
the one hand, the usage of Petri nets offers an effective framework for modelling
concurrency, communication, and synchronisation. On the other hand, the appli-
cation of SML facilitates the definition and manipulation of the data. In order to
be able to cope with the normally large size of real life systems and to introduce
a better system overview, CPNs offer the possibility of hierarchically modelling,
i. e. parts of the model are combined into submodules. In addition to the pos-
sibility of modular modelling, CPNs include a time concept. The integration of
the notion of time allows the investigation of especially for distributed, real-time
and embedded systems important timing requirements, such as deadline and
delay constraints. Furthermore, a set of graphical computer tools is developed
to support the modelling, editing, simulation, and analysis of various important
properties of systems modelled as CPNs. This set of tools is integrated into the
CPN Tools [21] framework.

In the following we briefly introduce the definitions of hierarchical and non-
hierarchical CPNs. These definitions should serve to easier understand the ter-
minology used for the translation of COLA models. For more detailed and
complete definitions see [15–17]. We assume, however, that the reader is familiar
with Petri nets and CPNs as well as with the notions such as multi-sets (multiple
appearances of the same element, denoted MS ), marking (a function mapping
each place into a multi-set of tokens of the same colour), reachability, firing, etc.
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Definition 1 (Non-hierarchical CPN (cf. [16])). A non-hierarchical CPN
is a 9-tuple Ω = (P ,T ,A, Σ,V ,C ,G,E , I ) with:

– A finite set of places P and transitions T such that P ∩ T = ∅.
– A set of directed arcs A ⊆ P × T ∪ T × P.
– A finite set of colour sets Σ.
– A finite set of variables V, Type(v) ∈ Σ, ∀ v ∈ V .
– A colour set function C : P → Σ, C (p) ∈ Σ, ∀ p ∈ P.
– A guard function G : T → Expr, Type(G(t)) = BOOL, ∀ t ∈ T.
– An arc expression function E : A → Expr,

Type(E (a)) = C (p)MS , ∀ a ∈ A and a is connected to p ∈ P.
– An initialisation function I : P → Expr, Type(I (p)) = C (p)MS , ∀ p ∈ P.

In order to easier understand the following definition, we need to introduce
some basic notions: substitution transitions are transitions that represent an
abstraction of a more detailed submodule of a CPN system. The set of places
belonging to the preset and the postset of a transition t is denoted X (t) = •t∪t•.
Socket nodes are called the places p surrounding a substitution transition t , i. e.
p ∈ X (t). The socket type function ST is defined as follows (cf. [16]):

ST (p, t) =


in if p ∈ (•t - t•)
out if p ∈ (t• − •t)
i/o if p ∈ (•t ∩ t•)

Definition 2 (Hierarchical CPN (cf. [16])). A hierarchical CPN is a 9-tuple
ΩH = (S ,SN ,SA,PN ,PT ,PA,FS ,FT ,PP) with:

– A finite set of pages S. Each page is a non-hierarchical CPN:
∀ s ∈ S , s = (Ps ,Ts ,As , Σs ,Vs ,Cs ,Gs ,Es , Is), the set of net elements of
each page pair are disjoint.

– A set of substitution nodes SN ⊆ T - the set of all transitions in ΩH .
– A page assignment function SA : SN → S, such that no page is a subpage

of itself.
– A set of port nodes PN ⊆ P - the set of all places in the entire ΩH .
– A port type function PT : PN → {in, out , i/o, general}.
– A port assignment function PA : SN → Pot(X(SN) × PN) such that:

• The relation between socket nodes and port nodes is defined as follow:
∀ t ∈ SN: PA(t) ⊆ X (t)× PNSA(t).

• Correct types for socket nodes are required:
∀ t ∈ SN , ∀(p1, p2) ∈ PA(t) : [PT (p2) 6= general ⇒ ST (p1, t) = PT (p2)].

• Related nodes have the same colour set and initialisation:
∀ t ∈ SN , ∀(p1, p2) ∈ PA(t) : [C (p1) = C (p2) ∧ I (p1) <>= I (p2) <>].

– A finite set of fusion sets FS ⊆ Ps , such that all elements have the same
colour set and initialisation.

– A fusion type function FT : FS → {global , page, instance}, such that page
and instance fusion sets belong to a single page.

– A multi-set of prime pages PP ∈ SMS .

276 PNSE’09 – International Workshop on Petri Nets and Software Engineering



3 COLA—The Component Language

The key concept of COLA is that of units. Consequently, all COLA models are
built up by simple units—so-called basic blocks. They are at the lowest level in a
hierarchy of composed units. Those composed units are called networks and are
used to build up more complex data-flow networks. The basic blocks are atomic,
i. e. they cannot be further decomposed. They define the basic (arithmetic and
boolean) functions of a system. Environmental interaction is given via typed
ports. Port to port communication is established via channels. According to the
synchronous paradigm, which COLA is based on, computation and communi-
cation takes no time. Thus, cycles realised by channels that connect an output
port to an input port of the same network have to contain at least a delay block.
It has an initial value and defers value propagation by one clock tick. This con-
struct is well-suited to realise memory and feedback loops often used in control
systems.

In addition to basic blocks and networks, units can be decomposed into au-
tomata, i. e. finite state machines similar to Statecharts [32]. The behaviour in
each state is again determined by units corresponding to each of the states. This
capability is well-suited to express disjoint system modes, also called operating
modes (cf. [33, 34]).

Figure 1(a) shows a COLA network consisting of a couple of add blocks and
a const block with value 3. An impression of a similarly behaving CPN is given
in Fig. 1(c). The top level of the latter is depicted in Fig. 1(b). In the following,
we give a formal definition of each COLA language construct in order to develop
a formal translation schema into Coloured Petri Nets.

3.1 COLA in Detail

COLA models are build up by very few, but powerful primitives. The defini-
tion of COLA language elements is rather short and builds upon other industry
standard data-flow language elements found in MATLAB/Simulink, SCADE,
or Lucid Synchrone. COLA’s advantage, however, is the reduction to only the
bare necessities. Moreover, this slender syntactical core is well-defined and pro-
vides a rigourous semantics. The authors of COLA [5] defined the semantics by
providing an interpreter for COLA that can be seen as a reference implemen-
tation. Moreover, a graphical as well as a textual syntax definition is given in
the mentioned article. This formal framework is required, e. g. to simulate the
model in a well-defined way, or to perform static analysis like type checking and
behavioural verification.

The following sections provide a definition of each syntactical language ele-
ment.

Units define a relation between its typed input and output ports. Ports are
used for environment interaction. The combination of all input ports Pin =
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(c) CPN model (subpage network)

Fig. 1. (a) A COLA network consisting of a couple of basic blocks. (b) The top level
of the corresponding CPN with the same behaviour (c).

〈i1 : t1, . . . , im : tm〉 where tj , 1 ≤ j ≤ m, is the type of port ij , and all out-
put ports Pout = 〈o1 : tm+1, . . . , on : tm+n〉, with m,n ∈ N, defines the unit’s
signature σ = (Pin  Pout ).

A unit u is defined as a 3-tuple 〈n, σ, I 〉 where n is its name, σ defines the
signature, and I specifies the actual implementation. A unit can be considered
as the superclass for special types of units, namely functional block, timing block,
network, and automaton. Depending on the used type, the implementation I is
chosen adequately. A detailed description of the different unit types is presented
next.

Functional blocks can realise a multitude of different operators: first, funda-
mental arithmetic operations (+, −, /, ∗) can be used. Second, COLA provides
the basic comparison operators (=, 6=, <, ≤, >, and ≥). Third, Boolean connec-
tivities are supported (∧, ∨, and ¬). A functional block u is defined as follows:

278 PNSE’09 – International Workshop on Petri Nets and Software Engineering



u = 〈n, (〈lop : t , rop : t〉  〈result : b〉) , I 〉. All operations are binary with in-
put ports lop (left operand) and rop (right operand) and provide a result port
result . The type b of the result depends on the operation. For arithmetic oper-
ations holds that b is equal to t , e. g. Int or Real. All other operators return
a result value of type Boolean. Their implementation I is defined by the used
operator, i. e. the functional block add, cf. Fig. 2(a), (operator +) for example
is mathematically defined and implemented as result := lop + rop.

Delays (timing blocks) retaining a value for a single time unit (tick) and
thereby provide a low-level realisation of variables as found in high-level pro-
gramming languages. This is indispensable in the context of feedback control
system. There, computed values have to be stored and fed-back as input for
the next clock tick. Initially, delays are initialised with a constant as default
value. Each cycle in a network has to contain at least one delay. Otherwise, the
modelled system cannot be interpreted.

A delay is a unit, defined in the following way: d = 〈n, σ, I 〉, with n being
an identifier, the signature σ = (〈in : t〉  〈out : t〉) and an implementation I
defined as its valuations over the infinite sequence of discrete time steps (sj )j∈N0

out[sj ] :=

{
default if j = 0
in[sj−1] if j > 0

where in[sj ] indicates the value of the input port at time step sj and out[sj ] that
of the output port, respectively.

For basic blocks, i. e. functional blocks and timing blocks, the concrete graph-
ical syntax is depicted throughout the Fig(s) 2(a), 2(b), 2(c), and 2(d).

Networks are used to structure the overall system. They are used to provide
a high-level system view in order to abstract from implementation details and
thus reduce the complexity apparent to the developers. By descending, or de-
composing a network, the initial hidden implementation becomes visible. They
are realised using so-called channels to interconnect a set of units and build up
larger data-flow networks. A channel c is a triple c = 〈n, s , {d1, . . . , dk}〉 with
n being the identifier and s is the source port which is connected to a set of
destination ports di ∈ {d1, . . . , dk}, with 1 ≤ i ≤ k . Together with the included
sub-units, networks are defined as: 〈n, σ, 〈U ,C 〉〉 where n is the identifier, σ
is the signature as defined for units, and the implementation consists of a set
of units U contained in the network together with the set of interconnecting
channels C .

The graphical syntax of networks can be learned from the example given in
Fig. 1(a).
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(a) Arithmetic operators (b) Logical operators

(c) Comparison operators (d) Timing and constant block

Fig. 2. Basic blocks provided by COLA: (a) arithmetical operators, (b) logical oper-
ators, (c) comparison operators, and (d) timing block (delay or pre) and the constant
block.

Automata are special units, whose implementation is a finite automaton with
states and transitions guarded by predicates. Both, states and guards are itself
implemented by units: a state’s behaviour is defined by a network, the guards are
stateless networks, i. e., networks without occurrences of automata and delays
since these units are statefull. They have to store their current state in the case
of an automaton and their last value in the case of a delay for at least one
execution cycle.

Formally, an automaton is a unit 〈n, σ, I 〉 with identifier n and signature σ.
The implementation of an automaton is given by: I = 〈Q , qo , ∆〉, where Q is a
finite set of state labels, that refer to the names of units, which implement the
state’s behaviour. Their signature is equal to that of the automaton. q0 is the
name of the initial state and ∆ ⊆ Q × dom(in(σ))×Q is the transition relation.
dom(in(σ)) is defined as

dom(in(σ))
def
= dom(type(a1))× . . .× dom(type(ak ))
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where dom(type(ai )) denotes the domain of the typed ports ai ∈ in(σ), 1 ≤ i ≤ k .
in(σ) defines the projection onto the input ports of the signature and respectively
out(σ) defines the projection onto the output ports.

Starting from the initial state, the semantics is defined as follows: let q be
the current state, if there is an outgoing transition whose guard evaluates to
true, take it and execute the unit referenced by the target state. If there is no
such transition predicate evaluating to true, execute the unit referenced by the
current state.

An example for the graphical syntax of a COLA automaton is depicted in
Fig. 3.

Fig. 3. A COLA automaton with two states T (initial state) and F and from each
state a transition to the other one.

4 Translation Schema

In the following, a translation schema from COLA to CPNs is proposed. There-
fore, each language construct is translated one after another. Beginning with
basic units, namely functional blocks, we give stepwise more and more complex
translation schemas for units like networks and automata. We will, however, not
introduce translation schemas neither for constant blocks nor for delay units as
their translation is straightforward: constant blocks – are translated into a sin-
gle CPN place initialised with the corresponding value, delays – for each input
and output we generate a separate CPN place as well as a transition to connect
them. The input place holds the initialisation value. A translation of a delay, e.g.
pre 1, can be found in Fig. 8(a). Note that the delay is modelled as a substitu-
tion transition. The translation described above is modelled in its subpage (not
visible in Fig. 8(a)). Keeping the same structure as the original COLA model
should serve for a better understanding of the translation process.

For the translation we use both hierarchical and non-hierarchical CPNs. Units
that can be decomposed are translated into hierarchical CPNs, those that cannot
into non-hierarchical CPNs. In order to make sure that no value is written into
a non-empty place, we define input and output places (and where necessary)
as lists of a given data type. Thus, apart from other constraints, each transi-
tion connected to such places fires only if its postset is empty. This reflects the
behaviour defined in COLA.

Januzaj et al: Model Analysis via a Translation Schema to CPNs 281



(a) COLA
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Fig. 4. (a) COLA basic block with two input ports of type T and an output port of
type M . (b) Corresponding CPN with three places and one transition.

Before we start with the definition of the translation schema we need first to
define a function π : io(σ) → P which maps the set of COLA input and output
ports into the set of CPN places, with io(σ) = in(σ) ∪ out(σ).

4.1 Functional Block

In Fig. 4 a COLA functional block and its translation is depicted. The transla-
tion schema for a functional block is defined as shown in Fig. 5. Since functional
blocks cannot further be decomposed their translation is straightforward. Input
and output ports are transformed into CPN places (P), including their corre-
sponding data types (C ). A transition (T ) is generated to reflect the operation
OP and is accordingly connected to places by arcs (A). Arc inscriptions (E )
matching the empty list [ ] play a key role for the generated CPN model. On
the one hand, they force the transition to fire only if its postset is empty, cf.
a = (result , top) in Fig. 4(b). In this way the behaviour defined in COLA is
reflected, i. e. no new value is added to an output port unless old values are con-
sumed. On the other hand, they notify other modules connected to them, that
the data residing in the input ports has been consumed (cf. the outgoing arcs
from top), i. e. new values can proceed. To achieve this we define lists of used
data types (Σ). Variables (V ) corresponding to a data type are used to read the
input and process the data according to the operation OP, cf. the arc inscription
of a = (top , result) in Fig. 4(b). The guard (G) of the transition is always true.
All places are initialised (I ) with the empty list.

4.2 Network

In COLA networks can consist of a large number of subunits. An example
of a network is depicted in Fig. 1. We will describe only the translation of the
highest level of a network.The translation schema for COLA data-flow networks
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FunctionalBlock

A COLA functional block
FB = 〈n, σ = (〈lop : tt , rop : tt〉  〈result : m〉) , OP〉

is translated into a CPN
cpn = (P ,T ,A, Σ,V ,C ,G, E , I )

using the following schema:

Schema

P = π(in(σ) ∪ out(σ)), i.e. {lop, rop} ∪ {result}
T = {top}
A = {(lop, top), (rop, top), (top , result), (top , lop), (top , rop), (result , top)}
Σ = {tt l ,m l}, tt l and m l are lists of type tt and m, resp.

V = {l : tt , r : tt}
C (p) =

(
tt l if p ∈ {lop, rop}
m l if p ∈ {result}

G(t) = TRUE,∀ t ∈ T

E (a) =

8>>><>>>:
[l ] if a = (lop, top)

[r ] if a = (rop, top)

[OP(l , r)] if a = (top , result)

[ ] if a ∈ {(top , lop), (top , rop), (result , top)}
I (p) = [ ],∀ p ∈ P

Network

A COLA network
NET = 〈n, σ, 〈U ,C 〉〉

is translated into a hierarchical CPN
Hcpn = (S , SN ,SA,PN ,PT ,FS ,FT ,PP)

using the following schema:

Schema

S = {CPNnetwork} ∪ SU

SN = {nNET} ∪ SNU ,nNET is the identifier of NET

SA(SN ) =
S

s∈SN SA(s)

PN = π(io(σ)) ∪ PNU

PT (p) =

(
i/o if p ∈ π(io(σ))

PT (PNU ) if p ∈ PNU

PA(t) =

8>>><>>>:
{(in1@CPNnetwork , in1@network),

(in2@CPNnetwork , in2@network), . . . ,

(out1@CPNnetwork , out1@network), . . .} if t = nNET

PA(SNU ) if t ∈ SNU

PP = 1‘CPNnetwork

Note: FS and FT are not considered during the translation.

Fig. 5. Functional Block and Network Schema.
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is defined as shown in Fig. 5. Each network is translated into a corresponding
hierarchical CPN. For the top level of each COLA network a page, the super
page, is generated, e. g. CPNnetwork in Fig. 1(b). In the following we will refer
to the COLA and CPN models and their components in Fig. 1, when necessary
to achieve a better understanding of the translation process. The set of other
pages, representing the implementation I = 〈U ,C 〉 of the network, are included
in SU , where U is the set of subunits participating in the network. Each of these
units is separately translated corresponding to its schema type. The translation
of the set of channels C is not explicitly given. However, they are important
for establishing the connectivity between translated components, e. g. if there is
a connection/channel from a COLA unit A to a unit B , in the corresponding
CPN model the output places of A are correspondingly glued together with the
input places of B (unless some other criteria apply). Each subunit is represented
by the set of substitution transitions SN , which consists of a transition, e. g.
nNET = NETWORK, and the set of those (SNU ) appearing in the subunits in U .
SA maps each substitution transition to their implementations in the subpages,
e. g. transition NETWORK to the subpage network . The set of input and output
nodes of CPNnetwork (in1, in2, . . .) are unified with those of the subpages PNU

building the set PN . Most of port nodes are of type (PT ) i/o as described
in the schema. Now we just need to define the assignment (PA) of port nodes
to socket nodes, e. g. in1 in network, denoted in1@network , is assigned to in1 in
CPNnetwork (in1@CPNnetwork). Since the nodes in both pages share commonly
the same name, the tuple (out1@CPNnetwork , result3out1@network) illustrates
best such an assignment.

4.3 Automaton

Automata are the most complex units of COLA. Figure 6 shows a COLA au-
tomaton and its CPN representation. For the translation of an automaton we
introduce a two-step schema (cf. Fig. 6). In the first step we describe the highest
abstraction level as a hierarchical CPN. In the second step the functionality of
the automaton, i.e. guard evaluation and state switching, is described as a non-
hierarchical CPN. For each state of the automaton, e.g. T and F, there exists
a separate transition, which serves as a substitution transition for the imple-
mentation of the underlying network unit (cf. Fig. 8(b)). The same figure would
represent also the functionality of the automaton in Fig. 6, by only replacing
do nothing and working with T and F, respectively. The first translation step
is similar to the translation of a network, thus we give no further description.
We have, however, to stress that the index Q represents the implementation of
the underlying network for each automaton state in Q . The set of their corre-
sponding substitution transitions is denoted QT .

The second schema describes by means of non-hierarchical CPNs the next
lower level page (automaton). Besides the port nodes, determined by π(), which
are needed to be assigned to sockets of the parent or super page (CPNautoma-
ton), there are two additional places State and Activated added to the set of
places P . Place State is of type State and holds the identifiers of each state
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(a) COLA automaton

automaton

automaton

out

[]

INT_L

INT_L

INT_L

in1

in2[]

[]

automaton

1 1`[]

1 1`[]

1 1`[]

(b) CPN page CPNautomaton

Automaton

A COLA automaton
AUT = 〈n, σ, I 〉, I = 〈Q , q0, ∆〉, ∆ ⊆ Q × dom(in(σ)) × Q
is translated into a hierarchical CPN

Hcpn = (S , SN ,SA,PN ,PT ,FS ,FT ,PP)
using the following schema:

Schema1

S = {CPNautomaton} ∪ SQ

SN = {nAUT} ∪ SNQ ,nAUT is the identifier of AUT

SA(SN ) =
S

s∈SN SA(s)

PN = π(io(σ)) ∪ PNQ

PT (p) =

(
i/o if p ∈ π(io(σ))

PT (PNQ) if p ∈ (PNQ)

PA(t) =

8>>><>>>:
{(in1@CPNautomaton, in1@automaton),

(in2@CPNautomaton, in2@automaton), . . . ,

(out1@CPNautomaton, out1@automaton), . . .} if t = nAUT

PA(SNQ ) if t ∈ (SNQ)

PP = 1‘CPNautomaton

automaton represents the subpage of nAUT.
Note: FS and FT are not considered during the translation.

Schema2− page automaton

P = {State, Activated} ∪ π(in(σ) ∪ out(σ))

T = {activate State} ∪ QT ,A = {(State, activate State), (activate State, State),

(activate State, Activated), (Activated , activate State), . . .}
Σ = {State, State L, } ∪ D, with D = dom(in(σ))

V = {s : State} ∪ {v1 : t1, . . . , vn : tn}, ti ∈ D, 1 ≤ i ≤ n,n =| in(σ) |

C (p) =

8><>:
State if p = State

State L if p = Activated

D if p ∈ π(io(σ))

G(t) = TRUE,∀ t ∈ T

E (a) =

8>>><>>>:
s if a = (State, activate State)

state(s, {v1, v2, . . .}) if a = (activate State, State)

[state(s, {v1, v2, . . .})] if a = (activate State, Activated)

. . .

I (State) = q0

Fig. 6. Exemplary (a) COLA automaton with two states and (b) its translation, and
the translation schema.
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in Q . Activated holds the currently active state. The transition activateState
is responsible for the initialisation of state switching, by feeding the function
state() with input data and the actual active state. The purpose of function
state() is to check and control the switching between states, according to the
defined guards of the automaton. How this works has already been described in
Sect. 3.1. Let G = {g1, g2, . . . , gn} be the set of the guards of an automaton, V =
{v1, v2, . . . , vm} the set of variables used in the guards and S = {s1, s2, . . . , si}
the set of states of the automaton, with s ∈ S . We define the state() function
and the colour sets State and State L as follows:

fun state(s, v_1, ..., v_m) = if s = s_1 andalso g_1 then s_2
else
if s = s_2 andalso g_2 then s_3
...
else s;

colset State = with s_1 | s_2 | ... | s_i;
colset State_L = list State;

The rest of the translation schema is straightforward.

4.4 Translation Algorithm

The idea of the outlined Algorithm 1 is to translate COLA models into CPNs
in a DFS manner. For each visited unit, the corresponding translation schema
is applied. Once all units are translated there will be loose components and a
superfluous number of places (representing each input and output port of each
component). To reduce the number of places and establish the corresponding
connectivity between components, we glue together input and output places
(cf. line 19) regarding the defined channels in the original COLA model, i. e.
the corresponding source and destination ports. Finally, to accommodate the
structure of the generated hierarchical CPN, the connection between subpages
and their parent pages is established by assigning ports to sockets (cf. line 20).

There are two special cases that need to be considered during the translation
of a network: first, if multiple ports read from one and the same port (cf. port
out of the constant block in Fig. 1(a)). In this case, we translate the connection
in that way that the source of the channel is translated to as many places as
there are destinations (cf. places y1out3 and x2out3 in Fig. 1(c)). Second, the
input and output of a unit are not connected (cf. Fig. 7 the implementation of
the do nothing state). Therefore, we create a new place and connect it with the
input transition and other transitions accordingly (cf. Fig. 8(c)). This is done
to make sure that the data flow in the network is not broken, i. e. we want to
establish a correct consumption of the input data in order to proceed to the
output, as required in COLA.

Note that one can merge the transitions input and out , thus not needing
to add the new place at all. The transition input can often get merged with
other transitions and reduce the size of the net, e. g. one could merge input and
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Algorithm 1: Cola2Cpn

Data: COLA model
Result: CPN model
while (not all units u ∈ U have been visited) do1

perform a DFS traversal on the COLA model;2

switch (u instanceof) do3

case (functional block)4

if (u isA constant) then5

create a single place p;6

initialise p accordingly;7

else8

FunctionalBlock(u);9

case (network)10

Network(u);11

create a transition input to collect the incoming data;12

connect input according to the connections in u (channels);13

case (automaton)14

Automaton(u);15

case (delay)16

Delay(u);17

initialise the translation18

glue input and output places together, according to their connectivity in the19

COLA model;
assign ports to sockets;20

add (cf. Fig. 8(d)) and deleting the places in 1 and in 2, without changing the
behaviour of the net.

5 Example

In Fig. 7, a screenshot of the COLA simulation tool is depicted. It shows a
high level COLA system consisting basically of two automata, two input con-
stants and two delay operators (pre). Each automaton has two states, namely
do nothing and working. In both cases, do nothing always provides the value 0
as output, concerning the behaviour of working, however, both automata show
a different implementation. automaton 1 performs the subtraction of the values
present at the input ports in 1 and in 2 (out := in 1 - in 2). The state working of
automaton 2 increases the input value at port in 1 by 3 (out := in 1 + 3). The
modelled transition relations are omitted for the sake of clarity.

In COLA a deadlock in a classical sense is not possible. This is due to the
fact that the COLA semantics dictates that at each tick of the system execution
a new value is assigned to each output port. A deadlock from a Petri net point
of view is compared best with a COLA system, that is stuck in an automaton

Januzaj et al: Model Analysis via a Translation Schema to CPNs 287



state, which cannot be changed anymore. This might, however, be a system
design decision. But in many cases, as in the given example, it is a modelling
error. Regarding the example, the values present at the output ports result of
both delays have a special behaviour: at the first tick both ports emit the value
1. To simplify matters, we write these values as a result vector r = ( 1

1 ) where the
upper value corresponds to the port value of the upper delay, and the lower value
to the lower delay, respectively. Both values have been set by the developer as
default values for the delays. When considering the behaviour over time we use
a matrix-like notation, i. e., the ith column of the matrix represents the output
values after the ith tick: M∞ =

(
1 2 −3 −4 0 0...
1 6 7 0 0 0...

)
. For this simple example, the

following infinite sequence

M∞ =
(

1 2 −3 −4
1 6 7 0

)
◦

(
0
0

)ω

of port valuations is obtained, i. e., after a finite number of steps (four in this case)
the system reaches a deadlock-like state and from then on only emits r = ( 0

0 )
as result. However, for more complex examples, similar behaviour cannot be
detected by the developer by solely using the COLA simulator. Here, the power
of the CPN Tools becomes important.

After translating the COLA model into a CPN, using the outlined translation
algorithm, the CPNs depicted in Fig. 8 are obtained. The idea is to automatically
construct the state space of the CPN models and finally create the state space
report which contains information about standard behaviour properties: dead
markings, dead and live transitions, etc. These information collected in the report
support the analysis of a system in an early stage of its development and help to
decreases the number of design errors. Furthermore, one can check other specific
behavioural properties by using predefined query functions provided by CPN
Tools to write user-defined analysis algorithms. For our example, the CPN Tools
reported a set of live transitions shown as an excerpt of the report below.

Live Transition Instances
--------------------------------

automaton1’activate State 1
automaton2’activate State 1
doNothing1’input 1
doNothing1’out 1
doNothing2’input 1
doNothing2’out 1
pre1’delay 1
pre1’init 1
pre2’delay 1
pre2’init 1

The expected behaviour is reflected in this result to the effect that the tran-
sitions representing both working states are not contained. That means for the
CPN, that there is a marking from which there exists no path containing these

288 PNSE’09 – International Workshop on Petri Nets and Software Engineering



Fig. 7. COLA Simulator: Dashed lines are added manually to clarify the hierarchical
decomposition.
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Fig. 8. CPN example: (a) The highest abstraction level of the CPN example. (b)
Realisation of an automaton. (c) Realisation of the state do nothing. (d) Realisation of
the state working (automaton 2).
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transitions. In other words—from a COLA point of view—it is possible to reach
a system state that prohibits a change to a distinguished system state (working
in our case). Based on this information, the developer has to check whether the
modelled system behaviour is what was desired. If this it not the case, a mod-
elling error has been detected. This is only one of the many observation one
can receive, i. e. by far not all what an analysis process can yield. The intention
of the analysis example was however to show how helpful can be such analysis
result. Being beyond the scope of this paper, the analysis of COLA models will
not be discussed.

An issue, however, remains the state space explosion problem. To alleviate it
a number of state space reduction methods (symmetry, equivalence, sweep line)
have been developed and integrated into CPN Tools. Furthermore, Khomenko
et al. [35] presented an improvement of the unfolding technique which can be
applied to all classes of high-level Petri nets. Based on this work, in [36] a
prototype has been proposed and developed for unfolding a subclass of n-safe
CPNs. In the ASCoVeCO project [37] a platform (ASAP) is being developed
aiming for the integration of various analysis methods into one environment, as
well as giving the possibility to extend the existing tool collection, thus increasing
the analysis possibilities for CPNs.

Our translation concept can only profit from such an analysis environment,
facilitating broader analysis aspects for COLA models in return.

6 Conclusions

In this paper we introduced a mathematically sound schema for the transla-
tion of the synchronous data-flow language COLA into Coloured Petri Nets.
This translation schema allows the combining of the strengths of both modelling
techniques to have a powerful model analysis methodology at hand. The toy
example presented here showed the applicability of the presented approach by
providing hints for possible design errors. A possible future extension could be
the use of Timed Coloured Petri Nets to fit better the synchronous paradigm
that COLA follows. Furthermore, we want to facilitate the automatically trans-
lation of COLA models into CPNs. This will allow us to deal with and analyse
more interesting, larger and real-life systems modelled in COLA.

We believe that this approach is feasible to be also applied to other syn-
chronous data-flow languages, like Lustre for instance.
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Escuela Superior de Ingenieŕıa Informática.
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Abstract. The Service Oriented Architecture (SOA) allows us to pro-
vide more powerful services by composing several Web Services. The
W3C has specified WS-CDL (Web Services Choreography Description
Language) as a candidate language to describe interactions between dif-
ferent parties in a Web Services composition. Nevertheless, WS-CDL
lacks of rigorous formalization of its semantics. In this paper we pro-
vide an operational semantics and a Petri net semantics for a relevant
subset of WS-CDL, focusing on collaborations and elements related to
concurrency. The operational semantics is based on barred terms, which
allow us to capture the state of the choreography during its execution,
while the Petri net semantics is obtained as a translation of the proposed
process algebra into coloured Petri nets.

Keywords: Web Services, Web Services Composition, Choreography, Oper-
ational Semantics, Petri Nets.

1 Introduction

A Web Service [5] can be defined as a self-describing, self-contained modular
application that can be published, located and invoked over a network, usually
the Internet. Web Service composition is an interesting way to provide new ser-
vices as a combination of two or more established Web Services. In this manner,
services provided by different suppliers can collaborate to provide a new service,
regardless of the implementation languages or the hosting platforms. Web tech-
nologies are thus a new way of doing business cheaply and efficiently, but the
composition of Web services still requires a solid technology and new techniques
to support their developments [11].

The current Web technology is based on the Service Oriented Architecture
(SOA) stack [3], where the top layers are orchestration and choreography. Or-
chestration layer describes the execution logic of a Web Service by defining its
control flows. Execution languages like WS-BPEL [6] are used for that pur-
pose. Choreography layer describes interactions between different parties in a
⋆ Supported by the Spanish government (cofinanced by FEDER founds) with the

project TIN2006-15578-C02-02, and the JCCLM regional project PEII09-0232-7745
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Web Services composition, from a global viewpoint. For that purpose, the W3C
has proposed WS-CDL description language [2]. Furthermore, the use of formal
methods may help in the development of composite Web Services, as these tech-
niques provide us a solid foundation for the languages and tools used in this
task.

However, the semantics of WS-CDL given by the W3C lacks of formaliza-
tion. One of the main goals of this paper is the formalization of the WS-CDL
semantics, that is, the definition of an operational semantics and a Petri net se-
mantics for a relevant subset of WS-CDL. The operational semantics is a barred
semantics, similar to that used to define the operational semantics of the Petri
Box Calculus PBC [7]. This semantics covers the main aspects of WS-CDL, be-
ing based on choreographies, activities and exception blocks. It also takes into
account variables, with their values ranging over an integer domain, and the ex-
ceptions that could arise when using unassigned variables. We also provide the
translation of the proposed algebraic language into a specific model of coloured
Petri nets [12]. The benefits of this encoding are that Petri nets offer us a graph-
ical representation of the system, and they are supported by many tools (e.g.
CPN Tools [1]), while allow us to simulate and analyze the system behavior.

WS-CDL developers claim that this choreography language is based on the
formal language π-calculus [13]. In [8, 9] the authors study the relationship be-
tween a formalized version of WS-CDL, called global calculus, and the π-calculus.
In this context, there is also a work of W.S.P. van der Aalst [4] that poses a dis-
cussion about the use of Petri nets or π-calculus in the context of Web Services
Composition Languages. In that paper the author presents some arguments in
favor of using Petri nets instead of π-calculus for the design and development
of composite Web Services. In this paper, however, we consider both visions,
the algebraic, by providing a syntax and a formal operational semantics for a
subset of WS-CDL, and a Petri net semantics by using coloured petri nets. The
syntax of the model we present here is closer to WS-CDL syntax than the global
calculus syntax, in the sense that our operators are directly taken from the main
WS-CDL structural elements. Furthermore, we are not splitting some operators
into two or more separate operators. For instance, with our barred semantics
we can maintain the workunit construction as a single operator, instead of split-
ting it in several different constructions. In [16, 14] the authors also translate
WS-CDL into a formal model. They use a small language called CDL, which
is a formal model of simplified WS-CDL. The formal operational semantics of
CDL is also given by the authors. However, data aspects are not considered
in these works. In comparison, we consider WS-CDL integer variables, which
can be used as guards in workunits, in assignments, or in interactions. Finally,
in [10] the authors investigate formal representations of service interaction pat-
terns in π-calculus and Petri nets. However, they do not use any choreography
description language as starting point, modeling the composition directly into
the formal representation.

The outline of the paper is as follows. Section 2 contents a brief description
of the main elements of WS-CDL. In Section 3 the operational semantics of a
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relevant subset of WS-CDL is defined. In Section 4 coloured Petri nets are intro-
duced and the Petri net semantics for WS-CDL is given. Finally, the conclusions
are presented in section 5.

2 WS-CDL

The Web Services Choreography specification offers a precise description of col-
laborations between the parties involved in a choreography. WS-CDL specifi-
cations are contracts containing “global” definitions of the common ordering
conditions and constraints under which messages are exchanged. The contract
describes, from a global viewpoint, the common and complementary observable
behavior of all the parties involved. Each party can then use the global defini-
tion to build and test solutions that conform to it. The global specification is
in turn realized by a combination of the resulting local systems, on the basis of
appropriate infrastructure support.

The WS-CDL model [2] describes the participants of a composite Web Ser-
vice, their role types and the relationships between the parties. It also contains a
description of the information exchanged, the channels used for communication
and the visible information of the different roles.

The main elements of a WS-CDL description are choreographies, which are
defined in a hierarchical way. There is a root choreography, and any choreography
can perform other inner choreographies. Choreographies prescribe the common
rules that govern the ordering of exchanged messages and the collaborative be-
havior of the different parties. They consist of three parts:

– Choreography Life-line: This describes the progression of a collabora-
tion. Initially, the collaboration is established between the parties; then,
some work is performed within it, and finally it completes either normally
or abnormally.

– Choreography Exception Block: This specifies the additional interac-
tions that should occur when a Choreography behaves in an abnormal way.

– Choreography Finalizer Block: This describes how to specify additional
interactions that should occur to modify the effect of an earlier successfully
completed Choreography (for example to confirm or undo the effect).

Each of these parts basically contains one activity, which describes the work
to be done. There are basic activities (which perform the lowest level actions)
and ordering structures. Basic activities are used to assign the variable values,
or to indicate that a role type is performing some internal (non-visible) actions.
Other basic activities supported by WS-CDL are the interaction activities, which
describe the exchange of information between parties and the possible synchro-
nizations of their observable information changes and the actual values of the
exchanged information.

The ordering structures combine activities with other Ordering Structures in
a nested structure to express the ordering conditions in which the information
within the Choreography is exchanged. The ordering structures are the sequence,
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choice and parallel. There is also another class of activity supported by WS-
CDL, the so-called workunits, which allow the execution of some activities when
a certain condition holds. Workunits also permit the iteration of activities.

3 Operational Semantics

We first introduce the algebraic language that serves us as a metamodel of WS-
CDL, and that allows us to define an operational semantics for it. For that
purpose, we consider a WS-CDL document with only one choreography (the
so called root choreography), i.e., we do not allow a hierarchy of choreographies
in our starting document. We call Var the set of variable names used in the
choreography. We assume that each role type uses its own variable names, i.e.,
a variable name can only be used by a single role type1. For simplicity we only
consider integer variables, although it would not be problematic to extend this
assumption to any number of data types. Furthermore, we also consider that each
interaction only contains one exchange element, which is used to communicate
the value of a variable from one role type to the other.

The specific algebraic language, then, that we use for the activities is defined
by the following BNF-notation:

A ::= fail | assign(r, v, n) | noaction(r) | inter(r1, r2, v1, v2) | A ; A |
A2 A | A ‖A |workunit(g, block , g′, A)

where r, r1, r2 range over the roletypes of the choreography, v, v1, v2 range over
Var , n ∈ Z, g, g′ are predicates that use the variable names in Var , and block is
a boolean. Given a predicate g, we will call Vars(g) the set of variables used in
g, which may have been initialized or not when they are used.

The correspondence between the syntax of WS-CDL and our metamodel
is shown in Table 1. The basic activities are fail , assign , noaction and inter
operations; fail is used to raise an exception, the control flow is transferred to
the exception block, and after that the choreography terminates. The assign
operation is used to assign the variable v at role r to n, the noaction captures
either a silent or internal operation at role r. The inter operation is used to
capture an interaction between roles r1 and r2, where the value of variable v2

in r2 is assigned to the value of variable v1 of r1. An interaction fails when the
variable v1 in r1 is unassigned, then the exception block of the choreography is
executed, after which the choreography terminates.

The ordering structures are the sequence, choice, parallel and workunit oper-
ations. The workunit operator has the following interpretation: first, if some of
the variables used in g are not available, or if g evaluates to false, then, depend-
ing on the block attribute the workunit is skipped or blocked until g is evaluated
to true. When the guard evaluates to true, the activity inside the workunit is
executed, and when it terminates, the repetition condition g′ is evaluated. If
some variable used in g′ is not available or if g′ is false, then, the workunit
1 Actually, WS-CDL does not allow the use of shared variables.
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WS-CDL Syntax Metamodel

<assign roleType=”r”>
<copy name=”CName”>
<source expression=”n”/>
<target variable=”cdl:getVariable(’v’,”,”)” />

</copy>
</assign>

assign(r,v,n)

<noAction roleType=”r”/>
or

<silentAction roleType=”r”/>
noaction(r)

<interaction name=”name” ...
<participate relationshipType=”rname”

fromRoleTypeRef=”r1” toRoleTypeRef=”r2” />
<exchange name=”Cname” ... action=”request”>

<send variable=”cdl:getVariable(’v1’,”,”)” ... >
<receive variable=”cdl:getVariable(’v2’,”,”)” ... >

</exchange>
...

</interaction>

inter(r1,r2,v1,v2)

<sequence>
activity1
activity2

</sequence>

<choice>
activity1
activity2

</choice>

<parallel>
activity1
activity2

</parallel>

activity1 ; activity2

activity1 2 activity2

activity1 ‖ activity2

<workunit name=”Name”
guard=”g”
repeat=”g’ ”
block=”true | false”>
Activity

</workunit>

workunit(g,block,g’,Activity)

block = true | false

Choreography exception handling fail

<choreography name=”Name”
...
Activity1
<exceptionBlock name=”EName”>

Activity2
</exceptionBlock>
...

</choreography>

(Activity1, Activity2)

Table 1. Conversion table

terminates, otherwise the activity inside it is executed again. The sequence and
parallel operators have the usual interpretation.

Concerning the choice operator semantics, we can read its textual semantics
in [2], which states that “only one activity of those involved in the choice can
be executed, but when the choice has workunits with guard conditions, the first
workunit whose guard condition is true must be executed”. Thus, there is a
prioritization by means of lexical ordering in this case. However, in the case of
a choice having both guarded workunits and other activities as alternatives, it
states that “the selection criteria for those activities are non-observable”. This
textual description is rather ambiguous, since in some cases lexical ordering is
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used, whereas in others any activity can be selected. We consider that lexical
ordering is not the best way to prioritize the activities. This could be actually
done by introducing specific priorities in the activities, which is the subject of
research that we are currently undertaking (see [15]). In this paper, then, we
consider the following approach, which is in our opinion the most natural and
best matches the goals of a choreography: any activity of those enabled2 in the
choice can be executed. We also impose the condition for the block attribute
of the workunits which are alternatives of a choice that it be true, since in this
case we need only consider those workunits whose guard evaluates to true, and
abandoning the choice when a guard of a workunit is false would be pointless.

A choreography is now defined as a pair (A1, A2), where A1 and A2 are
activities defined by the previous syntax. A1 is the activity of the life-line of the
choreography and A2 is the activity of its exception block, which can be empty
(denoted by ∅), because the exception block is optional. We do not consider a
separate finalizer activity, because it can be part of A1 (concatenated with it by
a sequence operator).

We now introduce the operational semantics for this language, by using both
overbarred and underbarred dynamic terms, which are used to capture the current
state of the choreography throughout its execution in a similar way to that used
to define the operational semantics of the Petri Box Calculus [7].

We will use letters A, A1, A2, . . . to denote activities, which are used to define
the dynamic terms, these are defined by the following BNF-notation:

D ::= A | A | D ; A | A ; D | D 2 B | A2D |
D ‖D | workunit(g, block , g′, D)

The set of dynamic terms will be called Dterms .
The overbars are used to indicate that the corresponding term can initiate

its execution, whereas underbarred terms have already finished their execution.
Thus, as the activity evolves along its execution the bars are moving throughout
the term syntax.

Example 1. Consider the activity A = workunit(g, true, g′, assign(r, v, 1)). Its
execution starts with the dynamic term A, from which the guard g is evaluated.
If all the variables in g are available, and g becomes true, then, we reach the
dynamic term D1 = workunit(g, true, g′, assign(r, v, 1)), which means that the
assignment of v can now start at role r. Otherwise, if some variable needed
to evaluate g is not available, or if g is false, as the block condition is true , the
activity blocks until g changes its value to true. Once the assignment of v is done,
the following dynamic term is reached: D2 = workunit(g, true, g′, assign(r, v, 1)),
from which g′ is evaluated. If some variable needed to evaluate g′ is not available
or g′ is false, then, the workunit ends and the dynamic term A is reached.
Otherwise, when g′ is true, D1 is reached again. 2

2 In the sense that it can execute some action at the current instant.
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(Seq1) A1; A2 ≡ A1; A2 (Seq2) A1; A2 ≡ A1; A2

(Seq3) A1; A2 ≡ A1; A2

(Cho1) A1 2 A2 ≡ A1 2 A2 (Cho2) A1 2 A2 ≡ A1 2 A2

(Cho3) A1 2 A2 ≡ A1 2 A2 (Cho4) A1 2 A2 ≡ A1 2 A2

(Par1) A1 ‖A2 ≡ A1 ‖A2 (Par2) A1 ‖A2 ≡ A1 ‖A2

(Cong1)
∀op ∈ {; , 2}, D1 ≡ D2

B op D1 ≡ B op D2 , D1 op B ≡ D2 op B

(Cong2)
D1 ≡ D2

D ‖D1 ≡ D ‖D2 , D1 ‖D ≡ D2 ‖D

(Cong3)
D1 ≡ D2

workunit(g, block , g′, D1) ≡ workunit(g, block , g′, D2)

Table 2. Equivalence rules

In this example we have used dynamic terms to represent the current state
of the system. However, dynamic terms like B1 2 B2, B1 2 B2 and B1 2 B2

correspond to the same state in the system, a state in which any alternative
of the choice must be enabled. This means that in some cases the bars can be
redistributed on a dynamic term yielding to an equivalent state. Thus, we now
define the equivalence relation ≡, as the least equivalence relation satisfying
the rules of Table 2. By means of this equivalence relation we can identify those
dynamic terms that can be obtained by moving backwards or forwards the bars
on the terms without executing any action and which correspond to the same
state in the system.

For any dynamic term D we will denote the class of dynamic terms equivalent
to D by [D]≡ , and the set of classes of dynamic terms will be called CDterms .

The rules of Table 2 are very intuitive in general. Seq1 is used to activate the
first activity of a sequence when the sequence becomes activated, Seq2 allows us
to activate B2 when B1 terminates, and Seq3 establishes that once B2 ends, the
sequence B1; B2 ends too. Cho1 and Cho2 allow us to activate either alternative
of a choice, while Cho3 and Cho4 establish that once the selected alternative
terminates the choice itself ends too. Par1 is used to activate both arguments
in a parallel activity, and Par2 establishes that, when both argument activities
terminate, the parallel activity terminates, too.

Lemma 1. The relation ≡ defined as the least equivalence relation fulfilling the
rules in Table 2 is a congruence.

Proof. ≡ is defined as the least reflexive, symmetric, and transitive relation
fulfilling the rules in Table 2. It is immediate that such a relation exists, and
also that it is a congruence, due to rules Cong1, Cong2 and Cong3 . 2
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The following definition introduces the so-called initial and final dynamic
terms, which are those dynamic terms that are equivalent to an overbarred (un-
derbarred) activity.

Definition 1. (Initial and final dynamic terms)
Given a dynamic term D, we say that D is initial (resp. final), denoted by
init(D) (resp. final(D)), when there exists an activity A such that A ∈ [D]≡
(resp. A ∈ [D]≡). In such a case we will say that the class [D]≡ is initial (resp.
final) too. 2

According to this definition, (assign(r, v, n)), (assign(r, v, n)2noaction(r))
and (assign(r, v, n) ‖ noaction(r)) are initial, but not (assign(r, v, n)) or
((assign(r, v, n); assign(r′, v′, n′))2noaction(r)). Similar examples can be writ-
ten for final dynamic terms.

A choreography is executed within the context of the variables defined in it.
We now define the context of a choreography, which captures which variables
are available and their current values.

Definition 2. (Context)
Given a choreography C = (A1, A2), with roletypes R and variables Var , we
define a context of C as a function µ : Var → Z ∪ {ǫ}. Unavailable variables
are assigned the ǫ value, otherwise this function provides us with the current
value of the variable.

We denote the set of possible contexts of a choreography by Contexts. The
initial context , denoted by µ0, is that defined by assigning ǫ to all the variables
in the choreography.

µ0(v) = ǫ ∀v ∈ Var
Given a context µ, a variable v and an integer value n, we denote by µ[v/n] the
context obtained from µ by changing the value of v to n:

µ[v/n](v′) =
{

µ(v′) if v′ 6= v
n if v′ = v

We will also use this definition for n being an integer arithmetic expression that
uses some variables of the choreography, with the natural interpretation, the
value of v is replaced by the resulting value of n.

Now, given a predicate g and a context µ, we will write sat(µ, g) when ∀v ∈
Vars(g), µ(v) 6= ǫ, and g evaluates to true under µ. 2

Notice also that this definition covers all the possible cases for the syntax of
CDterms , taking into account the ≡-equivalence.

Definition 3. (Contextual activity terms)
A contextual activity term is a pair ([D]≡, µ), where D is a dynamic term and
µ a context. 2

Definition 4. We define a dynamic choreography term as a pair of one of the
following forms: ([D]≡, A2) or (A1, [D]≡), where [D]≡ corresponds to the activity
in execution in the choreography (the life-line or its exception block), and A2

can be empty.
We also define a contextual dynamic choreography term , as a pair (C, µ),

where C is a dynamic choreography term and µ is a context.
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(Fail)

([fail ]≡, µ)
fail−→ ([fail ]≡, µ)

(Assign)

([assign(r, v, n)]≡, µ)
assign(r,v,n)
−−−→ ([assign(r, v, n)]≡, µ[v/n])

(Noact)

([noaction(r)]≡, µ)
noaction(r)
−−−→ ([noaction(r)]≡, µ)

(Int1)

µ(v1) 6= ǫ

([inter(r1, r2, v1, v2)]≡, µ)
inter(r1,r2,v1,v2)

−−−→ ([inter(r1, r2, v1, v2)]≡, µ[v2/v1])

(Int2)
µ(v1) = ǫ

([inter(r1, r2, v1, v2)]≡, µ)
fail−→ ([fail ]≡, µ)

(Work1)
sat(µ, g), ([B]≡, µ)

a−→ ([D]≡, µ′) , a 6= fail

([workunit(g, block, g′, B)]≡, µ)
a−→ (workunit(g, block, g

′
, [D]≡), µ

′
)

(Work2)
sat(µ, g), ([B]≡, µ)

fail−→ ([fail ]≡, µ)

([workunit(g, block, g′, B)]≡, µ)
fail−→ ([fail ]≡), µ)

(Work3)
¬sat(µ, g)

([workunit(g, false, g′, B)]≡, µ)
∅−→ ([workunit(g, false, g′, B)]≡, µ)

(Work4)
([D]≡, µ)

a−→ ([D′]≡, µ′) , a 6= fail

([workunit(g, block, g′, D)]≡, µ)
a−→ ([workunit(g, block, g′, D′)]≡, µ′)

(Work5)
([D]≡, µ)

fail−→ ([fail ]≡, µ)

([workunit(g, block, g′, D)]≡, µ)
fail−→ ([fail ]≡, µ)

(Work6)
sat(µ, g′), D ≡ B

([workunit(g, block, g′, D)]≡, µ)
∅−→ ([workunit(g, block, g′, B)]≡, µ)

(Work7)
¬sat(µ, g′), D ≡ B

([workunit(g, block, g′, D)]≡, µ)
∅−→ ([workunit(g, block, g′, B)]≡, µ)

Table 3. Transition rules for contextual activity terms (I)

Given a choreography C = (A1, A2), the initial contextual dynamic term of
C is3 ([A1]≡, A2, µ0). 2

In Tables 3 and 4, we introduce the rules that define the transitions for the
contextual activity terms, where

([D]≡, µ) a−→ ([D′]≡, µ′)

3 We will write contextual dynamic choreography terms as triples, by omitting the
parentheses for the dynamic choreography term.
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(Seq1-2)
([D]≡, µ)

a−→ ([D
′
]≡, µ

′
) , a 6= fail

([D; B]≡, µ)
a−→ ([D′; B]≡, µ′)

([D]≡, µ)
a−→ ([D

′
]≡, µ

′
) , a 6= fail

([B; D]≡, µ)
a−→ ([B; D′]≡, µ′)

(Seq3-4)
([D]≡, µ)

fail−→ ([fail ]≡, µ) ,

([D; B]≡, µ)
fail−→ ([fail ]≡, µ)

([D]≡, µ)
fail−→ ([fail]≡, µ) ,

([B; D]≡, µ)
fail−→ ([fail]≡, µ)

(Choi1-2)
([B1]≡, µ)

a−→ ([D]≡, µ′) , a 6= fail

([B1 2 B2]≡, µ)
a−→ ([D 2B2]≡, µ′)

([B2]≡, µ)
a−→ ([D]≡, µ′) , a 6= fail

([B1 2 B2]≡, µ)
a−→ ([B1 2D]≡, µ′)

(Choi3)
([B1]≡, µ)

fail−→ ([fail ]≡, µ) , ([B2]≡, µ)
fail−→ ([fail ]≡, µ)

([B1 2 B2]≡, µ)
fail−→ ([fail ]≡, µ)

(Choi4)
([D]≡, µ)

a−→ ([D′]≡, µ′) , ¬init(D) , a 6= fail

([D 2 B]≡, µ)
a−→ ([D′

2B]≡, µ′)

(Choi5)
([D]≡, µ)

a−→ ([D′]≡, µ′) , ¬init(D) , a 6= fail

([B 2 D]≡, µ)
a−→ ([B 2D′]≡, µ′)

(Choi6-7)
([D]≡, µ)

fail−→ ([fail ]≡, µ) , ¬init(D)

([B 2 D]≡, µ)
fail−→ ([fail ]≡, µ)

([D]≡, µ)
fail−→ ([fail ]≡, µ) , ¬init(D)

([D 2 B]≡, µ)
fail−→ ([fail ]≡, µ)

(Par1)
([D1]≡, µ)

a−→ ([D′
1]≡, µ′) , a 6= fail , ([D2]≡, µ)

fail−→/
([D1‖D2]≡, µ)

a−→ ([D′
1‖D2]≡, µ′)

(Par2)
([D2]≡, µ)

a−→ ([D′
2]≡, µ′) , a 6= fail , ([D1]≡, µ)

fail−→/
([D1‖D2]≡, µ)

a−→ ([D1‖D′
2]≡, µ′)

(Par3-4)
([D2]≡, µ)

fail−→ ([fail ]≡, µ)

([D1‖D2]≡, µ)
fail−→ ([fail ]≡, µ)

([D1]≡, µ)
fail−→ ([fail ]≡, µ)

([D1‖D2]≡, µ)
fail−→ ([fail ]≡, µ)

Table 4. Transition rules for contextual activity terms (II)

which represents the execution of some basic activity a or an empty movement
(denoted by a = ∅).

In rules Par1 and Par2 of Table 4 we use the notation ([D]≡, µ)
fail−→/ to

mean that no transition labelled with fail can be executed from ([D]≡, µ).

Let us see the informal interpretation of these rules:

– Rules Fail, Assign and Noact are evident. Int1 captures the execution of an
activated interaction, when the source variable has a value assigned. Other-
wise, rule Int2 is used to raise an exception.

– Rules Work1 to Work7 establish the semantics of workunits. For a workunit
whose guard condition evaluates to true, we can execute any initial movement
of the activity inside it (rule Work1). Once the workunit is activated, if the
activity inside the workunit can execute a fail movement, we immediately
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raise an exception (rules Work2 and Work5). When the block attribute is
false, and the guard condition is not fulfilled4, the workunit is skipped at
once (rule Work3 ). The execution of the activities inside the workunit is
captured by rule Work4 . Rule Work6 allows us to restart the activity inside
the workunit when it has finished and the repetition condition holds, whereas
rule Work7 is used to abandon the workunit when that condition does not
hold.

– Rules Seq1 to Seq4 capture the semantics of the sequence operator, while
Choi1 to Choi7 define the semantics of the choice. The rules for the sequence
are highly intuitive, so we omit an explanation about them. In the case of
the choice operator, Choi1 and Choi2 are used to resolve the choice when
one argument activity can execute a movement (different from fail ). Once
the choice has been decided by executing a movement of one of its argument
activities, this activity continues executing until completion (Choi4-5 ). If
the activity in execution can make a fail movement, an exception is raised
(rules Choi6-7 ). In rule Choi3 we can see that the choice can only execute a
fail movement when both arguments are able to do that. Accordingly, when
an alternative fails.

– Finally, rules Par1-2 capture the (independent) parallel execution of the
argument activities of a parallel operator, and Par3-4 are used to raise an
exception when one component is able to do so.

(Cor1)
([D]≡, µ)

a−→ ([D′]≡, µ′), a 6= fail

([D]≡, A2, µ)
a−→ ([D′]≡, A2, µ′)

(Cor2)
([D]≡, µ)

a−→ ([D′]≡, µ′), a 6= fail

(A1, [D]≡, µ)
a−→ (A1, [D′]≡, µ′)

(Cor3)
([D]≡, µ)

fail−→ ([fail ]≡, µ) , A2 6= ∅

([D]≡, A2, µ)
fail−→ (A1, [A2]≡, µ)

(Cor4)
([D]≡, µ)

fail−→ ([fail ]≡, µ)

(A1, [D]≡, µ)
fail−→ (A1, [fail ]≡, µ)

Table 5. Transition rules for choreographies

The rules for choreographies are those introduced in Table 5, which capture
the evolution of contextual dynamic choreography terms. Cor1-2 allow the evo-
lution of the activity in execution, except in the case of failure. In that case,
rules Cor3-4 are used, the first to activate the activity of the exception block,
and the second to terminate the activity of the exception block when it fails. In
rule Cor3 the term A1 is that obtained by removing the bars on D.

Definition 5. (Labelled transition system)
For any contextual activity term ([D]≡, µ) we define its labelled transition sys-
tem, denoted by lts([D]≡, µ), as that obtained by the application of the rules
in Tables 3 and 4, starting from ([D]≡, µ) : lts([D]≡, µ) = (Q, q0,→), where Q
is the set of contextual activity terms that are reachable by using the rules in

4 This case cannot occur as alternative of a choice, due to the syntactical restriction
introduced.
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Tables 3 and 4, starting from q0 = ([D]≡, µ), and → = { a−→ | for all basic
activity a, or a = ∅ }.

Then, for any choreography C = (A1, A2), we define the semantics of C as the
labelled transition transition system obtained by the application of rules in Table
5 for the initial contextual dynamic choreography term of C, c0 = ([A1]≡, A2, µ0):

lts(C) = (Q, c0,→)

where Q is the set of contextual dynamic choreography terms that are reachable
by the rules in Table 5, starting from c0, and → = { a−→ | for all basic activity
a, or a = ∅ }. 2

Example 2. Let us consider the choreography C = (A1, A2), where

A1 = assign(r1, v1, 1) ; assign(r3, v3, 3) ; (noaction(r1) 2 inter(r1, r2, v1, v2))
A2 = assign(r2, v2, 0); assign(r3, v3, 0)

Then, in Fig.1 we show the labelled transition system of C, where

D1 = assign(r1, v1, 1); assign(r3, v3, 3) ; (noaction(r1) 2 inter(r1, r2, v1, v2))

D2 = assign(r1, v1, 1); assign(r3, v3, 3) ; (noaction(r1) 2 inter(r1, r2, v1, v2))

and

µijk(v1) = i, µijk(v2) = j, µijk(v3) = k, µijk(vn) = ǫ ∀vn 6= v1, v2, v3

2

([A1]≡, A2, µ0) ([D1]≡, A2, µ1ǫǫ) ([D2]≡, A2, µ1ǫ3)

([A1]≡, A2, µ1ǫ3) ([A1]≡, A2, µ113)

assign(r1,v1,1) assign(r3,v3,3)

noactio
n(r1)

inter(r1,r2,v1,v2)

Fig. 1. lts(C)

4 Petri Net Semantics

4.1 Coloured Petri Nets

In this section we introduce the specific model of coloured Petri net [12] that we
consider for the translation. The particular model that we use includes places
with coloured tokens and normal places, in which no information is associated
with tokens. We will have a coloured place for each variable, a place with a single
token whose colour is used to capture the variable value (or ǫ). Transitions may
have asssociated a guard condition, which must be true in order to allow the
firing of the transitions. We will assume this guard to be true where this is not
indicated.
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Definition 6. (Coloured Petri Nets)
We define a Coloured Petri Net (CPN) as a tuple N = (P, T, F, λ, Σ, G), where:

– P is a finite set of places, where P = Pe∪Px∪Per∪Pi∪Pc, which corresponds
to:
• entry-places, Pe, they are labelled with e. They will be marked with a

token in the initial marking. Each CPN will have an only entry place.
• exit places, Px, they are labelled with x. They will be marked with a

token if the activity finishes correctly.
• error places, Per they are labelled with xer . If one of the error places is

marked, this will indicate that the activity has not finished correctly.
• internal places, Pi, they are labelled with i.
• coloured places, Pc, they are labelled with rivi, indicating that this place

is associated to role ri and variable vi, and it will be marked with the
associated value of the variable vi in the role ri. In the initial marking
they will be marked with ǫ.

– T is a finite set of transitions (P ∩T = ∅), such that T = Tw ∪ Tb , with Tw∩
Tb = ∅. Transitions in Tw are called white and they will be associated with
a basic activity assign, noaction, inter, ∅ or a guard; whereas transitions in
Tb are called black and these will be associated with a fail. Black transitions
will be fired first in case of conflict with white transitions, i.e., they are
considered as having greater priority.

– λ : Tb ∪ Tw → L ∪ {∅} is a labelling function, where L is the set of basic
activities.

– F is the flow relation (F ⊆ (P × T ) ∪ (T × P )).
– Σ is the set of colours.

Σ : Pc → Z ∪ {ǫ}
– G is a guard function. It is defined from T into expressions such that:

∀t ∈ T : [G(t) = Boolean]

We will omit this function in the grafical representation when it is true.

We use the classical notation on Petri nets to denote the precondition and
postcondition of both places and transitions:

∀x ∈ P ∪ T : •x = {y | (y, x) ∈ F} x• = {y | (x, y) ∈ F}
Markings are defined as an annotation of tokens over uncoloured places (they
will be represented with black dots), and with the value of the variable over
the coloured places. Hence, a marking M is formally defined as a function
M : P → Z ∪ {ǫ}, where M(pk) indicates the number of tokens on pk, when
it is a uncoloured place, or it indicates the value of the variable vi (or ǫ for an
unavailable variable) if it is a coloured place labelled with rivi.

We consider as initial marking Me, the marking in which the entry place is
marked with one token, and the coloured places are marked wit ǫ. 2

Semantics of CPNs is captured by the following definitions, which extend the
firing rule of Petri nets by considering the priority information obtaining from
two transition types that we have introduced.
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Definition 7. (Enabling transitions)
Given a CPN, N = (P, T, F, λ, Σ, G), a marking M of it and a transition t ∈ T ,
we say that t is enabled at M if each of its input uncoloured places contains
at least one token, i.e., ∀p ∈ •t, p 6∈ Pc , M(p) > 0, and its associated guard
function is evaluated to true. As usual, we denote this by M [t〉 . 2

Now the firing rule can be precisely defined.

Definition 8. (Firing rule)
Given a CPN, N = (P, T, F, λ, Σ, G), a marking of it M , and an enabled tran-
sition t, we say that t can be fired at that state if and only if there is no other
enabled transition having a greater priority (black transitions are fired first in
case of conflict).

The firing of t leads us to a new marking, M ′, which is defined as follows:

1. The marking M ′ for uncoloured places is obtained by applying the classical
firing rule on Petri nets, i.e. M ′(p) = M(p) − WF (p, t) + WF (t, p), where
WF (a) = 1 for a ∈ F , and WF (a) = 0 for a 6∈ F .

2. The marking M ′ for a coloured place pc labelled with rivi (pc ∈ t•) is
obtained by considering the action labelling the transition, i.e., for λ(t) =
asssign(ri, vi, n), then M ′(pc) = n; for λ(t) = inter(rj , vj , ri, vi), then
M ′(pc) = M(p̃c), where p̃c is the coloured place labelled with rjvj .

2

4.2 CPN Semantics for WS-CDL

Let us see the translation for the different constructions of WS-CDL :

– Basic activities. These are translated easily, as follows:

• No action activity.

Nnoaction(r) =
e noaction(r) x xer

• Assign activity:

Nassign(r ,v ,n) =
e

assign(r, v, n)

rv

x xer

• Fail activity:

Nfail =
e

fail
xer x
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• Interaction activity:

Ninter(r1 ,v1 ,r2 ,v2 ) = e
inter(r1, v1, r2, v2)

(M(r1v1) 6= ǫ)

r2v2

x

fail
(M(r1v1) = ǫ)

xer

Observe that fail transition are black, i.e., they have greater priority that
the other ones.

– Ordering structures.
These are used to combine activities in a nested structure that uses the
sequence, parallel and choice constructs. For all of these cases we provide the
translation only considering two activities; nevertheless, the generalization to
a greater number of activities is straightforward for all of them. We consider
NAi i = 1, 2 the CPNs associated to the activity Ai.

• Sequence:
A sequence of two activities A1 and A2 is translated in an easy way, by
just collapsing in a single place (this will be an internal place of the new
Petri net) the exit place of the NA1 and the entry place of NA2 . The
entry place of the new Petri net will be the entry place of NA1 . The exit
place of the new Petri net will be the exit place of NA2 , and we also
collapse the error places.

NA1;A2 = eA = eA1

NA1

i = xA1 = xA2

NA2

xA = xA2

xer = xerA1
= xerA2

• Parallel.
For the parallel execution of two activities A1 and A2 we have considered
in the associated Petri net the above structure, where we have added two
new transitions, one to fork both parallel activities and the other to join
them upon their termination. Furthermore, we have joined the error
places and a guard condition is added to every transition of both CPNs,
which prevent their execution when the error place is marked.
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NA1‖A2 =
e

∅

i = eA1 i = eA2

eNA1

(M(xer) = 0)

eNA2

(M(xer ) = 0)

i = xA1 i = xA2

xer = xerA1
= xerA2

∅

x

where ÑA1 is obtaining from NA1 adding for every transition the guard
M(xer) = 0 (respectively in ÑA2).

Observe that in the event of a failure in one of these separate parallel
executions, the error place would be marked.

• Choice.
Here, we introduce a restriction in the syntax that we consider for the
translation. Specifically, we will require that no parallel or workunit op-
erator appears at the first level of the arguments of the choice. In later
versions we will introduce these operators, which require a certain dis-
tinction of subcases in order to define a proper translation.

A choice between two activities A1 and A2 (with CPNs NA1 and NA2 ,
respectively) is translated by collapsing in a single place (this will be
the entry place of the new Petri net) the entry place of NA1 and the
entry place of NA2 . The exit place of the new Petri net will be that
obtaining by collapsing the exit places of NA1 and NA2 . However, we
need to distinguish whether A1 and A2 can initially fail or not, because
in a choice a fail action can only be performed when both arguments are
able to do this.

∗ When at most one of the arguments (let us say A1) has one initial
fail transition (t ∈ p•e, pe ∈ PNA1

, λ(t) = fail ), then, we must remove
all the initial fail transitions of NA1 .
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NA12A2 =
e = eA1 = eA2

N∗
A1 NA2

x = xA1 = xA2

where N∗
A1

is obtaining by removing initial fail transitions of NA1 .
∗ In the case that both CPNs have initial fail transitions, these are

joined in a single one labelled with fail and considering in it all the
guards associated to these fail transitions.

NA12A2 =

e = eA1 = eA2

N∗
A1 N∗

A2

fail(gA1
∧ gA2

)

x = xA1 = xA2

xer

• Workunit.
We distinguish two cases, depending on the block value of the workunit.

∗ Nworkunit(g,true,g′,A1) =

eA (g)

∅

i = eA1

(g′)

∅

NA1

i = xA1

(¬g′)

∅

x

∗ Nworkunit(g,false,g′,A1) =

eA (g)

∅

(¬g)

∅

i = eA1

(g′)

∅

NA1

i = xA1

(¬g′)

∅

x
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Next, we show that given an activity A (with the syntactic restriction in-
troduced), the operational semantics for A and the semantics of the corre-
sponding CPN are bisimilar.

Theorem 1. For any activity A (with the syntactic restriction introduced),
lts([A]≡, µ0) and the reachability graph of the marked CPN (NA, Me) are
bisimilar.

2

Definition 9. For any choreography C = (A1, A2), we define the CPN
associated to C as follows:

eC = eA1
NA1

i = xerA1

∅

NA2

xC = xA2

xer = xerA2

i = eA2

2

Corollary 1. For any choreography C = (A1, A2) with both activities ful-
filling the syntactic restriction introduced, lts(C) and the reachability graph
of the marked CPN (NC , Me) are bisimilar.

2

Example 3. Let us now consider the choreography C = (A, ∅) where A = A1‖A2‖A3

and:
A1 = assign(r1, v1, 1); workunit(v1 + v3 = 4, true , v1 + v2 = 3, inter(r1, r2, v1, v2))
A2 = assign(r2, v2, 2)2noaction(r2)2fail
A3 = assign(r3, v3, 3); assign(r3, v3, 4)
Its corresponding NC is that shown in Figure 3

This choreography may behave correctly or not, depending on the order in
which the different actions are executed. For instance, the trace:

assign(r1, v1, 1).assign(r3, v3, 3).inter (r1, r2, v1, v2).
noaction(r3).∅.assign(r2, v2, 2).assign(r3, v3, 4)

corresponds to a correct execution, in which the contextual dynamic term
([A1‖A2‖A3]≡, ∅, µ124) is reached. However, the trace:

assign(r3, v3, 3).assign(r3, v3, 4).assign(r2, v2, 2).assign(r1, v1, 1)

corresponds to a situation in which the system becomes deadlocked, because the
guard of t2 prevents their execution. 2
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e

t0

i = eA1

i = eA2

i = eA3

assign(r1, v1, 1)t1
r1v1

i

(v1 + v3 = 4)

∅t2

(M(r1v1) = ǫ)

t3 fail
xerA1

i

inter(r1, r2, v1, v2)
(M(r1v1) 6= ǫ)

t4

r2v2

i

(v1 + v2 = 3)
∅

t5

∅t6
(v1 + v2 6= 3)

i = xA1

t7 assign(r2, v2, 2) t8 noaction(r2)

i = xA2

t9 assign(r3, v3, 3)

i

t10
assign(r3, v3, 4)

r3v3

i = xA3t11

x

Fig. 2. CPN for the choreography C of Example 3

5 Conclusions

In this paper we have presented a barred operational semantics and a Petri
nets semantics for a relevant subset of WS-CDL, taking into account the more
relevant aspects of composite Web Services. The official semantics of WS-CDL
[2] is defined in a textual manner. Thus, an important advantage of the provided
semantics is that it can be used as alternative to the textual document with the
purpose of obtaining the WS-CDL semantics in a more rigorous way.

We have considered the main activities of WS-CDL, including both the basic
and the ordering structures, and we have defined a formal syntax for them,
providing a set of operators that constitute the metamodel for which the barred
operational semantics is defined. We have specifically covered the main structural
elements of WS-CDL: choreographies and activities, but we have not considered a
hierarchy of choreographies, neither the perform construction (as a consequence),
nor the finalizer activities. These additional features of WS-CDL can be object
of further research, in order to extend this translation. Another contribution of
this paper is that this operational semantics is defined by using barred terms,
which are syntactical terms that are either barred or underbarred in order to
capture the current state of the described system. A relevant benefit of this
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barred semantics is that we do not need to split the workunit construction into
two or more separate operators, which would be required in order to define a
classical operational semantics. We have also presented a denotational semantics
considering a special kind of Coloured Petri Net. We also plan to implement the
presented translation.

The semantics has been defined for a subset of WS-CDL, which, as future
work, we plan to extend allowing it to support a richer subset of WS-CDL and
considering more extensions like time issues or priorities.
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1 Introduction

Nowadays, large applications are developed that must access and maintain huge
data bases. Examples of such software are e-government, internet based infor-
mation systems, commerce registries, etc.). They are characterised not only by
the huge amount of data they manipulate, but also by a mandatory high level
of security and reliability.

Hardware has become rather cheap: 150e for a 64-bit dual core server, and
100e for a 1TB disk. A large application and data base server could be composed
of hundreds of such disks and servers. It would thus be possible to handle as
much as 1PB of data and thousands simultaneous transactions, for a moderate
investment of 175,000e. However, this requires to elaborate reliable and safe
distributed data base management software.

ZODB, the Zope Object Database, has become within a few years the most
used object data base. This libre software, associated to the Zope application
server is used for a Central Bank, to manage the monetary system of 80 million
people in 8 countries [2]. It is also used for accounting, ERP, CRM, ECM and
knowledge management. It is now a major libre software as PHP or MySQL is.

However, the current Zope architecture does not apply yet for data as huge as
those mentioned earlier. In order to attain such performances, the architecture
had to be revisited. It led to the design of an original peer-to-peer transaction
protocol: NEO. This protocol must also ensure both safety and reliability, which
is not easy to achieve for distributed systems using traditional testing techniques.

The aim of the NEOPPOD project is to formally verify safety and reliability
properties for the new NEO protocol. The process thus involves the model design,
expected properties verification and eventual revision of the protocol according
to the results obtained.
? This work is supported by FEDER Île-de-France/System@tic—libre software.
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2 Challenges

The new NEO protocol is expected to handle clusters of 100 to 10,000 server
nodes. Therefore, safety and reliability are critical issues. The project aims at
considering both qualitative (e.g. data consistency) and quantitative (e.g. per-
formance aspects) characteristics of the system. This requires the use of different
formal methods that should be operated from a common specification for con-
sistency purposes.
Modelling issues: Hence, designing an appropriate specification is a first chal-
lenge. Starting from the protocol description, a reverse-engineering process al-
lows for extracting step-by-step a corresponding symmetric Petri net mode [1].
Since the original program description is very large and well structured, it is
mapped to a modular specification. However, in order to mimic different config-
urations of the cluster architecture, as well as the different roles of the servers
involved, w.r.t. the protocol operation, the model must also be highly parame-
terised.
Verification issues: Since numerous instances of several actors are involved in
the system, the combinatorial explosion of the state space is a major difficulty.
Dedicated techniques exploiting characteristics of distributed systems must be
elaborated. These techniques rely on both exploiting symmetries and use of
compact data structures such as decision diagrams. Finally, the hierarchical ar-
chitecture must be exploited to separate local actions in the system from those
affecting several components.

Since the model is highly modular, compositional and/or modular verification
approaches must be investigated. This should be particularly interesting to check
the dimensioning of the system elements by means of place bounds.

3 Expected outcome

The expected outcome of this project are :
– a modular specification designed with several levels of abstraction ;
– verification of critical properties of the protocol, such as data consistency,

correct fault recovery, detection of bottlenecks ;
– pushing further the limits of verification tools and techniques, enhancing the

CPN-AMI platform [3].
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