
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics

Research Group on Scene Analysis and Visualisation (SAV)

Graphical Languages for Functional Reactive
Modeling based on Petri nets

David Mosteller, Michael Haustermann, Leonie Dreschler-Fischer

24.06.20 David Mosteller, Michael Haustermann, Leonie Dreschler-Fischer - Graphical Languages for Functional Reactive Modeling based on Petri nets

• Related works: functional approaches to modeling

• The Reference Net formalism

• Functional reactive modeling with Reference Nets

• Functional components

• RMT approach: developing domain-specific modeling tools

• Home automation example

Outline

2

24.06.20 David Mosteller, Michael Haustermann, Leonie Dreschler-Fischer - Graphical Languages for Functional Reactive Modeling based on Petri nets

• Functional block diagrams
Modelica (Tiller, 2001)
Matlab Simulink (Xue and Chen, 2013)

• Graphical functional reactive programming
Akka streams, Apache Spark (Davis, 2019)

• Metamodeling environments with execution semantics
GEMOC Studio (Combemale et al., 2017)

• Functional languages and Petri nets
Coloured Petri nets (Jensen and Kristensen, 2009)
Curry-Coloured Petri nets (Simon et al., 2019)

Related Works

3

24.06.20 David Mosteller, Michael Haustermann, Leonie Dreschler-Fischer - Graphical Languages for Functional Reactive Modeling based on Petri nets

Goal: unify the following characteristics (to a unique approach)

• Graphical languages easy to follow

• Meta modeling quick results for building tools

• Operational semantics can execute in simulation environment

• Functional decomposition clear notion of components, referential transparency

• Reactive programming communicate with environment

Approach
• Develop Reference net components that capture functional properties for the

specification of domain specific modeling languages using operational semantics

• Higher order functions: nets-within-nets paradigm of Reference Nets

• Model driven: generate modeling tools

→
→

→
→

→

Goals / Approach

4

24.06.20 David Mosteller, Michael Haustermann, Leonie Dreschler-Fischer - Graphical Languages for Functional Reactive Modeling based on Petri nets

the depicted example the transition may fire three times, each time computing a
new value for variable c from its head element (h) and variable b, which is only
read and not removed by using a test arc.

Figure 2: Synchronous channels of Reference Nets

Synchronous channels, as exemplarily depicted in Figure 2, control the firing
of multiple transitions as one synchronized event. A synchronous channel consists
of a pair of downlink (caller) and uplink (callee), so the reference must be known
on one side of the channel. They may have arguments to transport information
similar to the call of a function, but they have a slightly different notion as the
unification of arguments enables a bidirectional exchange of data. In the depicted
example the downlink (left side) calls the right side (uplink) in the local net
instance (this). The first argument (m) on the downlink can be unified with
the String ("match") on the uplink. The second argument (b) receives its actual
parameter from the right side and the calculation of variable c is performed on
the downlink transition on the left side before it flows through the channel to
the uplink.

Figure 3: Dynamic hierarchies: nets-within-nets [19]

Clearly, the expressiveness of synchronous channels is quite powerful. How-
ever, they unfold their real potential in combination with dynamic hierarchies
and the nets-within-nets paradigm [19]. Using the new syntax shown in the up-
most part of Figure 3 Reference Nets can create instances of other net patterns.
This enables dynamic hierarchies up to an arbitrary level of nesting. The de-
picted example is restricted to a level of two and models a message sending
scenario. It shows a system of three components. In the center is a system net,

the depicted example the transition may fire three times, each time computing a
new value for variable c from its head element (h) and variable b, which is only
read and not removed by using a test arc.

Figure 2: Synchronous channels of Reference Nets

Synchronous channels, as exemplarily depicted in Figure 2, control the firing
of multiple transitions as one synchronized event. A synchronous channel consists
of a pair of downlink (caller) and uplink (callee), so the reference must be known
on one side of the channel. They may have arguments to transport information
similar to the call of a function, but they have a slightly different notion as the
unification of arguments enables a bidirectional exchange of data. In the depicted
example the downlink (left side) calls the right side (uplink) in the local net
instance (this). The first argument (m) on the downlink can be unified with
the String ("match") on the uplink. The second argument (b) receives its actual
parameter from the right side and the calculation of variable c is performed on
the downlink transition on the left side before it flows through the channel to
the uplink.

Figure 3: Dynamic hierarchies: nets-within-nets [19]

Clearly, the expressiveness of synchronous channels is quite powerful. How-
ever, they unfold their real potential in combination with dynamic hierarchies
and the nets-within-nets paradigm [19]. Using the new syntax shown in the up-
most part of Figure 3 Reference Nets can create instances of other net patterns.
This enables dynamic hierarchies up to an arbitrary level of nesting. The de-
picted example is restricted to a level of two and models a message sending
scenario. It shows a system of three components. In the center is a system net,

the application of known concepts of functional programming languages such as
higher-order functions and recursion by utilizing the nets-within-nets paradigm
to ensure the referential transparency. The basis of this work is provided by
the formalism of Reference Nets [10], a variant of high-level Petri nets, which
will be introduced in Section 2. We will use this formalism to demonstrate its
usefulness for modeling functional reactive systems and complex data structures
in Section 3. Once this is achieved we can turn to the development of abstract
(domain specific) modeling languages (DSML) that are more useful for end users
by using the Rmt approach (Renew Meta-Modeling and Transformation ap-
proach, [13]) in Section 4. An example of such a DSML suited for modeling a
home automation scenario will be presented in Section 5. Section 6 presents a
comparison of our approach with related work before we summarize our results
in the conclusion (Section 7).

2 Reference Nets

The Reference Net formalism is a high-level Petri net formalism with support for
modeling complex data structures, remote synchronization and Java integration.
Some of the core features of Reference Nets will be presented in the following as
they are relevant for this contribution. The Java features will not be discussed
in detail as they are of minor interest in this context. A thorough introduction
to Reference Nets with Java integration is in the Renew manual [11]. Renew
provides full support for modeling and execution of Reference Nets and other
modeling languages. An example of the application to software engineering can
be found in the latest research paper on Renew [2].

Figure 1: Using collections in Reference Nets

With high-level Petri nets, data in the form of colors is unified using uni-
fication expressions on the transitions with regard to the variable bindings on
the edges. Reference Nets are not the only high-level Petri net formalism with
support for collection types, however, Figure 1 shows an example of how they
are realized there. On the left side the variable c is calculated from the inputs a
and b and all of the three variables are outputted in a tuple to the place on the
right side. Tuples can be hierarchically nested to perform complex operations on
them by the means of unification. Lists, as depicted in Figure 1 on the right, are
even more powerful as they permit iterative or recursive processing. In fact, in

Reference Nets

5

24.06.20 David Mosteller, Michael Haustermann, Leonie Dreschler-Fischer - Graphical Languages for Functional Reactive Modeling based on Petri nets

Functional Reactive Systems

6

which manages the instances of senders (left) and receivers (right). The latter
communicate through the synchronous channels (send and receive) of the sys-
tem net. While this configuration models a small application scenario, the next
section goes a step further and demonstrates how Reference Net systems may
be applied to model a more comprehensive application.

3 Functional Reactive Systems

Figure 4: A functional perspective on Reference Nets

Recall the net on the left side of Figure 4, which we have discussed in the
previous section. It may be considered as a function that computes an output
from a number of inputs. It even pertains functional key characteristics, like
referential transparency and immutability of objects. However, we already know
that this is only half of the truth, so we must restrict ourselves to pertain these
properties, which we will consider in the following. Synchronous channels provide
us with the means to explicitly model side effects and control their impact on
the computation (cf. right side of Figure 4). If we wish the data passed along
the synchronous channel to be immutable, we simply design our data structure
to allow read access only.

Figure 5: An immutable named key-value pair data structure

The simple Reference Net model in Figure 5 implements a key-value pair
data structure comparable to JSON or other similar data types. It is created by
calling the new channel with a list as argument containing a type identifier as

which manages the instances of senders (left) and receivers (right). The latter
communicate through the synchronous channels (send and receive) of the sys-
tem net. While this configuration models a small application scenario, the next
section goes a step further and demonstrates how Reference Net systems may
be applied to model a more comprehensive application.

3 Functional Reactive Systems

Figure 4: A functional perspective on Reference Nets

Recall the net on the left side of Figure 4, which we have discussed in the
previous section. It may be considered as a function that computes an output
from a number of inputs. It even pertains functional key characteristics, like
referential transparency and immutability of objects. However, we already know
that this is only half of the truth, so we must restrict ourselves to pertain these
properties, which we will consider in the following. Synchronous channels provide
us with the means to explicitly model side effects and control their impact on
the computation (cf. right side of Figure 4). If we wish the data passed along
the synchronous channel to be immutable, we simply design our data structure
to allow read access only.

Figure 5: An immutable named key-value pair data structure

The simple Reference Net model in Figure 5 implements a key-value pair
data structure comparable to JSON or other similar data types. It is created by
calling the new channel with a list as argument containing a type identifier as

head and a list of key-value pairs as tail. It uses a flexible arc (double arrow) we
have not introduced up to now, which "unpacks" all of the key-value pairs to
the output place. From there the individual values can be queried through the
get-channel but due to the test arc, read only access is permitted. An example
of its usage will be demonstrated shortly.

Figure 6: A reactive system

In order to form a reactive system it must gain the ability to react upon events
that are triggered by its environment. The example of sender and receiver from
Figure 3 in Section 2 contained patterns of this behavior. It has been revisited in
Figure 6 and extended by an event passing mechanism. The system component
in the center remains mainly the same, only the listener is now registered with
the observable to listen for occurring events. The observable stores the event
listener together with the respective event type. As a first step in the cyclic
process an instance of the key-value data net is created with a new event from
the pattern at the leftmost inscription. It contains a type identifier ("event"),
a timestamp (600) and a message ("Hello"). Each time this event occurs the
listener is notified by the synchronous transition (listen). The actual reactive
system is modeled as depicted by the rightmost part (event listener). All it does
is store the message text to the rightmost place. Note that multiple events can
be processed concurrently at a time by the event listener.

Figure 7: Higher-order functions

head and a list of key-value pairs as tail. It uses a flexible arc (double arrow) we
have not introduced up to now, which "unpacks" all of the key-value pairs to
the output place. From there the individual values can be queried through the
get-channel but due to the test arc, read only access is permitted. An example
of its usage will be demonstrated shortly.

Figure 6: A reactive system

In order to form a reactive system it must gain the ability to react upon events
that are triggered by its environment. The example of sender and receiver from
Figure 3 in Section 2 contained patterns of this behavior. It has been revisited in
Figure 6 and extended by an event passing mechanism. The system component
in the center remains mainly the same, only the listener is now registered with
the observable to listen for occurring events. The observable stores the event
listener together with the respective event type. As a first step in the cyclic
process an instance of the key-value data net is created with a new event from
the pattern at the leftmost inscription. It contains a type identifier ("event"),
a timestamp (600) and a message ("Hello"). Each time this event occurs the
listener is notified by the synchronous transition (listen). The actual reactive
system is modeled as depicted by the rightmost part (event listener). All it does
is store the message text to the rightmost place. Note that multiple events can
be processed concurrently at a time by the event listener.

Figure 7: Higher-order functions

24.06.20 David Mosteller, Michael Haustermann, Leonie Dreschler-Fischer - Graphical Languages for Functional Reactive Modeling based on Petri nets

Semantic Components

7

Table 1: Mapping of graphical and Petri net constructs
Start Stop Action

XOR-Split XOR-Merge Parallel Split Parallel Join Data

Map Filter Forall

With these models, a tool is generated as a Renew plug-in, as shown at
the bottom right side of Figure 8. A complete example of the Rmt models and
additional information about the tools can be found in our article on the Rmt
framework [13].

Table 1 shows the semantic mapping, a mapping of graphical components
to semantic Reference Net components. In combination with the previously de-
scribed steps, this is all it needs in order to build models that are ready to be
executed within the Renew simulation environment. With the integrated sim-

Table 1: Mapping of graphical and Petri net constructs
Start Stop Action

XOR-Split XOR-Merge Parallel Split Parallel Join Data

Map Filter Forall

With these models, a tool is generated as a Renew plug-in, as shown at
the bottom right side of Figure 8. A complete example of the Rmt models and
additional information about the tools can be found in our article on the Rmt
framework [13].

Table 1 shows the semantic mapping, a mapping of graphical components
to semantic Reference Net components. In combination with the previously de-
scribed steps, this is all it needs in order to build models that are ready to be
executed within the Renew simulation environment. With the integrated sim-

Table 1: Mapping of graphical and Petri net constructs
Start Stop Action

XOR-Split XOR-Merge Parallel Split Parallel Join Data

Map Filter Forall

With these models, a tool is generated as a Renew plug-in, as shown at
the bottom right side of Figure 8. A complete example of the Rmt models and
additional information about the tools can be found in our article on the Rmt
framework [13].

Table 1 shows the semantic mapping, a mapping of graphical components
to semantic Reference Net components. In combination with the previously de-
scribed steps, this is all it needs in order to build models that are ready to be
executed within the Renew simulation environment. With the integrated sim-

24.06.20 David Mosteller, Michael Haustermann, Leonie Dreschler-Fischer - Graphical Languages for Functional Reactive Modeling based on Petri nets 8

24.06.20 David Mosteller, Michael Haustermann, Leonie Dreschler-Fischer - Graphical Languages for Functional Reactive Modeling based on Petri nets 8

24.06.20 David Mosteller, Michael Haustermann, Leonie Dreschler-Fischer - Graphical Languages for Functional Reactive Modeling based on Petri nets

Heating Control DSML

9
Figure 9: An example of a heating control modeled with a DSML for home au-
tomation

tem. In between office hours (timestamp) the heating system is shutdown for
saving energy.

Together with the semantic mapping we developed in the previous section, the
home automation DSML models can be executed within the Renew simulation
environment. Using the net generator from the RMT framework the Reference
Net depicted in Figure 10 was generated from the home automation model in
Figure 9. It was extended with some inscriptions to become executable within
the Renew simulation environment. The state of the home automation system
becomes interactively inspectable and with the adaption to an appropriate home
automation API the model could be used to control a home automation system.

6 Related Works

Graphical modeling techniques that apply a functional decomposition have a
long tradition in computer science. The basis of functional block diagrams and
its many variants are the interpretation of elements that are commonly depicted
by rectangles as black boxes that transform inputs to outputs (cf. structured
analysis and design technique [16]). Standard languages exist to simulate ma-
ture instances of such diagrams, for instance using Modelica [18] or Matlab
Simulink [21], and even approaches to verification [22]. However, they are usually
self-contained and do not account for the environment as in functional reactive
programming.

24.06.20 David Mosteller, Michael Haustermann, Leonie Dreschler-Fischer - Graphical Languages for Functional Reactive Modeling based on Petri nets

Heating Control DSML

9
Figure 9: An example of a heating control modeled with a DSML for home au-
tomation

tem. In between office hours (timestamp) the heating system is shutdown for
saving energy.

Together with the semantic mapping we developed in the previous section, the
home automation DSML models can be executed within the Renew simulation
environment. Using the net generator from the RMT framework the Reference
Net depicted in Figure 10 was generated from the home automation model in
Figure 9. It was extended with some inscriptions to become executable within
the Renew simulation environment. The state of the home automation system
becomes interactively inspectable and with the adaption to an appropriate home
automation API the model could be used to control a home automation system.

6 Related Works

Graphical modeling techniques that apply a functional decomposition have a
long tradition in computer science. The basis of functional block diagrams and
its many variants are the interpretation of elements that are commonly depicted
by rectangles as black boxes that transform inputs to outputs (cf. structured
analysis and design technique [16]). Standard languages exist to simulate ma-
ture instances of such diagrams, for instance using Modelica [18] or Matlab
Simulink [21], and even approaches to verification [22]. However, they are usually
self-contained and do not account for the environment as in functional reactive
programming.

24.06.20 David Mosteller, Michael Haustermann, Leonie Dreschler-Fischer - Graphical Languages for Functional Reactive Modeling based on Petri nets 10Figure 10: The Reference Net generated from the home automation DSML

There are many programming libraries that support functional reactive pro-
gramming and some of them even provide a graphical notation, like the GraphDSL
using Akka streams [4]. As an advancement of the map-reduce approach to big
data processing, the Apache Spark project gains support for graphical flow-based
programming [12]. They also target IOT and cyber-physical systems, however,
the approach taken with this contribution is somewhat different as it focuses
more on the operational semantics than on the processing of huge amounts of
data.

Several frameworks exist that support developers in creating their own (do-
main specific) modeling languages based on metamodels (ADOxx [5]) and some
of them even provide means for simulation or interactive execution (GEMOC
Studio [3]). The execution semantics is usually coded within the modeling en-
vironment, while with the Rmt approach it is provided by transformations to
Petri nets. The Viatra eclipse project provides an event driven reactive frame-
work for model transformations [20], which is an interesting approach for Petri
net transformations.

Petri nets in general already offer a functional perspective due to their local-
ity principle. For complex applications a powerful inscription language is nec-
essary. Petri net formalisms often choose functional languages for this purpose
to maintain the perspective. The Coloured Petri Nets formalism [8] for exam-
ple uses ML as inscription language. To address the issue that simulators still
have problems with side effects, the Curry-Coloured Petri Nets formalism uses a
purely functional language to prevent side-effect related problems and logic pro-
gram evaluation for the transition binding search [17]. In comparison to these
formalisms, Reference nets allow the creation of dynamic hierarchies using the

24.06.20 David Mosteller, Michael Haustermann, Leonie Dreschler-Fischer - Graphical Languages for Functional Reactive Modeling based on Petri nets

Results
• Employ Reference Nets to model functional reactive systems and

complex data structures

• RMT approach: development of DSML with functional
component-based semantics

• Home automation DSML to control a heating system

Future work
• Formal analysis of DSML with functional semantics

• Petri net concepts for real higher-order functions

Conclusion

11

24.06.20 David Mosteller, Michael Haustermann, Leonie Dreschler-Fischer - Graphical Languages for Functional Reactive Modeling based on Petri nets

Bibliography

12

Cabac, L.: Modeling Petri Net-Based Multi-Agent Applications, Agent Technology – Theory and Applications,
vol. 5. Logos Verlag, Berlin (2010),
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=2673&lng=eng&id=,
http://www.sub.uni-hamburg.de/opus/volltexte/2010/4666/

Combemale, B., Barais, O., Wortmann, A.: Language engineering with the GEMOC Studio. In: 2017 IEEE
International Conference on Software Architecture Workshops (ICSAW). pp. 189–191 (April 2017).
https://doi.org/10.1109/ICSAW.2017.61

Davis, A.L.: Akka Streams, pp. 57–70. Apress, Berkeley, CA (2019).
https://doi.org/10.1007/978-1-4842-4176-9_6

Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of Concurrent Systems. Springer
(2009). https://doi.org/10.1007/b95112

Simon, M., Moldt, D., Schmitz, D., Haustermann, M.: Tools for Curry-Coloured Petri nets. In: Donatelli, S.,
Haar, S. (eds.) Application and Theory of Petri Nets and Concurrency - 40th International Conference, PETRI
NETS 2019, Aachen, Germany, June 23-28, 2019, Proceedings. Lecture Notes in Computer Science, vol.
11522, pp. 101–110. Springer (2019). https://doi.org/10.1007/978-3-030-21571-2_7

Tiller, M.: Introduction to Physical Modeling with Modelica. Kluwer Academic Publishers, USA (2001).
https://doi.org/10.1007/978-1-4615-1561-6

Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi, Z.: Road to a reactive and incremental
model transformation platform: three generations of the VIATRA framework. Software & Systems Modeling
15(3), 609–629 (2016). https://doi.org/10.1007/s10270-016-0530-4

Xue, D., Chen, Y.: System simulation techniques with MATLAB and Simulink. John Wiley & Sons (2013)

