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Abstract— Learning by demonstration and learning by
instruction offers a potentially more powerful paradigm than
programming robots directly for specific tasks. Learning in
humans or primates substantially benefits from demonstra-
tion of actions or instruction by language in the appropriate
context and there is initial neurocognitive cortical evidence
for such processes. Cortical assemblies have been identified
in the cortex that activate in response to the performance
of motor tasks at a semantic level. This evidence supports
that such mirror neuron assemblies are involved in actions,
observing actions and communicating actions. Furthermore,
neurocognitive evidence supports that cell assemblies are
activated in different regions of the brain dependent on the
action type being processed. Based on this neurocognitive
evidence we have begun to design a neural robot in the
MirrorBot project that is based on multimodal integration
and topological organisation of actions using associative
memory. As part of these studies in this paper we describe
a self-organising model that clusters actions into different
locations dependent on the body part they are associated
with. In particular, we use actual sensor readings from the
MIRA robot to represent semantic features of the action
verbs. Furthermore, ongoing work focuses on integration of
motor, vision and language representations for learning from
demonstration and language instruction.

I. INTRODUCTION

Often robots are restricted in their general autonomous
behaviour and only perform what has been prepro-
grammed. We begin to see initial research in learning by
language instruction or action demonstration (e.g. Billard
2002 [2] , Demiris and Hayes 2002 [5]). However, so far,
demonstration and language instruction have only played
a minor role in intelligent robotics. Some robots like the
tour-guide robot Rhino [4] have been quite robust in terms
of their localisation and navigation behaviour. However
they do not use learning by demonstration or learning from
language instructions. Although the conversation office
robot jijo-2 [1] can be instructed to navigate to certain
landmarks and the Minerva tour-guide [17] interacts by
using simply preprogrammed speech, they are restricted in
their ability to learn. Furthermore, the Kismet interactive
robot [3] can recognise and represent emotions using a

sophisticated head but does not learn by imitation or
instruction.

Learning through imitation has been a useful approach
for primates and therefore is an active research into the
area of learning in robots. For instance Demiris and
Hayes 2002 [5] and Maistros and Hayes 2001 [10] have
devised approaches based on the mirror neuron concept
to achieve robot learning through imitation. Demiris and
Hayes 2002 [5] use behaviour and forward models in their
approach where a demonstrator robot was observed by
the imitator robot performing actions and then is required
to predict what is being performed. Maistros and Hayes
2001 [10] use the Scheme Theory to express the function
of the mirror neurons to achieve learning by imitation of
grasping actions. This was done by using as demonstrator-
imitation scenario in a similar manner to that by Demiris
and Hayes 2002 [5]. Billard 2002 [2] also considers the
use of imitation to aid autonomous robot communication
learning of a proto-language by using an unsupervised
approach based on a dynamic recurrent associative mem-
ory architecture. Language is learnt through a student
robot recreating the actions of the teacher robot, through
the teacher robot describing what it observes and the
student robot having a similar perspective to the teacher.
Gaussier et al. 2001 [9] have considered the use of a
neural network approach that is able to achieve learning
and communication through imitation. In doing so they
concentrate on low-level imitations that recreate simple
movements that are found in infants.

In our approach (e.g. Wermter and Panchev 2002 [22],
Wermter et al. 2001 [20], Wermter and Elshaw 2003
[21], Weber and Wermter 2003 [18]) we study learning in
intelligent robots based on some evidence from the brain
since it obviously supports learning from demonstration
and learning from verbal instructions in humans. In this
particular study here in the context of the MirrorBot
project we focus on two constraints: first multimodal
learning and integration of action, vision and language
and second the topological arrangement of actions and



their visual and language counterparts.
First, multimodal learning, recently, a class of neurons

has been found in the rostral part of the ventral premotor
cortex (area F5) in monkeys that are active both when a
monkey handles an object and when it observes an exper-
imenter performing similar actions [14]. More recently,
PET studies have implicated these ’mirror neurons’ in
the gesture recognition system of humans. This system
involves Broca’s area, a language area in humans, which
is generally believed to be the human homologue of area
F5 in monkeys. Therefore, we explore the role of mirror
neurons and cell assemblies for multimodal integration of
action, vision, and language in the MirrorBot project.

Second, examining the processing of action verbs that
relate to the leg, face and arm Pulvermüller et al. 2000 [13]
found that cell assemblies are associated through semantic
information with the appropriate body part. Furthermore, it
was noted by Rizzolatti et al. 2001 [16] that when subjects
were required to observe actions made by the mouth,
hand and foot that the foot was represented dorsally and
mouth and hand ventrally in the brain. This neurocognitive
topological evidence motivates our approach for self-
organising associative memory in multiple regions of the
brain.

In our approach neural learning of multimodal asso-
ciation of motor actions, vision and language will be a
key element for learning robots. We understand learning
by demonstration and imitation in this general sense of
learning multimodal internal topological representations.
In an initial experiment and architecture described in this
paper we show how representation of demonstrating motor
actions and language instructions can be integrated. In a
second step we will outline an architecture for integration
of motor actions, vision and language representations.

II. ASSOCIATING MOTOR ACTIONS WITH
ACTION VERBS

We have begun to associate internal representations of
demonstrated actions with a word description. This system
learns to associate the semantic features that are found
in the sensor readings that represent the action with a
representation of the word. As can be seen at the bottom
of Fig 1 the architecture firstly contains a self-organising
network to associate the action sensor readings with the
appropriate body part by clustering the actions in different
regions. At the next processing level there is a self-
organising network for each body part that uses the sensor
reading vectors to associate the actual action verbs with
different regions. To the right in the architecture, the words
that are represented using their phonemes are clustered in
a self-organising network. The upper-most self-organising
network associates the action representations by using
the locations on the body part self-organising networks
and their appropriate word form representation from the

location on the word form self-organising network. Hence
by associating the action representation with the word
form the robot can describe the action with a word when
it receives only the action representation and vice versa
perform the action when it is given the word only.

In this system the input is used to produce the output
by recreating the action from the sensor readings. The
sensor readings provide information on the action such as
the velocity of the separate wheels, the gripper activities
and how the constituent sub-actions relate to the states of
sensors such as break-beam and table sensors. If the robot
receives the ’put’ action sensor reading representation, it
would be introduced into the trained body part network
and activate the hand region of the output layer. The hand
self-organising network would then position the sensor
readings input in the ’put’ region of the output layer. As
the robot is describing the word form there is no nec-
essary input from the word self-organising network into
the association self-organising network. However, as the
network has previously learnt to associate this action with
the appropriate word form the ’put’ region of the network
is activated. The robot will then state using its language
synthesis that the action semantic features provided are
those for ’put’. On the association self-organising network,
the winner-take-all mechanism removes ambiguities in the
representation, allowing for only one action.

This describes the pathway from the internal action
representation via the association area to the language
description. It would be used to make the robot speak
from observing actions. In a similar but opposite pathway
the word input representation can lead via the association
area - to the sensory robot action. This would be used to
make the robot execute a verbal command.

This approach offers some brain-inspired regional mod-
ularity by having multiple self-organising networks each
performing a subtask of the overall task. These networks
are linked in a distributed overall memory organisation.
Furthermore, this architecture includes components that
are analogous to brain regions at a higher level. For
instance, the SOMs that take the action representations
and cluster these are related to the sensory motor cortical
areas of the brain. The approach also takes into account
the neurocognitive evidence of Pulvermüller (2003) [11]
in that cell assemblies in different regions are associated
with specific action verbs as a functional unit, with the
association being based on the action verbs relationship
with the appropriate body part.

This architecture links in some concepts of the mirror
neuron theory. The relationship of mirror neurons to
language was pointed out by Rizzolatti and Arbib 1998
[14] who found that neurons located in the F5 area of a
primate’s brain were activated by both the performance of
the action and its observation. The recognition of motor
actions comes from the presence of a goal and so the



motor system does not solely control movement [8]. The
role of these mirror neurons is to associate action rep-
resentations with vision or language representations. The
mirror neuron system was a critical discovery as it shows
the role played by the motor cortex in action depiction
[16]. By using the sensor readings as input the mirror
neuron concept is considered since the understanding of
the action can come from either performing the action or
a stored representation is linked to observing the action.

III. SELF-ORGANISATION ON THE ROBOT

In order to have greater objectivity and to incorporate
self-organising maps into a robot control system, sensor
readings were taken from the MIrror-neuron Robot Agent
(MIRA) (see Fig 8). The MIRA robot is based on a
Peoplebot and was set up to perform various actions that
are associated in humans with the leg, head or hand. The
leg verb actions were ’turn left’, ’turn right’, ’forward’
and ’backward’; head action verbs were ’head up’, ’head
down’, ’head right’ and ’head left’; and finally the hand
verbs were ’pick’, ’put’, ’lift’, ’drop’ and ’touch’. One
action can be made of several basic actions. For instance,
the hand verb action ’pick’ included the following sub-
actions (i) slowly move forward to the table; (ii) tilt camera
downward to see table; (iii) lift gripper to table height;
(iv) open gripper; (v) close gripper on object; (vi) stop
forward motion; and (vii) lift gripper. The MIRA robot
performing the ’pick’ action is shown in Fig 8, top. This
sequence of sub-actions corresponds in principle (although
not in detail) to motor schemata since a complex action is
represented as a sequence of basic actions. Sensor readings
were taken for such sequences of basic actions.

In order to provide sufficient and varied training and test
data the actions were performed 20 times (15 training and
5 test) under diverse conditions. For instance, the speed the
robot was travelling at and the angle that the camera was
tilted or panned to were varied. The sensor readings were
taken 10 times a second while MIRA performed these
actions including the state of the gripper, the velocity of
the wheels and the angle that the robot’s camera was at.
The full list of the sensor readings is given in Table I.

To reduce the size of the input for the self-organising
networks to a manageable level, 10 sets of the readings
were taken over time to represent the action. This was
achieved by taking the first, last and eight equi-distant sets
of readings and combining them to create a single input
for a sample. This procedure concatenates the whole time
series to one data point and bypasses problems of short-
term memory. We normalised the sensor readings for such
variables as velocity of left wheel, velocity of right wheel,
x coordinate of robot, y coordinate of robot, and the pan
and tilt of the camera.

For the self-organising network to cluster actions based
on the appropriate body part the input layer had 120 units,
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Fig. 1. The self-organising associative architecture.

one for each of the preprocessed sensor readings. The
output layers had various sizes (from 8 by 8 units to 13
by 13 units) and the networks were trained between 50
to 500 epochs at intervals of 50 epochs. There were 260
samples in total, 195 for training and 65 for testing. The
location of each of the training and test samples on the
self-organising maps were identified based on the units
that had the highest activation.

Fig 2 shows a self-organising network that was 12 by
12 units. Once this network architecture was trained for
50 epochs there was clear clustering into the three body
parts (see Fig 2). The hand action words such as ’pick’,
’touch’, ’lift’ were at the bottom of the training and test
output layers in the hand body part region, with the head
actions slightly below and to the right of the leg region.
Although one unit within the head region contained both
head and leg action samples with the highest activation,
the percentage for head samples was much higher on
both test and training data. For the training and test data
the percentage of head action samples with the highest
activation for that unit was over 60% for training samples
and 70% for test samples. Due to the major difference
between the head and leg action percentages for this unit,
only the head percentage is shown on Fig 2.

For the training data 100% of the samples which corre-
spond to the head and hand actions fell in the appropriate
region and 88% of the leg data. For test data the percentage



TABLE I

SENSOR READINGS TAKEN BY ROBOT DURING ACTIONS.

Sensor Reading Value

Left Wheel Velocity Real number
Right Wheel Velocity Real number
x coordinate of robot Real number
y coordinate of robot Real number

Break-beam state of gripper No beam broken, Inner broken,
Outer broken, Both broken

Gripper state Fully open, closed, between
open and closed

Gripper at highest or lowest position Yes No
Gripper moving Yes No

Table sensors activated Yes No
Gripper opening Yes No
Pan of camera Integer
Tilt of camera Integer
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Fig. 2. The percentages for the test samples for the body parts that
have highest activation for each unit on a 12 by 12 units network after
a training time of 50 epochs. (Black - Hand, White - Head, Grey - Leg)

was even better with 100% for hand and head and 90%
for leg. It is interesting to note that within the hand verb
region there was a good division into the actual action
classes. In Fig 3 ’pick’ was located in the lower right of
the map, ’put’ in the lower left, ’drop’ in the unit above
’pick’, ’touch’ at the top of the hand region and most of
the ’lift’ samples were located in a unit just below ’touch’.
For the other two classes there was some splitting into the
individual actions but not on the scale of the hand class
(see Fig 4 and Fig 5).

For such an architecture on both training and test data
the clusters were in very similar positions on the output
layer, which points to the ability of the network to gener-
alise on data it has not seen before. When considering the
percentage of test data that fell in the regions identified by

the training data the percentages were very high. For the
hand actions 100%, head actions 95% and leg actions 88%
of the test data fell into the appropriate training region.
Therefore, if the self-organising network was used in the
control of a robot it can perform successfully in an on-line
manner clustering semantic features of the action to the
appropriate region of the output layer.

Turning to the hand, head and leg self-organising net-
works, when considering the clustering of the specific
body part actions for all three types of action, the size
of network that performed best was 8 by 8. For the hand
network the training time that produced the best clustering
was 50 epochs, for the head network it was 150 epochs and
for the leg self-organising network it was 100 epochs. As
can be seen from Fig 3 to Fig 5 there was clear clustering
into different regions for the hand, head and leg actions.
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Fig. 3. The percentage for the test samples for the specific hand actions
that have highest activation for each unit on a 8 by 8 units network.

IV. ASSOCIATING VISION AND MOTOR
REPRESENTATIONS

Our next step is to describe an associator neural network
to localise a recognised object within the visual field.
This is an essential basic skill for robotic learning by
demonstration which we solve by a purely neuronal ap-
proach. The model, depicted in Fig 6, is thus a centrepiece
of a larger model which can on the one hand perform
actions like grasping and on the other hand is connected
to neurally implemented language areas.

The idea extends the use of lateral associator connec-
tions within a single cortical area to their use between
different areas [18]. The first cortical area is the visual area
V1 which codes for an internal representation, ”what”, of
images. The weights connecting it to the image are trained
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Fig. 4. The percentage for the test samples for the specific head actions
that have highest activation for each unit on a 8 by 8 units network.
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Fig. 5. The percentage for the test samples for the specific leg actions
that have highest activation for each unit on a 8 by 8 units network.

by a sparse coding Helmholtz machine. Earlier, intra-
area lateral connections have been implemented within
V1 to endow the simple cells with biologically realistic
orientation tuning curves as well as to generate complex
cell properties. We extend the lateral connections to also
span a second cortical area, the ”where” area which
is laterally connected to the simulated V1. The lateral
weights are trained to associate the V1 representation of
the image to the location of an object of interest which
is given on the ”where” area. The lateral weights are thus
object specific associative weights which can complete a
representation of an image with the location of the object
of interest.

 

Fig. 6. Model architecture. The hidden representation ”what” of the
image including the target object is associated to the location ”where”
of the target which is relevant for motor action.

image “what” “where”

Fig. 7. Example representations on the image, ”what” and ”where”
areas. Theimage is originally in color, where in the upper row, the
orange fruit target is artificially generated. The networks of the upper
and lower row were also trained and activated with different parameters.

Fig 7, shows the network activities after initialisation
with sample stimuli of an orange and relaxation to a
steady state. In both cases the ”where” area neuron’s
activations were initialised to zero initially (not shown).
The relaxation procedure which spans the ”what” and the
”where” area then completes the pattern by displaying the
location of the object of interest as a Gaussian activity
hill.

Once that an object of interest appears in the visual
field, it is first necessary to localise its position within the
visual field. Then, usually the centre of sight is moved
toward it, and a grasping movement prototype will be
activated which is related to the specific affordance [15].

We have made initial experiments connecting the
”where” area to motor neuron’s output which control the
robot camera’s pan-tilt motors. The task is to move the
camera so that the orange fruit is located in the centre of
the “where” area (Figs. 6,7). This is achieved by a simple
algorithm. Weights from every unit of the “where” area to
the camera’s pan and tilt units were trained based on the



error of a movement: if after a tilt movement the camera
would face, e.g., too much upward, then the unit which
elicited that movement had its weight to the tilt motor unit
changed, so that at the next trial it would face a little less
upward. Fig 8, bottom, shows the camera pointing toward
an orange which is moved across its ”visual field”. This
implements the MIRA robot’s reaction to the command
”Bot show orange”.

Additionally, using reinforcement learning, we have
very recently implemented the robot ”docking” at a table
so that it can grasp an object which lies at the border
of the table with its short grippers [19]. The input to
the reinforcement-trained network is the perceived target
location (from the “where” area) and the rotation angle
of the robot w.r.t. the table. Outputs are the four motor
units and a critic unit which carries a value function on
the input space. A positive reinforcement signal is given
if two conditions are met:(i) the target is perceived at
the middle of the lower edge of the visual field (where
also the gripper is perceived by the camera which is at a
fixed position) and(ii) the rotation angle is zero (which
is defined such that the robot is approaching the table
perpendicularly). The weights to the value function unit
and those to the motor units develop concurrently such
that an optimal strategy toward reaching the target will by
performed. Fig 8, top, shows the robot perpendicularly at
the table, at the goal position. The data delivered during
these actions will be used for the training and verification
of mirror neurons.

V. ASSOCIATING VISION, LANGUAGE AND
MOTOR REPRESENTATIONS FOR LEARNING

BY DEMONSTRATION

As the next steps therefore the model needs to be
extended to incorporate more complex motor tasks. This
is not only desirable from a robotic application point of
view, but also from the fact that mirror neurons are action-
related, as they reside in motor associated cortical areas
such as F5 and respond to performance, description and
observation of actions (Rizzolatti and Arbib 1998) [14].
For this, we will integrate the language- and motor-sensory
related ’pick’ action with the more vision relate the more
vision related tracking action (Fig 8).

The model of Elshaw and Wermter (2002) [6] and
Elshaw, Wermter and Watt (2003) [7] handles an organi-
sation of a variety of actions on a self-organising layer of
neurons as an avenue to include a larger number of motor
tasks. Fig. 9 shows the plan of a proposed network.

In the envisaged network of Fig 9, mirror neuron
properties are expected to evolve among some of the
neurons in the top layer. They carry an internal represen-
tation~r of all of the inputs, below. The inputs are from
multiple modalities including higher level representations.
The vector~l contains language input information. This can

 

 

Fig. 8. The MIRA robot performing the ’pick’ action (top) and
recognising and tracking an orange with its pan-tilt camera (bottom).

include internal representations from language areas or the
goal area of the cell assembly model for Broca/Wernicke
areas.~pv contains the visual perception which includes
the identity and perceived location of a target to be
grasped.~mare the motor unit activations including wheels,
gripper and pan-tilt camera.~ms denotes motor sensory
unit activations and may also include available idiothetic
information such as the rotation angle of the robot.~i are
other internal states such as the goal related value function
of the critic used in reinforcement learning.

Thick lines with arrow heads denote the weights. The
vertical connections are trained with a sparse coding
unsupervised learning scheme similar to the Helmholtz
machine which we described for image processing (Fig 6).
The inputs are collected from real robotic actions (af-
ter exercising with simulated data) which are performed
interactively in the environment. The data contain only
instantaneous information, i.e. the whole action sequence
is not known. Therefore, neurons do not necessarily fire
over a sustained period in time as do mirror neurons. How-
ever, since~r is a distributed code, some of the units may
specialise to code for longer sequences. The horizontal



 

Fig. 9. The envisaged associative architecture

recurrent connections (depicted as open circle) are trained
as an autoassociator neural network. They are used in a
neural activation relaxation procedure which de-noises the
representation~r and may also encourage prolonged firing.
As a possible extension, associator recurrent connections
may also feed back to the input. This would be particularly
interesting for the cortical feed back to the motor units,
because of implications for motor control.

VI. DISCUSSION

We have developed biologically inspired solutions for
tasks which are needed by a robot that should learn by
demonstration and instruction.

The robot sensor inputs to the modular, self-organising
network were partitioned in a way that they match the
three body areas ’leg’, ’head’ and ’hand’. The match is
intuitive, but equivalents of the robotic sensor readings
(like “gripper opening”) are likely to be represented at
various locations on the cortex, as a visual or motor-
sensory perception or distributed in the language system
as a “word web” [11]. The network can in principle
realise the findings of Pulverm̈uller et al. (2000) [13]
on the processing of action verbs with different clusters
representing the specific body parts. The network was able
to identify the semantic features from the actual sensor
readings for the individual action verb classes that were
specific to the appropriate body part. These features were
likely to include the degree of move, whether there was an
object involved and the type and number of motors used.

The performance of the head, leg and hand self-
organising networks are in principle suitable for use in a
robot control system based on language instruction. This is
because it is likely, based on the clear clustering demon-
strated, that the sensor reading input will be accurately
represented and mapped to the appropriate network region.
As this location is the basis for the association between the
action and the word this will contribute to the successful
identification of the action and its description.

A recurrent associator network with distributed coding
was applied to the visually related part of the task. Such
associator networks form the neural basis for multimodal
convergence and at the same time can supply a distributed
representation across modalities as has been proposed
for linguistic structures [12]. Multimodal representations
furthermore allow for mirror neuron-like response proper-
ties which shall emerge in our application within a bio-
mimetic mirror neuron-based robot, MirrorBot.

Two actions, interactively performed with the environ-
ment, shall supply input data to the envisaged mirror
neurons. Since reinforcement learning which we used to
train these actions is attributed to the basal ganglia, the
model extends beyond the cerebral cortex, in a biologically
plausible fashion.

VII. CONCLUSIONS

We have described some research toward integrating
learning by demonstration and learning by instruction
on a neural substrate on a robot. Our approach is not
so much on imitating complex behaviour. Rather our
focus is on testing mirror neuron concepts and other
neurocognitive evidence like the topological arrangement
of actions in order to provide a multimodal integration
of the robots own actions, as well as visual observation
and language instruction. We think that visual observation
and language instructions are complementary forms of
programming robots in a natural manner to perform and
link their performance to their own underlying actions.
An associative neural organisation of the internal memory
may therefore be advantageous for a robot’s learning of
visually described actions or verbally instructed actions.
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