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Abstract. This paper proposes a spiking neural network (SNN) of the
mammalian auditory midbrain to achieve binaural multiple sound source
localisation. The network is inspired by neurophysiological studies on the
organisation of binaural processing in the medial superior olive (MSO),
lateral superior olive (LSO) and the inferior colliculus (IC) to achieve
a sharp azimuthal localisation of sound sources over a wide frequency
range in a reverberant environment. Three groups of artificial neurons
are constructed to represent the neurons in the MSO, LSO and IC that
are sensitive to interaural time difference (ITD), interaural level differ-
ence (ILD) and azimuth angle respectively. The ITD and ILD cues are
combined in the IC to estimate the azimuth direction of a sound source.
To deal with echo, we propose an inter-inhibited onset network in the IC,
which can extract the azimuth information from the direct path sound
and avoid the effects of reverberation. Experiments show that the pro-
posed onset cell network can localise two sound sources efficiently taking
into account the room reverberation.

Key words: Spiking neural network, sound localisation, inferior collicu-
lus, reverberation

1 Introduction

Humans and other animals show a remarkable ability to localise multiple sound
sources using the disparities in the sound waves received by the ears. For ex-
ample, humans can localise as many as six concurrent sources [1] and cancel
out echoes using two ears [2]. This has inspired researchers to develop new com-
putational auditory models to help understand the biological mechanisms that
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underlie sound localisation in the brain. Binaural sound localisation systems take
advantage of two important cues [3] derived from the sound signals arriving at
the ears: (i) interaural time differences (ITD), and (ii) interaural level differ-
ences (ILD). Using these two cues sound source direction can be estimated in
the horizontal plane.

In humans the ITD cue is effective for localising low frequency sounds (20
Hz ∼1.5 kHz) [4], however, the information it provides becomes ambiguous for
frequencies above ∼1 kHz. In contrast, the ILD cue has limited utility for localis-
ing sounds below 1.5 kHz, but is more efficient than the ITD cue for frequencies
higher than this [4]. The ITD and ILD cues are extracted in the medial and
lateral nuclei of the superior olivary complex (MSO and LSO), which project to
the inferior colliculus (IC) in the midbrain. In the IC these cues are combined
to produce an estimation of the azimuth of the sound [5]. The cells in the IC are
classified into 6 main types among which onset and sustained-regular cells play
the main role for sound azimuth detection even in an echo environment.

Several hypotheses and models for ITD and ILD processing have been pro-
posed [3][6][7], with one of the most influential being a model advanced by Jef-
fress [3]. However, all above models only work in an anechoic environment. To
deal with reverberation, Litovsky [8] proposed a model of the precedence effect
which applies an onset detector to inhibit the localisation cues from the indirect
sound path. Palomäki [9] simplified Litovsky’s model by using envelope extrac-
tion. However, these models did not exploit the biological pathways from the
MSO/LSO to the IC, such as the inhibition from the ipsilateral LSO to the
IC. These pathways are believed the crucial key for a sharp localisation over
broadband frequency.

This paper presents a model designed to identify multiple sound source di-
rections by means of a spiking neural network (SNN). It is the first to employ a
SNN that combines both ITD and ILD cues derived from the SOC in a model of
the IC to cover a wide frequency range and to target a reverberant environment.
This model incorporates biological evidence on the inputs from the MSO and
LSO to the IC, and is able to build a sharp spatial representation of sound source.
To cope with an reverberant environment, onset cells in the IC are modelled and
interconnected to each other by inhibition projection.

2 Biological Fundamentals and Assumptions

When sound waves arrive at ears, the temporal and amplitude information is
encoded and transmitted to the MSO and LSO in order to extract ITDs and
ILDs respectively [5]. According to Jeffress’s original model, the ITD-sensitive
cells in the MSO can be idealised as a coincidence cell array where each cell
receives a delay-line input, and the cells are assumed to be distributed along
two dimensions: CF and ITD (see Figure 1). A cell in the MSO fires when the
contralateral excitatory input leads the ipsilateral by a specific time difference.

For the LSO model, we represent the cells in the LSO distributed across two
dimensions, CF and ILD, in an analogous manner to the MSO (Figure 2), but
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Fig. 1: Schematic diagram of the MSO model. While all the spike trains from the
ipsilateral side share the same delay, the ones originating from the contralateral
side are subjected to variable delays. The difference between the ipsilateral and
contralateral delays makes each cell in the MSO model most sensitive to a specific
ITD.

without any interaural delay. Each LSO cell compares the input levels from two
ears and generates a spike if the level difference is equal to the characteristic
ILD of the cell.
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Fig. 2: Schematic diagram of the LSO model used in our system. Analogous
to Figure 1, we assume that there are cells most sensitive to a given ILD and
frequency. When the exact level difference ∆p = log( pI

pC
) is detected, the corre-

sponding LSO cell fires a spike.

All the outputs of the MSO and LSO are projected to the inferior colliculus
(IC). The IC is also tonotopically organised, and contains a series of iso-frequency
laminae, which span the whole range of frequencies perceived by the animal. In
this model, we assume for simplicity that there are only projections from cells
with the same CF. Consequently in our model the laminae of the IC with low
CF (200 Hz to 1 kHz) only receive projections from the MSO, while the laminae
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Fig. 3: Schematic diagram of the IC model. In the range of 20 Hz to 1 kHz, the
IC model only receives inputs from the MSO model (solid line). From 1 kHz to
4 kHz, the IC model receives inputs from the MSO model (solid line) and both
LSOs (dash line).

with higher frequencies (up to 4 kHz) receive projections from both the MSO
and LSO. The laminae with a CF above 4 kHz would only receive inputs from
the LSO, but our model does not include this range of frequencies.

The cells in the IC can be classified into 6 physiological types [10]: sustained-
regular, rebound-regular, onset, rebound-adapting, pause/build and rebound-
transient. The sustained-regular cells generate regular spikes when their input is
kept positive and is can detect ongoing sounds. We hypothesise that these cells
could encode sound source locations in the free field in the absence of echoes.
However, in a reverberant environment, an echo is added to the sound taking the
direct path and this causes a detection error in the output of sustained-regular
cells. In contrast, onset cells only generate one spike when the input current
changes from 0 to positive and then cease firing as long as the input is kept
positive. This property would useful when the IC model is locating a sound in
an echoic environment, because its output spike is only related to the sound
taking the direct path.

Taking into account this biological evidence, we propose an IC model for
sound source localisation as outlined in Figure 3. Analogous to the biology evi-
dence, the IC model consists of different components according to the frequency
domain. In addition, we suppose that onset cells with the same CF suppress one
another, i.e. an early spike from one onset cell will inhibit other onset cells which
have the same characteristic frequency. We will describe this inhibitory network
in detail in the next section.

3 System Model of Sound Localisation

Inspired by the neurophysiological findings and the proposed models presented
in Section 2, we designed our model to employ spiking neural networks (SNNs)
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Fig. 4: 4a: The IC’s onset cell. 4b: Flowchart of the biologically inspired sound
localisation system. This example only shows one IC; note that there is a sym-
metric model for the contralateral IC. MSOI ipsilateral MSO model; LSOI ipsi-
lateral LSO model; LSOC contralateral LSO model; GF Gammatone filterbank;
PL phase locking; LD level detection; SR sustained-regular and AF azimuth-
frequency.

that explicitly take into account the timing of inputs and mimic real neurons.
The cues used for sound localisation, such as time and sound level, are encoded
into spike-firing patterns that propagate through the network to extract ITD
and ILD and calculate azimuth. Every neuron in the SNN is modelled using a
leaky integrate-and-fire (LIF) model. The response of a neuron to spike inputs
is modelled by:

C du
dt

=
∑

k

Ik(t) − C
τm

u

tf : u(tf ) = φ
(1)

where u(t)is the membrane potential of the neuron relative to the resting po-
tential which is initialised to 0, and τm is a time constant. C is the capacitance
which is charged by

∑

k

Ik(t) from multiple inputs, where Ik(t) is a current input

which is a constant square with amplitude ws and duration τs in response to
a spike input. k is the number of input connections to the neuron. The action
potential threshold ϕ controls the firing time tf . When u(t) = ϕ, the soma will
fire a spike; then u(t) is reset to 0. Afterwards, the soma will be refractory for a
period tr = 1 ms during which it will not respond to any synaptic inputs. After
the refractory period, the soma returns to the resting state.

The LIF model can be used to represent the cells in the MSO and the LSO
and the sustained-regular cell in the IC. However, the LIF model cannot directly
model the onset cell because it constantly responds to continuous inputs, rather
than just the initial onset input. Instead, for the onset cell, we propose a hybrid
model of LIF and a state machine. Each onset cell has two states: active and
inactive. When the cell is active, the cell is implemented as a LIF neuron until a
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spike is fired, or the cell receives an inhibitory input, after which the cell’s state
becomes inactive. The cell goes back to active state only if there is no inhibition
and the input is 0 (no spike) for a period ts (see Figure 4a).

A schematic structure for the sound localisation procedure is shown in Figure
4b. The frequency separation occurring in the cochlea is simulated by a bandpass
filterbank consisting of 16 discrete second-order Gammatone filters [11], that
produce 16 frequency bands between 200Hz and 4kHz. After the Gammatone
filterbank, the temporal information in the waveform in each frequency channel
is encoded into a spike train by the phase locking module in Figure 4b. Every
positive peak in the waveform triggers a phase-locked spike to feed into the MSO
model. The sound level is detected in the same module but directed to the LSO
model.

To calculate the ITD, the phase-locked spike trains are then fed into the MSO
model. A series of delays are added to the spike trains of the contralateral ear
to simulate the delay lines ∆ti (see Figure 1). The spike train of the ipsilateral
ear reaches the MSO with a single fixed delay time ∆T . The parameters of cells
in the MSO are set: ls = 2.1ms, τs=0.08ms, τm=1.6ms, ϕ=8e-4, ws=0.1A and
C = 10mF

The ILD pathway is not modelled using a LIF model; rather the sound lev-
els previously detected for each side are compared and the level difference is
calculated. The LSO model contains an array of cells distributed along the di-
mensions of frequency and ILD (Figure 2). When a specific ILD is detected at a
given frequency, the corresponding LSO cell fires a spike. The level difference is
calculated as ∆pj = log(pj

I/pj
C), where pj

I and pj
C stand for the ipsilateral and

contralateral sound pressure level for the frequency channel j.

After the basic cues for sound localisation have been extracted by the MSO
and LSO models, the ITD and ILD spikes are fed into the IC model, as shown
in Figure 4b. The IC model merges the information to obtain a spatial represen-
tation of the azimuth of the sound source. According to the model proposed in
Section 2, we need to define the connection strength between the ITD-sensitive
cells (mi) in the MSO and the azimuth-sensitive cells (θj) in the IC, and the
connection between the ILD-sensitive cells (li) in the LSO and θj . In a SNN,
each of the inputs to a neuron (in this case in the IC) produces a post-synaptic
current I(t) in the modelled cell. The post-synaptic currents of all the inputs
are integrated to calculate the response of the neuron. To modify the weight of
each input we assign a different gain to the amplitude ws of the post-synaptic
current I(t) (in Equation 1) of each connection. Inspired by Willert’s work [6],
we used an approach based on conditional probability to calculate these gains,
as shown in the following functions:
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emiθj
=

{

p(θj |mi , f) ifp > 0.5max
j

(p(θj |mi , f))

0 otherwise
(2)

eliθj
=

{

p(θj |li , f) ifp > 0.8max
j

(p(θj |li , f)), f >= fb

0 otherwise
(3)

cliθj
=

{

1 − p(θj |li , f) ifp < 0.6max
j

(p(θj |li , f)), f >= fb

0 otherwise
, (4)

where emiθj
and eliθj

represent the gain of the excitatory synapse between the
MSO and LSO respectively and the IC. If emiθj

is 0, it is equivalent to no con-
nection between mi and θj . Similarly, eliθj

= 0 indicates no connection between
li and θj . The term fb is the frequency limit between the low and middle fre-
quency regions and is governed by the separation of the ears and the dimensions
of the head of the “listener”. Based on the dimensions of the robot head used in
this study, fb should be around 850Hz.

cliθj
represents the gain of the inhibitory synapse between the LSO and the

IC. f stands for the centre frequency of each frequency band. p(∗) stands for
a conditional probability, which can be calculated by Bayesian probability and
p(θj |mi , f) can be calculated by:

p(θj |mi , f) =
p(mi |θj , f)p(θj |f )

p(mi |f )
(5)

In a physical model, the conditional probability p(mi |θj , f) is obtained from
the statistics of sounds with known azimuths. To obtain such data, we recorded a
1s-sample of white noise sounds coming from 37 discrete azimuth angles (from -
90 to 90 degrees in 5 degree steps) using a robot head. The head had dimensions
similar to an adult human head and included a pair of cardioid microphones
(Core Sound) placed at the position of the ears, 15 cm apart from one another.1

These recordings were processed through our MSO model to obtain an ITD
distribution for each azimuth, which was then used to calculate p(mi |θj , f).
Finally, we applied Equation 5 to Equation 2 to calculate the gain, emiθj

, of
the connection between the MSO cells and the IC cells. These gains are further
adjusted to leave only components consistent with the known anatomy of the
pathway, i.e. there is no significant projection from the contralateral MSO to the
IC. A similar procedure is used to calculate the gains of the LSO projection to
the IC.

Equations 2 and 3 map the excitatory connections of each MSO and LSO
cell to the IC cells representing the most likely azimuths, while Equation 4 maps

1 Sounds were recorded in a low noise environment with 5 dB SPL background noise.
The distance of the sound source to the center of the robot head was 128 cm and the
speakers adjusted to produce 90±5 dB SPL at 1 kHz. Recordings were digitalised
at a sample rate of 44100 Hz. Sound duration was 1.5s, with 10 ms of silence at the
beginning.
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the inhibitory LSO projection to cells representing azimuths in the hemifield
opposite to the sound source. This inhibition counteracts the effects of false ITD
detection at high frequencies.

4 Experimental Results

In this section, we first verify our model by locating a pure tone in a reverberant
environment. We then implement our model to locate three groups of two con-
current sound sources in the same environment, and compare the results using
sustained regular cells with these using onset cells.
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Fig. 5: 5a: Azimuth distribution of single sound localisation in a reverberant
environment. 5b: The effect of room reverberation to the recording. The sound
sample is a 700Hz pure tone played at 10 degree from the midline.

Figure 5a compares the localisation results obtained using onset and sustained-
regular cells. The sound sample was a 700Hz pure tone played at 10 degrees in
a reverberant environment (echo delay 6 ms). The possibility of sound source
azimuth is calculated as the division of the number of spikes of the IC cells in
one azimuth angle of all frequency channels by the total number of spikes. Two
methods were tried for the same sound: (i) only using sustained-regular cells in
the IC with no inhibitory connection between the cells, and (ii) use the onset
cells in the IC and the inhibitory network proposed earlier in this paper. Note
that the first method is equivalent to the most conventional methods of sound
localisation which are based on ongoing sound detection. Figure shows that the
result from onset cells has a peak around 12 degrees which is very close to the
real sound azimuth, while the peak of the results from the sustained-regular cells
is around 70 degrees which is far from the true location. The main reason is that
the reverberation interfered with the sound wave reaching the microphone and
changed the ITD and ILD cues.
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Figure 5b shows the effect of room reverberation on the recordings of a 700Hz
pure tone presented at the front. It shows that the sound reaches the microphone
at 0.013s and the signals from both microphones match each other peak by peak.
However, from about 0.02s, the reverberant sound arrived and started to interfere
with the recorded sound. As a result, the signals shifted by about 0.007ms. This
peak shifting caused the localisation error that occurred when using the modelled
sustained-regular cells.
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Fig. 6: Sound localisation results for three groups of concurrent sound sources.
Reference1 stands for the ideal azimuth of first sound source 500Hz and refer-
ence2 for the second sound source’s ideal azimuth.

To test our model for a mixture of two concurrent sound sources, we designed
three test groups and used a 500Hz pure tone from -90 degree as the first sound
source for all three groups. The second source sources in three groups were
designed as speech “hello”, “coffee” or white noise. The second sound source is
presented from 7 positions from -90 to 90 degree for every 30 degrees. All the
sound sources are 1.28m far from the robot head. During recording, two sound
sources are played at the same time. Each test point includes 10 sound sets and
the final results are the average value. Figure 6a shows the localisation results
using sustained-regular cells. In the figure, the second sound source azimuths
were calculated accurately, however the results for the first sound source show a
big offset from the ideal detection. In contrast, Figure 6b shows more accurate
localisation results in both sound sources.

5 Conclusion and Future Work

This paper describes the design and implementation of a sound localisation
model that uses a SNN inspired by the mammalian auditory system for a rever-
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berant environment. In this system, both ITD and ILD pathways were modelled
and computed in the MSO and LSO models, and the ITD spike and ILD spikes
were projected to the IC in a way similar to the biological system where they
were merged together to achieve broadband sound localisation. Onset IC cells are
modelled and an inhibitory onset network is proposed to eliminate the echo. The
experimental results showed that our system can localise two concurrent sound
sources in a reverberant environment especially for pure tones with azimuths
between -90 and 90 degrees. Our model’s success casts light on the mobile robot
application in real world application where reverberation is unavoidable. In the
future, other IC cell types will be tested in the model For the application of
our system to a mobile robot, we plan to implement a sound separation system
based on sound source direction in order to improve speech recognition in a noisy
environment
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