
Actor-Critic Learning for Platform-Independent Robot Navigation

David Muse and Stefan Wermter
Centre for Hybrid Intelligent Systems

Department of Computing, Engineering and Technology
University of Sunderland

www.his.sunderland.ac.uk

1 Abstract

This paper describes an approach in the field of reinforcement learning for robot control and a new
Modular Actor-Critic architecture (MAC) which supports platform-independent robot control. The
architecture is tested on a landmark approaching task using movable pan/tilt cameras which
successfully control both, a large PeopleBot and a small Sony Aibo robot to perform the navigation
task, with no retraining required. The architecture provides insight into the skills transfer between
different robotic platforms and the modularisation of the architecture derived from splitting the control
tasks into its component parts. The architecture and underlying principles could be used in rapid
prototyping of new robotic platforms, where an already functioning control system can by used to
allow more sophisticated navigation.

Keywords: Reinforcement Learning; Robot Control; Robotics; Neural Networks

2 Introduction

There have been different robot control systems developed over the years, from conventional, fixed-

gain systems, to those that employ adaptive learning techniques [1 - 8]. However, so far actor critic

learning has received relatively little attention for robot navigation control which is the focus of our

approach in this paper. The main purpose of robot navigation is to enable a robot to move around its

environment, whether following a calculated or predefined path to reach a specific location or

wandering around the environment. Some of the components involved in robotic navigation are (i)

localisation, (ii) path planning and (iii) obstacle avoidance. For an overview of localisation and map-

based navigation see [9, 10].

Many of the navigation systems implemented for robot navigation use manual coding, which leads to a

lack of adaptability of the system although some systems have included learning (see [3, 4] for

examples). Some training methods used for the learning systems have been various forms of

reinforcement learning [11]. These learning algorithms overcome the problem of supervised learning

algorithms, as input/output pairs are not required for each stage of training but the only requirement is

the assignment of a reward at the end -- which can be a problem for multiple goals or complex systems

[12]. However, for systems where there is just one goal, the reward will be administered only when the

agent reaches the goal.

Busquets et. al. present a related approach, where a simulated robot is controlled using various

reinforcement learning algorithms [1], coupled with the control architecture described by Sierra et. al.

for the sharing of the visual component [13]. Here the vision system is used by different subsystems

such as the navigation system to allow the robot to move to the landmark or the pilot system which

performs obstacle avoidance. The reinforcement learning was used to learn how to share the visual

component between the subsystems competing for its use. In contrast, Gaskett et. al. developed a

control system for a robot using a fixed camera, and they used reinforcement learning to remove the

need for camera calibration [14].

All of these cited systems have demonstrated the applicability of reinforcement learning to robot

control problems. However, the main problem faced by reinforcement learning is the ‘curse of

dimensionality’: increasing the number of inputs substantially increases the dimensionality of the state

space, which is used to model the input variables [15]. With a larger state space, the training time of the

networks increases. This is due to the increased number of states to be searched to find the goal state

which used to be an issue debated in symbolic AI [16]. This issue is addressed in this research via

modularisation of the state-space into sub tasks, which allows us to reduce the overall state space into

several smaller state spaces to model the environment.

Reinforcement learning has been successfully developed for different robot control tasks. It has been

used for instance to control a simulated robot in the field of robot soccer [2]. Hafner and Riedmiller

concentrate on the results obtained from the simulated environment. However, they also state that they

are working on adapting the system to work on their omnidirectional robot. They highlight a common

problem which is the length of time it takes to learn the defined tasks. Reinforcement learning provides

a powerful and flexible learning regime, but complex tasks require a larger state space resulting in an

increase in the search space during learning and operation.

In our early work, we developed a visual system, which allowed a PeopleBot robot to pick an object

from a table [17]. This system used visual input and reinforcement learning to move the robot in such a

way as to position the object between its grippers. However, it had a limited range, as the object needed

to be in the visual field of the camera. The camera was held in a fixed position, so was unable to track

the object if it moved out of view. As an extension to this early system, a system was designed and

implemented to allow the pan/tilt camera to move [5]. This design increased the range of the robot

vision, as the camera could track the object. It focused on a network developed to perform a coordinate

transform to deduce the angle and distance to the object in robot centred coordinates. These values

were used as the inputs to the reinforcement network. However, the system was not developed for a

real robot since the use of the coordinate transform network introduces possible errors to the system

and increases the complexity, which is addressed and avoided in the system described in this paper as

relative landmark information is used.

An alternative extension, using an omnidirectional camera was also pursued [6]. This was successfully

implemented on the PeopleBot and used a sequence of reinforcement subsystems to allow the robot to

reach the object from a greatly increased range. Here, a second network was added to locate the object

via omnidirectional vision and a specified landmark. Once at the landmark the object was visible in the

pan/tilt camera. However, as the original network was used, the camera remained stationary and if the

object moved out of sight, the system would still be unable to track it. To avoid a lengthy online

training time, the network was initially trained on a simulator. This was then exported to the robot for

the final training, which fine-tuned the network to control the motor system of the robot. This principle

will be used in this paper to develop a new control architecture for different robots. Thus, this paper

describes an approach to develop a new robot control architecture based on more platform-independent

reinforcement learning. By removing robot-dependent data for the control system, robot-independent

control can be achieved.

3 Background of Reinforcement Learning

Reinforcement learning is a learning methodology where an agent can learn from experience by

interacting with its environment. The learning is driven by the reward received during the interaction

with the environment. This form of learning differs from supervised and unsupervised learning as there

is no immediate reward. Reward is only received after a successful learning sample, which is then fed

back throughout the network [11, 18].

As the agent interacts and explores the environment it receives feedback in the form of a reward signal.

The goal of the learning is to maximise the reward received for performing a given task. This raises an

interesting question in reinforcement learning, which is how to trade off the exploration of the state

space and exploitation of the reward function, “The dilemma is that neither exploration nor

exploitation can be pursued exclusively without failing at the task” [11]. If the agent repeatedly

follows the path with the maximum reward a global maximum may not be discovered and the current

local maximum is continually used.

Reinforcement learning has its roots both in the fields of computation and psychology. One early

inspiration for reinforcement learning was the findings of Pavlov with his experiments on a dog [19]

who looked at classical conditioning where a stimulus preceded a reward, in this case food. Initially the

dog salivated on the presentation of the food, however, after several trials the dog learned to associate

the stimulus with receiving the food. When this occurred the dog started to salivate on the presentation

of the stimuli, as the dog had learned that the food would follow.

For reinforcement learning, improvements are needed for the modelling of the state space to prevent

what Bellman termed the ‘Curse of Dimensionality’ [15]. This is caused by the dimensionality needed

to model the state space. Here every input used to model one aspect of the environment requires its

own dimension. For example, if an environment is modelled by 4 inputs and each one requires 10

different states to model the input there will be 104 possible states making a total of 10000 individual

states. For complex systems huge state spaces may be required to model the environment, which is the

motivation for function approximation and hierarchical methods to try to address this problem.

An overview of hierarchical methods is provided by Barto and Mahadevan [20]. By breaking complex

problems into simpler tasks, smaller state-spaces can be used to model the environment. Then, a

method is needed to combine the different subsystems used to solve the complex task in hierarchical

reinforcement models. For instance, Stringer et al. developed a hierarchical model for motor control,

where lower level primitive components learned individual motor tasks and a higher level component

learned the sequence to execute the different primitives to complete the overall task [21]. Tham

developed a hierarchical architecture for controlling a two-linked manipulator arm [22] while

Morimoto and Doya developed a hierarchical system to allow a robot manipulator with three links to

stand up, to learn the individual actions required for standing, and to combine these actions into the

correct sequence [23].

The work in hierarchical reinforcement learning also led to the concept of skills transfer, where trained

sub-systems could potentially be transferred to a similar task. An example of this could be a robot

learning to grasp an apple and then to use the skills learned to grasp a cup. These tasks are similar but

require a slightly different technique. In humans when we learn to perform a task, we can use the skills

acquired in similar tasks. Research was conducted into using this concept to try and transfer skills

learned in one task to ease learning of a similar task [20]. Also Singh et. al. present work in the field of

skills transfer [24] and Konidaris and Barto outline the development of skills transfer between different

learning problems, using the Options Framework. Here they aim to learn the options taken by the agent

in what they term an Agent-Space, which decouples the learning of the options from the distinct State-

Space which the leaning algorithm is using for learning the current task [25]. It is hoped that by using

the Agent-Space the learned actions can be used to speed up related tasks which have different state

spaces. They term it intrinsically motivated reinforcement learning where the agent ‘chooses’ what it

should learn. The agent then uses these skills to transfer the learned skills to similar tasks. This concept

will be addressed in the research described in this paper. However, the skills learned will not be

transferred between similar tasks, but the control system that acquires certain skills in performing a

task will be transferred between different robotic platforms.

4 Motivation for the new Architecture

It has been a trend over the years to develop robot control systems for a specific robot. However, using

this approach to port the control system between robots, a redevelopment or total redesign of the

system is required. This makes it difficult to recreate experiments and makes benchmarking difficult. It

was the aim of this research to develop a control architecture using the Actor-Critic reinforcement

learning algorithm to overcome this limitation in robotics. By developing the new architecture with

decoupled control units, the need for robot-specific information was removed, allowing portability

between robotic platforms. In this research a modular architecture was developed comprising of

different control system. These control systems perform different sub-problems of the overall task. The

individual control units are decoupled in such a way that they have no direct input to each other but the

action which one control unit produces influences other control units via the environment of the agent.

Developing control software for robots is a very time consuming and difficult process when the system

is hand-coded [26] since all possible input and action pairs need to be considered. Hand-coding is

manually programming input / output pairs to produce the required action. An alternative to hand-

coding is for the agent to learn it over time from experience via interaction with the environment and

Wolpert et. al. discuss motor learning and the different approaches that can be used (supervised,

unsupervised and reinforcement learning) for the robot to learn the control from a neurologists

perspective [27]. Mitchell et al present work on simple and reliable control of a mobile robot using

neural networks [28] while Walters produced some of the original work on mobile robot control. He

used simple neural networks to control a simple Turtle robot [29].

It is the aim of this paper to describe the development of a control architecture trained by Actor-Critic

reinforcement learning to control two very different but related robot architectures, a PeopleBot and

Sony Aibo robot. The two chosen platforms have similarities in that they both have moveable pan-tilt

cameras and navigational capabilities. With the use of reinforcement learning, the networks can be

partially trained in a simulator for camera and robot control. These partially trained networks can then

be used to control the robots. Further training could then be carried out on the robots to specialize the

networks with the actual movement of the individual robots and cameras.

As the architecture is designed to allow platform independence, it is vital that it is tested on different

robot platforms. The first robot that was used for testing was a PeopleBot robot shown in Figure 1.

Figure 1 - PeopleBot robot

The PeopleBot is a relatively large wheel-based robot with a width of 47cm, length of 50cm and a

height of 124cm. The robot is supplied with a Canon VC-C4 Camera which is roughly 100cm above

floor level. The resolution of the camera is 460*350 and it can pan 100O to the left and right, and can

tilt 30O up and 90O down.

The second platform to be used is a Sony Aibo dog shown in Figure 2. The Sony Aibo is a four-legged

robot and is much smaller than the PeopleBot. It has a width of 152mm, a height of 281mm and length

of 250mm. The camera is a 100,000 pixel CMOS sensor positioned in the nose of the robot which

produces an image of a resolution of 172*143. As the camera is located in the nose it is pan/tilted by

movement of the robot’s head. It is capable of tilting 20O up, tilting 65O down, and panning 90O to the

left and right (these angles are approximate values). These different robots were chosen since they have

significantly different platforms. If the architecture is successful in controlling both robots, it will

provide some validation that the new architecture supports platform-independence.

Figure 2 - Sony Aibo robotic dog

Even though the two test platforms are completely different, the architecture makes use of the

similarities that are present. This is due to the availability of a pan/tilt camera in both robots. Both

robots will be at the landmark when the cameras have a 0 pan/tilt angle and the camera is pointing

downward with the landmark in the centre of the camera, as highlighted in Figure 3 (b) and (c). The

need for a coordinate transform mechanism has been avoided by the use of this principle and enables

the platform independence.

Figure 3 - Example of the camera alignments for the two test robots. (a) and (c) show the cameras of
the two robots pointing at a landmark to the front right of the robots. (b) and (d) show the cameras of
the two robots pointing at a landmark directly ahead and at the base of the robots.

Figure 3 (a) and (c) show the camera alignment of the PeopleBot and the Sony Aibo with a landmark

located to the front right. Figure 3 (b) and (d) show the camera alignments when the landmark is

located at the base of each of the robots. From Figure 3 it can be seen that the two robots have very

similar camera alignments in these situations, and it is this similarity that will support the platform-

independent control.

5 Modular Actor-Critic Architecture (MAC)

5.1 Introduction

Given the assumption of the landmark being lower than the camera on the robot, the relative location of

the landmark can be inferred. The pan of the camera can be used as the heading of the landmark from

the robot and the tilt angle can be used to infer the distance of the landmark from the robot. However,

with no constraint on the location of the landmark in the camera image, these inferred values would

vary in accuracy. If there was a constraint that the landmark needed to be in the centre of the camera

image, then the inferred values would be accurate. With these assumptions and constraints, this would

work with any robot with a pan/tilt camera.

Figure 4 provides an example of the camera position at two different stages in the process of

approaching the landmark. Figure 4 (a) shows the camera at a position indicating that the landmark is

to the front right of the robot. The robot control unit then needs to move the robot in such a way as to

position itself with the landmark at its base and results in the camera position shown in Figure 4 (b).

The goal of the robot control unit is to control the robot’s movement so that the camera control unit

tracks the landmark and produces the camera alignment shown in Figure 4 (b). With the camera

‘looking’ down, the landmark is at the base of the robot. The robot control unit needs to learn the effect

that the robot movement has on the relative position of the landmark and thus the movement of camera

alignment. This should be learned in such a way that the robot can move to manipulate the alignment of

the camera so that it is aligned as illustrated in figure 4 (b). In the example provided in Figure 4, the

robot would need to rotate to the right and move forward to produce the transition from Figure 4 (a) to

(b).

Figure 4 – Example of different camera alignments (a) position of the camera with the landmark
located to the front right of the robot and (b) position of the camera when the robot is at the landmark.

A control architecture can be designed and implemented to control robots with pan/tilt cameras and

navigation capabilities. The core of the architecture consists of two control networks; one to control the

pan and tilt of the camera and a second to control the motors which enable the robot to navigate. Two

networks will be used since using one network would require a high dimensional hidden layer to model

the state space and different input / output modalities. The input would be a combination of the location

of the landmark and the camera alignment. The output of the network would have to combine camera

and motor actions. We avoid this complexity with the modular design of the two networks. The visual

recognition of the landmark will be decoupled from the core control allowing flexibility of the

landmark to be approached. Figure 5 shows the proposed architecture.

Figure 5 - Overview of the MAC Architecture. The core components are the 2 control units, which
support platform independency. Only the landmark recognition may need altering slightly for each
platform.

In the testing scenario, there will initially be a direct line of sight from the robot to the landmark.

However, the landmark may not be in the visual field of the robot’s camera, requiring a search

mechanism to be present in the overall architecture. This unit is to move the camera and robot until the

landmark is present in the camera image. As this architecture is being developed to allow a more

platform-independent control system, the landmark detection unit will be kept simple; it is not in the

scope of this research to test advanced object recognition systems, but the portability of the proposed

architectures between robotic platforms. Hence the landmark will be a unique object in the

environment and will not be occluded by other objects.

Once the landmark is detected, control will be passed to the two control units to move the robot to the

required location. To allow the camera control unit to track the landmark as the robot moves, it will

Landmark
Recognition

Camera
Control

Navigation
Control

X Y

U

D

PL

PR

P

T

F

B

RL

RR

Key:
X = X coordinate of the landmark in the camera image
Y = Y coordinate of the landmark in the camera image
U = Tilts the camera upward
D = Tilts the camera downward
PL = Pans the camera left
PR = Pans the camera right
P = Pans angle of the camera
T = Tilts angle of the camera
F = Moves the robot forward
B = Moves the robot backward
RL = Rotates the robot left
RR = Rotates the robot right

need updating with the position of the landmark in the camera image. This will be achieved via the

landmark recognition unit shown in Figure 5. The function of this unit is to recognise the landmark in

the camera image and get the pixel values of the centre of the landmark to be passed to the camera

control unit. As the camera and robot move, this unit will be invoked to produce the new coordinates of

the landmark. With the landmark centred in the camera image, the following will occur as the robot

moves: (i) if the robot rotates to the left, the landmark will move to the right of the image, causing the

camera to pan to the right to track the landmark, (ii) if the robot rotates to the right, the landmark will

move to the left of the image, causing the camera to pan to the left to track the landmark, (iii) if the

robot moves forward, the landmark will move to the bottom of the image, causing the camera to tilt

down to track the landmark and (iv) if the robot moves backward, the landmark will move to the top of

the image, causing the camera to tilt up to track the landmark.

The two control units require coupling, which will allow them to work in unison. There are several

options available for the coupling of the units. Two possible couplings are (i) to have both control units

running concurrently, altering the alignment of the camera and the robots motors simultaneously. The

main drawback of this option results in the camera control unit not being fast enough to keep track of

the landmark, which could be lost from sight. This could be addressed during experimentation by

reducing the speed of the drive motors, allowing more time for the camera to realign to the new

position of the landmark; (ii) to only initiate the robot control unit once the landmark was within a

threshold distance from the centre of the camera image. However, this approach may lead to a ‘stop-

start’ system, with the robot moving slightly then stopping until the camera realigns itself with the

landmark. Therefore, for the remainder of the paper it is assumed that (i) will be used for the coupling

of the control units.

The two control units are trained using the actor critic reinforcement learning. Each network is partially

trained in a simulator to learn the general control required for the camera and robot movements. These

partially trained units can then be exported to the robotic platform to be controlled. As the units are

only partially trained, further training will be useful on the robot to optimise the specific control.

Having already learned the basic control for the landmark tracking and robot control in the simulator,

the time required for the training on the robot is greatly reduced. This training thus fine-tunes the

control units to work with the actual movements of the camera and robot.

Figure 6 illustrates the architecture for the camera control unit. There are two input units, one critic unit

and four output units. As cameras on different robots may have different resolutions, the two inputs

will be the normalised x y coordinates of the landmark in the image. As the landmark will cover many

pixels, the centre point of the landmark will be used as input to the camera control unit. The hidden

area will in effect cover the image, and the node that contains the centre point of the landmark will be

the node to produce the required camera action to move the landmark closer to the centre of the image.

The hidden area is covered by Gaussian functions to find the node that encodes the landmark position.

Here the coordinates are fed into the hidden layer and the node which produces the highest firing rate is

the node encoding the landmark position.

Figure 6 - Architecture used for the camera control unit from Figure 5

The output of the network is the direction to move the camera and is one of the following four actions;

(i) tilt upward, (ii) tilt downward, (iii) pan left, or (iv) pan right. Once the camera has been moved, the

new coordinates of the landmark are calculated and fed into the camera control unit, e.g. (11, 8). This

will be repeated until the landmark is positioned in the centre of the image. This unit can be tested by

moving the object through the camera image observing whether the camera is able to track the object.

Unlike the camera control unit, the robot control unit cannot work in isolation. This needs the camera

control unit to track the landmark, as the robot moves through the environment towards the landmark.

The architecture of the robot control unit is very similar to that of the camera and is shown in Figure 7.

High Level Vision
(Input)

Camera Action
(Output)

X Y

Set to 1

Initialised
to 0

Randomly
initialised

L RDU

State Space

Figure 7 - Architecture used for the navigation control unit from Figure 5

The architecture has two input nodes, one critic node and four output nodes. The hidden area encodes

the input to the network of the pan and tilt angles of the camera. The network produces the required

action to get the landmark to the base of the robot. The actions available are: (i) move forward, (ii)

move backward, (iii) rotate to the left, and (iv) rotate to the right. The move backward action may not

be required, this will only be required if the robot is too close to the landmark and needs to retreat. The

dimension of the hidden layer should be defined in such a way that the different pan/tilting capabilities

of different robots can be represented. These angles will be normalised to feed into the network to

produce the required motor action to move the robot towards the goal location.

5.2 Constraints placed on the control architecture

It is the aim of the control architecture to be easily transferable between robotic platforms. Requiring as

little re-coding as possible to port the architecture between the different robots, it is inevitable that there

need to be slight differences in the code controlling the different robots, as they both have their own

interface software to pass control commands to them. However, where possible, the code should be the

same to generate the actions to be performed by the robots to get them to approach the landmark. The

following list details the parts of the code that can differ between robots with explanations as to why

these sections of code can change between robots:

• In the image processing, the colour of the predefined landmark may have a different colour

value from the different cameras on the robots. The values for the colour threshold to segment

the landmark from the rest of the image will be fine-tuned for the different cameras on the

robots. However, the actual image processing used to segment the landmark from the image

will be identical. The colour threshold values can be passed to the image processing on

instantiation of the image processing class, allowing it to be passed as a variable at creation

time. This means that the code performing the threshold will be kept constant between the

different robots.

Pan Tilt of Camera
(Input)

Robot Action
(Output)

P T

Set to 1

Initialised
to 0

Randomly
initialised

L RBF

State Space

• The interface software for the two robots is different so both robots will have their own

implementation of the main function, to allow the control architecture to interface with and

control the different robots. The main function will initiate the link to the robot and include

the control interface (Aria for the PeopleBot and URBI for the Aibo) allowing the control

commands to be sent to the robots. The main function will also contain the instantiation of the

control architecture and the image processing. As such, the main function acts as an interface

between the control architecture and the robot.

Apart from the two points listed above, the rest of the code for the control architecture should be

identical.

The developed system to be transferred between the two robotic platforms is tested in such a way so

that they can not only be evaluated against each other but they should also be evaluated against the

system developed in the exploratory experiments. This system was designed with a specific robot to

complete the landmark approaching task. This evaluation will be able to show if the platform-

independent system can perform as well as a control system which was designed for a specific robot.

All of the robots should be tested to check that they can complete the landmark approaching task

successfully from a range of starting conditions, which should be kept consistent between the robots to

enable direct comparisons of results. The closeness of the robot to the landmark, once the test has

finished, can be recorded as a measure of success. As well as testing the complete system on the robots,

the networks themselves which generate actions for the robot are tested and analysed in the simulated

environment used for training. Also using the simulated environment will allow a more detailed

analysis of the trained networks.

5.3 Training of the control networks

The Actor-Critic learning algorithm implemented for our architecture is based on the approach by

Foster et al. [30]. Table 1 illustrates the learning routine of the Actor-Critic reinforcement learning

algorithm.










 −
−=

2

2

2
exp)(


i

i

sp
pf

Table 1 – The Actor-Critic reinforcement learning algorithm

Figure 8 illustrates how Equations 1 to 7 fit together in an overall network structure, based on Foster

and Dayan’s work [30]. The figure shows the activations of all the cells from the hidden layer units, the

critic and the actor units. It also shows the equations used to update the weights between the hidden

layer and the actor units and the hidden layer and the critic. The probability function is shown, which is

used in conjunction with a random number to generate the action taken by the agent. Finally the

equation to calculate the error of the produced action is included.

Figure 8 – Equations used by the Actor-Critic Reinforcement learning algorithm

Equation 1 describes the firing rate of the hidden units. The firing rate is defined as

Equation 1

() ()∑=
i

ijij pfzpa

()














 −
−=

2

2

2
exp


i

i

sp
pf

()titi pfw ∝∆

() ()∑=
i

ii pfwpC

() ()tgpfz jtitji ∝∆

()
()∑

=

k
k

j
j a

a
P

2exp

2exp

() ()()tttt pCpCR −+= +1

Critic

Input Actor

State Space

• Pass inputs to network, activating the State Space
• Find the State Space unit with the highest activation
• Calculate the Activation for the Critic and the Actor units
• Generate a random number between 0 and 1
• Check the activation of the first actor units

o While the Activation is less than the random number produced
 Add the activation of the next Actor unit to the sum of all Activations

checked
o The Actor units that caused the sum of all Activations to pass the threshold of the

random number is the action to be taken
• Perform the chosen action and calculate the Activation of the Critic unit
• Calculate the update value given the two Critic values
• Update the Critic weights by adding the update value to the Critic weight connecting the

Original State Space unit to the Critic
• Update the weight of the Actor unit which generated the Action taken by adding the

update value to the current weight
• Repeat from the start until the goal state is achieved

() ()pfwpC
i

ii∑=

() ()tttt pCpCR −+= +1

()titi pfw ∝∆

where p is the perceived position of the target, i is the index of the hidden unit, si is the centre point of

neuron i and σ is the standard deviation of the Gaussian. The firing rate C of the Critic is calculated

using Equation 2 and has only one output neuron as shown in Figure 3. The firing rate of the critic is

thus a weighted sum of all the firing rates of the place cells, where wi is the weight connecting the critic

to the hidden unit at i as shown in Figure 3.

Equation 2

To enable training of the weights of the critic some method is needed to calculate the variation in

rewards generated by the possible moves to be made by the agent. This is made possible by Equation 3,

based on the derivation of this equation in (Foster and Dayan 200). Rt in Equation 3 is the reward given

when the agent has reached the goal state. At all times this value is zero except when the agent has

reached the goal. Here, Rt equals one as the reward is given when the goal has been achieved. C(p) is

the firing rate of the critic before a move was made and C(pt+1) is the firing rate of the critic after the

move has been made. γ is the constant discounting factor and relates to the learning rate in traditional

training of neural networks.

Equation 3

However, as Rt only equals one when the agent is at the goal location and C(pt+1) is zero when this

occurs and Rt equals zero when C(pt+1) is one, they are never included in the calculation at the same

time. As previously stated Rt only equals one when the agent has achieved the goal at this point. C(pt+1)

equals zero as the agent is at the goal and no more moves are made. With the predicted change in

reward, the weights of the critic are updated proportionally to the product of the firing rate of the active

place cell and the change in reward. Hence, the critic stores the discounted reward of the network

moving away from the goal (Equation 4).

Equation 4

This concludes the equations that were used for the hidden units and the critic. Finally there are the

equations used for the actor. The actor encodes the action to be taken by the agent and the number of

cells in the actor corresponds to the number of actions that can be taken by the agent. The activation of

these neurons is achieved by taking the weighted sum of the activations of the surrounding place cell to

the current location as illustrated in Equation 5 where aj(p) is the activation of the actor unit at index j

connected to the hidden unit at index i and zji is the weight connecting the hidden unit and the actor

unit.

()
()∑

=

k
k

j
j a

a
P

2exp

2exp

() ()tgpfz jtitji ∝∆

() ()∑=
i

ijij pfzpa Equation 5

A probability is used to judge the direction that the robot should move in, which is illustrated in

Equation 6. Here the probability that the agent will move in one direction is equal to the firing rate of

that actor neuron divided by the sum of the firing rate of all the actor neurons. To enable random

exploration when the system is training, a random number is generated between 0 and 1. Then the

probability of each neuron is incrementally summed; when the result crosses the generated value that

action is executed. As the system is trained the likelihood that the action chosen is not the trained

action decreases as the probability of the trained action being taken approaches 1. Pj is the probability

that action j will be taken, aj is the activation of that action, ak is the activation of action k occurring

with k ranging from 1 to the total number of actions possible.

Equation 6

The actor weights are trained using Equation 7 in a modified form of Hebbian learning where the

weight is updated if the action is chosen and not updated if the action is not performed. This is

achieved by setting gj(t) to 1 if the action is chosen or to 0 if the action is not performed. With this form

of training both the actor and the critics weights can be bootstrapped and trained together.

Equation 7

5.4 Simulated environment for the two control networks

The network was designed to learn the effects that moving the camera up, down, left and right has on

the position of the landmark in its image. The simulator was an abstraction of this and gave the general

coupling between actions of the robotic camera moving and effects on the location of the landmark

within the camera image. The network learned the general strategy required to get the landmark to the

centre of its image from any starting location.

Figure 9 illustrates the simplified effects that the different moves of the camera had on the location of

the landmark in the image and these are as follows:

• Tilting the camera up moved the landmark down in the image.

• Tilting the camera down moved the landmark up in the image.

• Panning the camera left moved the landmark right in the image.

• Panning the camera right moved the landmark left in the image.

These can be simply modelled in the simulator by keeping track of the location of the landmark in the

image. Here the location was encoded as the x and y coordinate of the hidden node that encoded the

position of the landmark in the image i.e. the node with the highest activation. Assuming that moving

the camera moves the landmark one node in the network, the following would occur for each action:

• Tilting the camera up added one to the y coordinate of the landmark.

• Tilting the camera down subtracted one from the y coordinate of the landmark.

• Panning the camera left added one to the x coordinate of the landmark.

• Panning the camera right subtracted one from the x coordinate of the landmark.

Figure 9 - Simplified effects of camera movement on the location of the landmark in the image. The
red square represents the landmark

The origin of the network is in the top left corner of the hidden layer, as the origin of the images are in

the top left corner. These effects have been simplified from what actually happened during movement

of the real cameras, but was adequate to get the general strategy for moving the landmark to the goal

location.

The location of the landmark in the image was normalised to the size of the network so it may take

several moves of the real camera to get the position of the landmark in the camera image to move to the

next node in the network. For example, with an image size of 640*480 and a network size of 16*12,

each node covers a region of the image 40*40 pixels in size. If the movement of the camera at each

step moves the landmark roughly 10 pixels, it could take up to 4 steps to get the landmark to the next

node in the network. This is another reason which makes it more appropriate for performing the initial

training in the simulated environment, as it would only take one step to move from one node to the

next. Once the general control is learnt by the network in the simulator; the fact that it may have to

make the same move several times to move from one node to the next is less critical than during the

initial training.

Pan Left Pan Right

Tilt Down

Tilt Up

During the training of the network, the actions will be randomly chosen to allow exploration of the

state space. As the training progresses, the actions chosen are expected to become more structured and

the randomness of the exploration should decrease, as the agent is more likely to exploit paths with

higher rewards, which would not initially be present. This should lead to a decrease in the number of

steps required to achieve the goal. The goal set for the camera control network is to move the camera in

the correct way to get the landmark to the centre of the image.

The random exploration is achieved using the probability Equation 6 and the use of a random number

between zero and one. As training progresses, the probability at each node that the appropriate action

will be chosen increases and the movement of the camera should stop being random, and become more

structured. During training, there is the possibility that an action is taken, resulting in the landmark

moving out of view of the camera. This would occur if the landmark is perceived on the edge of the

image and the action taken makes it move out of the view: i.e. if the detected landmark is on the far

right edge of the network, the action to move the camera left would result in the landmark moving out

of range. It was decided that if the action chosen lost the landmark from view, that action would not be

taken and the weight of that action would be decreased by 0.1. This should suppress actions that would

make the landmark go out of view. The network was trained using a simulator implemented in C++

using rules to encode the outcome of the movement of the robotic camera, as illustrated in Figure 9.

The aim of the motor control network was to enable the agent move towards the landmark given the

pan and tilt angle of the camera. The goal of the network was to produce a sequence of actions on the

agent to move towards the landmark from the starting location. The four actions were:

• Move the agent forward

• Move the agent backward

• Rotating the agent left

• Rotating the agent right

At each time step all that was considered was current alignment of the camera. From the alignment of

the camera, an action was produced to move the agent toward the landmark. The training was

performed in a simulator. The effects of movement of the agent, with different relative locations of the

landmark were analysed. This allowed a simulator to be implemented for training. The results of the

analysis are as shown in Figure 10.

Figure 10 – Diagram to show the effects on the orientation of the robotic camera as the robot moves in
a forward direction relatively to the landmark. It can be seen that if the landmark is to the left of the
robot, moving forward causes the camera to pan to the right. If the landmark is to the right, moving the
robot forward causes the camera to pan to the left. Finally if the landmark is straight ahead the pan
angle doe not change.

The diagram highlights the effect of moving the robot forward and backward on the pan orientation of

the camera. It shows two different locations of the agent with landmarks to the left, right and straight

ahead. The pan alignments of the camera at the different locations are also shown. From the diagram

the following can be observed:

• With the landmark to the left, when the robot moved forward the camera needs to pan left to

keep track of the landmark. The reverse is true when the robot moved backward.

• With the landmark to the right, the camera needs to pan right when the agent moved forward

and left when the robot moved backward.

• From the above two points it can be induced that if the robot rotated to the left, the camera

pans to the right and if the robot rotated to the right the camera pans to the left.

• Finally with the landmark directly ahead, the pan orientation of the camera did not alter as the

robot moved forward and backward. However, the tilt orientation altered as the robot moved

forward and backward, as shown in Figure 11.

Landmark to the left
of the agent

Landmark to the
right of the agent

Landmark ahead of
the agent

Alignment of the
camera

Agent

Figure 11 – Diagram showing the effects on the pan angle when moving the robot forward.

From Figure 11, it can be seen that as the agent moved forward the camera tilted down to keep track of

the landmark. The camera tilted up to keep track of the landmark when the agent moved backward. The

rules that were incorporated into the simulator for learning of the movement control were:

Table 2 – Rules incorporated into the simulator for the training of the navigation control network

Relative location of the landmark
Left Ahead Right

A
ct

io
n

Forward Pan Left Tilt Down Pan Right
Backward Pan Right Tilt Up Pan Left
Left Pan Right Pan Right Pan Right
Right Pan Left Pan Left Pan Left

The rules were modelled in the simulator, to keep track of the orientation of the camera. Here, the

orientation was recorded as the pan and tilt angle of the robotic camera, which had the landmark in the

centre of its image. Movements of the robot changed the position of the landmark in the image, causing

the camera to track the landmark.

6 Testing of the MAC Architecture

This section discusses the results collected during the testing of the camera control networks in the

simulator. The hidden area sizes that were trained to perform the control task of tracking the landmark

are:

• 5x5

• 9x7

• 10x10

• 17x13

• 20x20

• 33x25

Landmark ahead of
the agent

Alignment of the
camera

Agent

Each network was trained with the following Gamma values: (i) 0.6, (ii) 0.7, and (iii) 0.9. These values

were chosen after initial empirical experiments, where we found that 0.5 was too low a gamma value

and 0.99 was too high a value. Each network was trained with each of the gamma values 5 times,

making a total of 90 trained networks. The summarised results are discussed below. Table 3 displays

the best one performing of each of the different network size and gamma combinations, with Figure 12

displaying the results graphically.

Table 3 Test results of the Camera Control Network in the simulated environment

Camera Network
Net
Size 5x5 9x7 10x10 17x13 20x20 33x25

Error 0.0769 0.0938 0.18 0.0991 0.125 0.0779

Errors from the testing of the best performing Cameral Control
networks

0

0.05

0.1

0.15

0.2

5x5 9x7 10x10 17x13 20x20 33x25

Network size

E
rr

or

Figure 12 – Test results of the Camera Control Networks in the simulated environment

It can be seen in Figure 12 that all networks had a similar performance level, with all errors being

within 0.1 of each other. The best performing networks were used in testing the two different robotic

platforms. The simulated environment was used to evaluate if the network could achieve the goal in the

smallest number of moves. The testing on the two test platforms was conducted to evaluate how well

the camera control networks performed the task of aligning the camera to the landmark. The

performance measure for this testing was the number of pixels from the centre of the landmark, to the

centre of the image.

6.1 Tests conducted on the motor control module of the MAC architecture using the simulator

This section displays and discusses the results gained from testing the navigation control network. The

errors from the best performing networks are displayed in Table 4 and Figure 13.

Table 4 – Test results of the Motor Control Network in the Simulated Environment

Motor Network
Net
Size 5x5 9x7 11x11 17x13 21x21 33x25

Error 0.1538 0.1875 0.1639 0.1892 0.19 0.0799

It can be seen in Table 4 and Figure 13 that all networks trained in the simulated environment

successfully learned to perform the navigation task. All networks produced performance levels within

0.12 of the other networks. During the testing of these networks in the simulated environment, no

network produced results worse than making one wrong move for every five test samples presented.

As with the camera control network, it was expected that larger networks would perform the task more

accurately. With the higher resolution of the state space, the larger networks can encode the state of the

environment more accurately, allowing the larger networks to perform the task with a higher degree of

precision.

Errors from the testing of the best performing Motor Control
networks

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

5x5 9x7 11x11 17x13 21x21 33x25

Network size

E
rr

or

Figure 13 - Test results of the Motor Control Network in the Simulated Environment

The testing of both units of the MAC architecture has shown they were both able to complete the task

they were trained to perform. Not only could they perform the relevant task, they performed it without

making many wrong moves, all accomplishing the task in the simulated environment making less than

one wrong move for every 5 samples. Hence, for over 80% of the samples presented, the networks

were able to complete the task without taking a single wrong action. This was a high level of accuracy,

considering one sample for a 33 by 25 network could require up to 26 actions to achieve the goal.

However, the networks were able to accurately perform the navigation task of approaching the

landmark. The following sections discuss the testing carried out on these networks for the two robotic

test platforms.

6.2 Tests conducted on the camera control module of the MAC architecture using the two test
platforms

This section presents the results gathered from the isolated testing of the camera control networks on

the two different robotic platforms. Here, the landmark was placed in one of nine starting locations,

shown in Table 5. However, due to the constraint of the landmark always being in sight, the camera

was initially aligned with the landmark in view. The robot was required to align the camera with the

landmark appearing in the centre of the image. There were two performance measures recorded during

the testing, (i) the robot aligned the camera with the landmark in the centre of the encoded state-space

within 60 second. If this was not achieved the trial counted as failed. (ii) The second performance

measure recorded was the distance in pixels from the centre of the landmark to the centre of the image.

Table 5 - Experiments conducted on the camera control unit with the two test platforms

Experiment No. Orientation (Degrees) Expected Result
1 -120 Cannot centre landmark
2 -90 Centre Landmark
3 -45 Centre Landmark
4 0 Centre Landmark
5 45 Centre Landmark
6 90 Centre Landmark
7 120 Cannot centre landmark

Both test platforms had a maximum pan range which was less than 120˚. The limit in pan range was

why it was predicted that experiments 1 and 7 will fail. It was predicted that every other experiment

would successfully align the camera with the landmark. The different size networks had different levels

of accuracy with aligning the camera with the landmark. It was this accuracy that was investigated in

these experiments.

6.3 Results from the testing of the camera control network on the PeopleBot

Tables 6 and 7 provide examples of the results recorded for each experiment. Table 6 show the results

gathered during the testing of the five by five networks, with Table 7 showing the results recorded for

the testing of the 20 by 20 network.

Table 6 – Test results from the experiments on the five by five networks on the PeopleBot. Suc denotes
the success of the trial – Y if the landmark was aligned to the centre of the network, otherwise it was
recorded as N and Dist denotes the distance of the centre pixel of the landmark to the centre pixel of
the camera image

1 2 3 4 5

Landmark Suc Dist Suc Dist Suc Dist Suc Dist Suc Dist Avg
-120 N 49 N 45 N 50 N 46 N 47 47.4
-90 Y 29 Y 32 Y 31 Y 31 Y 35 31.6
-45 Y 27 Y 32 Y 32 Y 33 Y 31 31
0 Y 24 Y 33 Y 31 Y 21 Y 33 28.4
45 Y 31 Y 33 Y 26 Y 36 Y 31 31.4
90 Y 21 Y 26 Y 24 Y 36 Y 33 28

120 N 47 N 44 N 48 N 47 N 52 47.6

Average error from all trials 35.0571

Average error from successful trials 30.08

From Tables 6 and 7 for each trial the distance between the centre of the landmark and the centre of the

image was recorded. As expected all trials where the landmark was placed at plus or minus 120˚ were

unsuccessful as the cameras mounted on the PeopleBot did not have the pan range to allow the camera

to align fully with the landmark. This was the same for all six network sizes.

All networks successfully aligned the camera with the landmark when the landmark was within the pan

range of the robotic camera. As expected each network was able to perform the task with varying

degrees of accuracy. Tables 6 and 7 show the results of all trials performed on the five by five and

twenty by twenty networks, where it can be seen that the twenty by twenty network performed with a

higher degree of accuracy than the five by five network. This was due to the higher resolution in

encoding the state-space with the larger network. Table 8 show the summarised results from all

experiments performed on the PeopleBot. These results are then presented graphically in Figure 14.

Table 7 – Test results from the experiments on the twenty by twenty network on the PeopleBot. Suc
denotes the success of the trial – Y if the landmark was aligned to the centre of the network, otherwise
it was recorded as N and Dist denotes the distance of the centre pixel of the landmark to the centre
pixel of the camera image

1 2 3 4 5

Landmark Suc Dist Suc Dist Suc Dist Suc Dist Suc Dist Avg
-120 N 40 N 43 N 40 N 50 N 45 43.6
-90 Y 9 Y 13 Y 12 Y 12 Y 8 10.8
-45 Y 3 Y 4 Y 5 Y 4 Y 7 4.6
0 Y 3 Y 8 Y 7 Y 5 Y 6 5.8
45 Y 3 Y 6 Y 5 Y 4 Y 7 5
90 Y 6 Y 8 Y 7 Y 5 Y 5 6.2

120 N 50 N 46 N 55 N 47 N 49 49.4

Average error from all trials 17.9143

Average error from successful trials 6.48

The Dist row displays the average error of all tests conducted, both successful and unsuccessful. The

next row, labelled “S. Error” displays the average error of all the successful tests, leaving out all of the

results from the unsuccessful trials, where the landmark was originally outside the pan range of the

camera. The only tests that proved unsuccessful were the ones with the landmark at an angle of 120˚

from the robots, past the max pan capability of the robots. The errors from these tests were the number

of pixels between the centre of the landmark and the centre of the image.

Table 8 – Summarised test results of the Camera Control Network on the PeopleBot

Camera Network

Net Size 5x5 9x7 10x10 17x13 20x20 33x25
Error 35.1 23.7 29.3 23.8 17.9 22.4

S. Error 30.1 16.6 19.2 16 6.5 14

Figure 14 - Test results of the Camera Control Network on the PeopleBot

From the results presented in Figure 14 we see the improvement in performance as the network size

increases. The improvement can be seen for the two different networks, with the improvement

increasing at a greater rate for the square networks. The twenty by twenty network was the best

performing of all networks with an average error of only 6.5 pixels. These results demonstrate that the

camera control unit of the MAC architecture has been successful in aligning the PeopleBot camera with

the landmark.

0

5

10

15

20

25

30

35

40

5x5 9x7 10x10 17x13 20x20 33x25

Network Size

Average Error (pixels)

All Trials

Successful Trials

Average Error of the Testing of the Camera
Control Networks on the PeopleBot

6.4 Results from the testing of the camera control network on the Sony Aibo

This section presents the results from the testing of camera control networks on the Sony Aibo. If the

networks were successful in the task of aligning the robotic camera with the landmark, the fist module

of the MAC architecture is successful in controlling two different robotic architectures to perform the

same task. However, the success of the full MAC architecture is not verified until both control modules

are tested in unison.

Table 9 – Test results from the experiments on the five by five network on the Sony Aibo. Suc denotes
the success of the trial – Y if the landmark was aligned to the centre of the network, otherwise it was
recorded as N and Dist denotes the distance of the centre pixel of the landmark to the centre pixel of
the camera image

1 2 3 4 5

Landmark Suc Dist Suc Dist Suc Dist Suc Dist Suc Dist Avg
-120 N 46 N 45 N 50 N 46 N 47 46.8
-90 Y 29 Y 32 Y 31 Y 31 Y 35 31.6
-45 Y 27 Y 32 Y 32 Y 33 Y 31 31
0 Y 24 Y 33 Y 31 Y 21 Y 33 28.4
45 Y 31 Y 33 Y 26 Y 36 Y 31 31.4
90 Y 21 Y 26 Y 24 Y 27 Y 33 26.2

120 N 47 N 44 N 48 N 47 N 51 47.4

Average error from all trials 48.56

Average error from successful trials 29.72

Tables 9 and 10 show the performance of the testing of the five by five and twenty by twenty camera

control networks on the Sony Aibo. The performance of the networks were very similar to the results

presented in Tables 6 and 7 of the testing of the networks on the PeopleBot.

Table 10 – Test results from the experiments on the twenty by twenty network on the Sony Aibo. Suc
denotes the success of the trial – Y if the landmark was aligned to the centre of the network, otherwise
it was recorded as N and Dist denotes the distance of the centre pixel of the landmark to the centre
pixel of the camera image

1 2 3 4 5

Landmark Suc Dist Suc Dist Suc Dist Suc Dist Suc Dist Avg
-120 N 40 N 43 N 40 N 50 N 45 43.6
-90 Y 9 Y 13 Y 12 Y 12 Y 8 10.8
-45 Y 3 Y 4 Y 5 Y 4 Y 7 4.6
0 Y 3 Y 8 Y 7 Y 5 Y 6 5.8
45 Y 3 Y 6 Y 5 Y 4 Y 7 5
90 Y 6 Y 8 Y 7 Y 5 Y 5 6.2

120 N 50 N 46 N 55 N 47 N 49 49.4

Average error from all trials 25.08

Average error from successful trials 6.48

The summarised results from the testing of the camera control networks are presented in Table 11 and

graphically in Figure 15.

Table 11 - Test results of the Camera Control Network on the Aibo

Camera Network

Net Size 5x5 9x7 10x10 17x13 20x20 33x25
Error 48.6 33.1 41.5 33.4 25.1 31.8

S. Error 29.7 16.6 19.2 16 6.5 14.5

Figure 15 - Test results of the Camera Control Network on the Aibo

The results gathered on the robots using the camera control network are different from some of the

results gathered in the simulated environment. The testing performed on the robots was conducted to

test the reliability of the networks to complete the tasks, while the testing in the simulated environment

tested how quickly the network could perform the task. The best performing network was the 20x20

network, aligning the camera most accurately with the landmark. The results gained from the testing of

networks on the Aibo and the PeopleBot were almost identical. This proved the camera control module

was capable of controlling both robots to perform the same task.

6.5 Tests Conducted on the full MAC architecture

This section presents the summarised results gathered from testing the different combinations of

networks on the different robots. Table 12 show the tests that were conducted on the two test platforms.

Average Error of the Testing of the Camera Control

Networks on the Aibo

0

10

20

30

40

50

60

5x5 9x7 10x10 17x13 20x20 33x25

Network Size

Average Error (pixels)

All Trials

Successful Trials

Table 12 - Test to be conducted with the two test platforms

Experiment No. Orientation (Degrees) Expected Result

1 -90
Rotate Left and Approach

Landmark

2 -45
Rotate Left and Approach

Landmark
3 0 Approach Landmark

4 45
Rotate Right and Approach

Landmark

5 90
Rotate Right and Approach

Landmark

The performance measures presented in this section for both robots was the distance in centimetres

from the front of the robot to the landmark once the MAC architecture ran to completion. The error

presented was the average error from all tests performed for the combination of camera and navigation

control networks. Table 13 and Figure 16 presents the summarised results gathered on the PeopleBot

with Table 14 and Figure 17 presenting the same data gathered on the Aibo. Here the results from all

tests were averaged to get the performance measure.

Table 13 - Test results of the MAC architecture on the PeopleBot

Camera Network
Net
Size 5x5 9x7 10x10 17x13 20x20 33x25

M
ot

or
 N

et
w

or
k 5x5 30.4 33.8 33.6 34.08 33.88 35

9x7 2.64 2.76 2.72 2.52 3.04 2.36
11x11 1.8 0.76 1.12 0.96 1.12 1.04
17x13 0.08 0.08 0.08 0.04 0.08 0.04
21x21 0 0 0 0 0 0

33x25 0 0 0 0 0 0

Figure 16 - Test results of the MAC architecture on the PeopleBot

The effect of the different combinations of control networks on the PeopleBot was apparent in Figure

16. Here it can be seen that the navigation control network had the greatest influence on the

performance of the robot completing the landmark approaching task. The performance of the MAC

architecture was not influenced significantly by the size of the camera control network. There were

only the tests conducted using the 5x5 motor control network which did not perform well, once the

larger networks were tested the performance of the MAC architecture greatly improved. The larger two

navigation control network sizes produced very good performance, allowing the robot to precisely

approach the landmark. The camera control network did not have a great influence on the overall

performance, since its task was to track the landmark by keeping it roughly in the centre of the image,

allowing the Motor Control network to use the pan tilt angles of the camera to deduce the relative

position of the landmark.

Table 14 - Test results of the MAC architecture on the Aibo

Camera Network
Net
Size 5x5 9x7 10x10 17x13 20x20 33x25

M
ot

or
 N

et
w

or
k 5x5 15.48 14.68 13.56 14.36 13.28 15.04

9x7 10.52 10.48 10.08 10.4 10.64 10.44
11x11 10.72 10.36 10.68 10.12 10.52 10.52
17x13 8.16 8.16 8.16 8.16 7.92 8.08
21x21 10.08 10.16 10.16 9.88 10.16 9.96

33x25 8.28 8.04 8 8.32 8.08 8.56

Figure 17 - Test results of the MAC architecture on the Aibo

The testing of the MAC architecture on the Aibo can be seen graphically in Figure 17. Again the size

of the camera control network did not have a significant influence on the performance. This was for the

same reasons given for the testing on the PeopleBot. The performance of the overall system did

generally improve as the size of the navigation control network increased. The exception was a slight

drop in performance with the 21x21 navigation control network. The overall performance of the MAC

architecture was not as high on the Aibo. However, the MAC architecture proved it could still control

the Aibo to move within an acceptable proximity of the landmark. The tests conducted on the

PeopleBot saw all combinations of the testing with navigation control networks larger than the five by

five producing results where the PeopleBot moved to within 5cm of the landmark. This compares with

the performance of Aibo, where all networks larger than five by five enabled the Aibo to approach the

landmark to within 11cm.

The drop in performance on the Aibo was due to its movement, which was not as smooth while

walking to the landmark. This walking motion caused a much less stable platform for the camera and

navigation control networks. However, it has been demonstrated throughout these experiments that the

MAC architecture can successfully control completely different robot architectures to perform the same

task. The only code that needed altering was the low level interface of the control architecture with the

two different robots.

7 Discussion and Conclusions

Overall, the aim of the paper was to develop a control architecture based on the Actor-Critic learning

algorithm, to control a PeopleBot and a Sony Aibo in the navigation task of landmark approaching.

The development of the MAC architecture is related to and inspired by the research on Hierarchical

reinforcement learning [20, 23, 24, 25, 31]. With hierarchical reinforcement learning the problem to be

learned is split into smaller tasks and the different units learning the smaller tasks are arranged in

hierarchical architectures with low level control tasks being lower in the hierarchy than the higher-level

decision making tasks.

The architecture developed in this paper is a modular architecture. Here the task of the landmark

approaching scenario is split into its two fundamental task, (i) landmark tracking and (ii) navigation

(landmark approaching). These two control units are independent of each other, with no direct coupling

between the two, however they are dynamically coupled as the output of one has an effect on the

environment and subsequently the other control unit.

The performance varied dependent on the network setup. The best performing networks from the

simulated environment, which highlighted that they were the ‘fastest’ networks to conduct the task they

were trained for, were tested on the two robotic test platforms. During the training the networks were

tested, and the number of steps needed to perform the task was recorded as the performance measure.

The testing of the developed MAC architecture on the two different test platforms provided

encouraging results, which highlighted the possibilities towards more platform-independent robot

control, where a single architecture can take advantage of similarities between different robotic

platforms, to be able to control them for the same task. These tests also highlighted the effectiveness of

the Actor-Critic learning algorithm which was successful in training the two different modules in the

MAC architecture to control the test platforms.

Our paper has explored the possibilities of developing systems to bridge robotic platforms. It was the

aim of this paper to demonstrate that a central control system could be developed, taking into account

similarities between different robotic platforms, to perform a set task. The task in this paper was the

learning of a landmark approaching task and the testing on the MAC architecture has shown that

control systems can be designed and learned to perform on multiple robotic platforms. By considering

the similarities in the two different platforms a generalised control system was developed, which

successfully controlled the two robots in performing the same task.

The results have shown the possibilities towards more platform-independent control systems, allowing

newly developed robots the possibility of having inbuilt control algorithms, which do not have to be

designed specifically for only one robot. The use of such control systems have the potential to speed up

the development of new robotic platforms, by removing the need for developing a new control system

for the robot.

Acknowledgements

Early stages of this project were supported partially by the MirrorBot project and NestCom projects
coordinated by Prof. Wermter. Thanks go to Kim Forster for her constant support and encouragement,
Dr. Kevin Burn for discussions and Chris Rowan who assisted in the setup of the robots and
experiments.

References

1. Busquets, D., Mantaras, R.L., Sierra, C., & Ditterich, T.G. Reinforcement Learning for
Landmark-Based Robot Navigation, In Proceedings of The International Conference on
Autonomous Agents and Multiagent Systems, 2002

2. Hafner, R. & Riedmiller, M. Reinforcement Learning on an Omni-Directional Mobile Robot,
IEEE/RSJ International Conference on Intelligent Robots and Systems for Human Security,
Health, and Prosperity, 2003

3. Kondo, T. & Ito, K. A Reinforcement Learning with Evolutionary State Recruitment Strategy
for Autonomous Mobile Robot Control. Robotics and Autonomous Systems, Vol.46 pp.11-
124, 2004

4. Lee, I.S.K. & Lau, H.Y.K. Adaptive State Space Partitioning for Reinforcement Learning,
Engineering Applications of Artificial Intelligence Vol.17 pp.577–588, 2004

5. Weber, C., Muse, D., Elshaw, M., & Wermter, S. A Camera-Direction Dependent Visual-
Motor Coordinate Transformation for a Visually Guided Neural Robot, Applications and
Innovations in Intelligent Systems XIII - International Conference on Innovative Techniques
and Applications of Artificial Intelligence, pp.151-164, 2005

6. Weber, C., Muse, D., & Wermter, S. Robot Docking Based on Omni-Directional Vision and
Reinforcement Learning, Research and Development in Intelligent Systems XXII -
International Conference on Innovative Techniques and Applications of Artificial Intelligence,
pp.23-36, 2005

7. Wermter S., Palm G., Elshaw M. Biomimetic Neural Learning for Intelligent Robots,
Springer, 2005

8. Wermter, S., Page, M., Knowles, M., Gallese, V., Pulvermüller, F., Taylor, J. Multimodal
communication in animals, humans and robots: An introduction to perspectives in brain-
inspired informatics. Neural Networks 22, pp. 111-115, 2009

9. Filliat, D. & Meyer, J.A. Map-Based Navigation in Mobile Robots. I. A Review of Localization
Strategies, Journal of Cognitive Systems Research, Vol.4 No.4 pp.243-282, 2003

10. Filliat, D. & Meyer, J.A. Map-Based Navigation in Mobile Robots. II. A Review of Map-
Learning and Path-Planning Strategies, J. of Cognitive Systems Research, Vol.4 No.4
pp.283-317, 2003

11. Sutton, R.S. & Barto, A.G. Reinforcement learning an introduction, MIT Press, 1998

12. Wörgötter, F. Actor-Critic Models of Animal Control – A Critique of Reinforcement Learning.
In: Proceeding of Fourth International ICSC Symposium on Engineering of Intelligent
Systems, 2004

13. Sierra, C., Mantaras, R.L., & Busquets, D. Multiagent Bidding Bechanisms for Robot
Qualitative Navigation, Lecture Notes in Computer Science, Vol.1986 pp.198-205, 2002

14. Gaskett, C., Fletcher, L., & Zelinsky, A. Reinforcement Learning for Visual Servoing of a
Mobile Robot, In Proceedings of the Australian Conference on Robotics and Automation,
2000

http://www.his.sunderland.ac.uk/newbook/mirrorbook.html

15. Bellman, R. Adaptive Control Process: A Guided Tour, Princeton University Press, 1961

16. Lighthill, J. Artificial Intelligence: A General Survey" in Artificial Intelligence: a paper
symposium, Science Research Council 1973

17. Weber, C., Wermter, S., & Zochios, A. Robot Docking with Neural Vision and Reinforcement,
Knowledge Based Systems, Vol.12 No.2-4 pp.165-72, 2004

18. Kaelbling, L.P., Littman, M.L., & Moore, A.W. Reinforcement Learning: A Survey, Journal of
Artificial Intelligence Research Vol.4 pp.237-285, 1996

19. Pavlov, I.P. Conditioned Reflexes: An Investigation of the Physiological Activity of the
Cerebral Cortex, 1927

20. Barto, A.G. & Mahadevan, S. Recent Advances in Hierarchical Reinforcement Learning,
Discrete Event Dynamcal Systems: Theory and Applications, Vol.13 pp.341–379, 2003

21. Stringer, S.M., Rolls, E.T., & Taylor P. Learning Movement Sequences with a Delayed
Reward Signal in a Hierarchical Model of Motor Function, Neural Networks, Vol.20 pp.172–
181, 2007

22. Tham, C.K. Reinforcement Learning of Multiple Tasks using a Hierarchical CMAC
Architecture, Robotics and Autonomous Systems, Vol.15 pp.247-274, 1995

23. Morimoto, J. & Doya, K. Acquisition of Stand-Up Behaviour by a Real Robot using
Hierarchical Reinforcement Learning, Robotics and Autonomous System, Vol.36 Issue.1
pp.37-51, 2001

24. Singh, S., Barto, A., & Chentanez, N. Intrinsically Motivated Reinforcement Learning. In:
Proceedings of Neural Image Processing Systems Foundation, 2005

25. G.D. Konidaris and A.G. Barto. Autonomous Shaping: Knowledge Transfer in Reinforcement
Learning. In Proceedings of the Twenty Third International Conference on Machine Learning,
pp.489-496, 2006

26. Smart, W.D. & Kaelbling, L.P. Reinforcement Learning for Robot Control, In Proceedings of
the SPIE: Mobile Robots XVI, Vol.4573, pp.92-103, 2001

27. Wolpert, D.M., Ghahramani, Z., & Flanagan, J.R. Perspectives and Problems in Motor
Learning, TRENDS in Cognitive Sciences Vol.5 No.11 pp.487-494, 2001

28. Mitchell, R.J., Keating, D.A., Goodhew, I.C.B., Bishop, J.M. Multiple Neural Network
Control of Simple Mobile Robot, Proc 4th IEEE Mediteranean Symposium on New Directions
in Control and Automation, pp. 271-275, 1996

29. Walter, W.G. A machine that learns, Scientific American, 184(8): 60-63, 1951

30. Foster, D.J., Morris, R.G.N., & Dayan, P. A Model of Hippocampally Dependent Navigation,
Using the Temporal Learning Rule, Hippocampus, Vol.10 pp.1-16, 2000

31. Singh, S.S., Tadic´, V.B., & Doucet, A. A Policy Gradient Method for Semi-Markov Decision
Processes with Application to Call Admission Control, European Journal of Operational
Research Vol.178 pp.808–818, 2007

http://www-anw.cs.umass.edu/~gdk/pubs/autoshape.pdf
http://www-anw.cs.umass.edu/~gdk/pubs/autoshape.pdf

