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Abstract. Information processing and responding to sensory input with appro-
priate actions are among the most important capabilities of the brain and the 
brain has specific areas that deal with auditory or visual processing. The audi-
tory information is sent first to the cochlea, then to the inferior colliculus area 
and then later to the auditory cortex where it is further processed so that then 
eyes, head or both can be turned towards an object or location in response. The 
visual information is processed in the retina, various subsequent nuclei and then 
the visual cortex before again actions will be performed. However, how is this 
information integrated and what is the effect of auditory and visual stimuli ar-
riving at the same time or at different times? Which information is processed 
when and what are the responses for multimodal stimuli? Multimodal integra-
tion is first performed in the Superior Colliculus, located in a subcortical part of 
the midbrain. In this chapter we will focus on this first level of multimodal inte-
gration, outline various approaches of modelling the superior colliculus, and 
suggest a model of multimodal integration of visual and auditory information. 

1   Introduction and Motivation 

The Superior Colliculus (SC) is a small part of the human brain that is responsible for 
the multimodal integration of sensory information. In the deep layers of the SC inte-
gration takes place among auditory, visual and somatosensory stimuli. Very few types 
of neurons, such as burst, build-up and fixation neurons are responsible for this be-
haviour [4, 10]. By studying these neurons and their firing rates, integration can be  
successfully explored. The integration that takes place in the SC is an important  
phenomenon to study because it deals with different strengths of different stimuli ar-
riving at different times and how the actions based on these stimuli are generated. 
There is evidence that when two different stimuli are received at the same time, the 
stronger signal influences the response accordingly based on Enhancement and De-
pression Criteria [3]. A better understanding of multimodal integration in the SC not 
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only helps in exploring the properties of the brain, but also provides indications for 
building novel bio-inspired computational or robotics models.   

Multimodal integration allows humans and animals to perform under difficult, po-
tentially noisy auditory or visual stimulus conditions. In the human brain, the Superior 
Colliculus is the first region that provides this multimodal integration [23]. The deep 
layers of the Superior Colliculus integrate multisensory inputs and generate direc-
tional information that can be used to identify the source of the input information 
[20]. The SC uses visual and auditory information for directing the eyes using sac-
cades, that is horizontal eye movements which direct the eyes to the location of the 
object which generated the stimulus. Before integrating the different modalities the 
individual stimuli are preprocessed in separate auditory and visual pathways. Preproc-
essed visual and auditory stimuli can then be used to integrate the stimuli in the deep 
layers of the SC and eventually generate responses based on the multimodal input. 

The types of saccades can be classified in different ways [39] as shown in Figure 1. 
Most saccades are reflexive and try to identify the point of interest in the visual field 
which has moved due to the previous visual frame changing to the current one [20]. If 
no point of interest is found in the visual field, auditory information can be used to 
identify a source. Saccades are primary actions which in some cases are autonomous 
and are carried out without conscious processing in the brain. When there is insuffi-
cient information to determine the source based on a single modality, the SC uses 
multimodal integration to determine the output. Saccades are the first actions taken as 
a result of receiving enough visual and auditory stimuli.  

 

Fig. 1. The different types of saccades that are executed by the eyes of a mammal 

It is known that the SC plays a significant role in the control of saccades and head 
movements [3, 23, 33]. In addition to the reflexive saccades, saccades can also be 
targeted on a particular object in the visual field. In this case, the SC receives the vis-
ual stimulus at its superficial layers which are mainly used to direct the saccades to 
any change in the visual field. In a complementary manner, the deep layers of the  
SC are capable of receiving auditory stimuli from the Inferior Colliculus and other  
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Fig. 2. Types of effects in multimodal integration after integrating the visual and auditory fields. 

cortical regions. The deep layers of the Superior Colliculus are also responsible for 
integrating multisensory inputs for the generation of actions. The SC is capable of  
generating output even if the signal strength of a single modality would not be suffi-
cient or too high to trigger an action (see Figure 2). The enhancement is increasing the 
relevance of a particular modality stimulus based on the influence of other modalities 
while depression is decreasing the relevance of a particular modality, in particular if 
the stimuli disagree.  

Several authors have attempted to examine multimodal integration in the Superior 
Colliculus [2, 4, 5, 10, 27, 37, 51, 55]. Different approaches have been suggested in-
cluding biological, probabilistic and computational neural network approaches. Of  
the different researchers that pursued a probabilistic approach, Anastasio has made 
the assumption that SC neurons show inverse effectiveness. In related probabilistic 
research, Wilhelm et al used a Gaussian distribution function along with a pre-
processing level for enhancement criteria in SC modelling. Other researchers like 
Maren and Dominik [30] and Mass et al [17] have used a probabilistic approach in 
conjunction with other extraction techniques for modelling multimodal integration for 
other applications.  

In contrast to probabilistic approaches, Trappenberg [48], Christian Quaia [4] and 
others have developed neural models of the SC. Christiano Cuppini [5] and Casey Pav-
lov [33] have also suggested a specific SC model but the model is based on many as-
sumptions and only functions with specified input patterns. Also the enhancement and 
depression criteria are not comprehensively addressed. Yagnanarayana has used the 
concept of multimodal integration based on the superior colliculus and implemented it 
in various applications of an autoassociative neural network.  According to J. Pavon 
[19], this multimodal integration concept is used to achieve efficiency in agents when 
co-operating and co-ordinating with various sensor data modalities. Similarly Rita 
Cucchiara [39] has established a biometric multimedia surveillance system that uses 
multimodal integration techniques for an effective surveillance system, but the multi-
modal usage is not able to overcome problems like the influence of noise.  

In summary, while probabilistic approaches often emphasise computational effi-
ciency, the neural approach offers a more realistic bio-inspired approach for model-
ling the Superior Colliculus. Therefore, in the next section our neural SC modelling 
methodology will be described followed by enhancement and depression modelling 
performed by the SC.  
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2   Towards a New Methodology and Architecture 

2.1   Overview of the Architecture and Environment 

The approach proposed in this section addresses the biological functionality of the SC 
in a computational model. Our approach mainly aims at generating an integrated re-
sponse for auditory or visual signals. In this context, neural networks are particularly 
attractive for SC modelling because of their support of self organisation, feature map 
representations and association between the layers. Figure 3 gives an overview of our 
general layered architecture. Hence a two-layer neural network is considered where 
each layer receives inputs from different auditory and visual stimuli, and integrates 
these inputs in a synchronised manner to produce the output.  

 
 
 

 

 

 

 

 

 
 
 
 
 
 
 

Fig. 3. A layered neural network capable of processing inputs from both input layers. Integra-
tion is carried out by an associative mapping. 

 
For auditory input data processing, the Time Difference of Arrival (TDOA) is cal-

culated and projected on the auditory layer. The auditory input is provided to the 
model in the form of audible sound signals within the range of the microphones. Simi-
larly for visual input processing, a difference image, DImg, is calculated from the 
current and previous visual frames and is projected on the visual layer. Both visual 
and auditory input is received by the network as real time input stimuli. These stimuli 
are used to determine the source of the visual or auditory stimuli. Then the auditory 
and visual layers are associated for the generation of the integrated output.  In case of 
the absence of one of the two inputs, the final decision on the direction of the saccade 
is made based only on the present input stimuli. In the case of simultaneous arrival of 
different sensory inputs, the model integrates both inputs and generates a common 
enhanced or depressed output, depending on the signal strength of the inputs. Our 
particular focus is on studying the appropriate depression and enhancement processes.  
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For evaluating our methodology we base our evaluation on the behavioural frame-
work of Stein and Meredith [3].  Stein and Meredith’s experiments are carried out 
examining a cat’s superior colliculus using a neuro-biological/behavioural methodol-
ogy to test hypotheses in neuroscience. This experimental setup provides a good  
starting point for carrying out our series of experiments. Our environment includes a 
series of auditory sources like speakers and visual sources like LEDs arranged as a 
semicircular environment so that each source will have the same distance from the 
centre covering 180 degrees of visual and auditory ranges.  

For the model demonstration, Stein and Meredith’s behavioural setup is modified 
by replacing the cat with a robot head as shown in Figure 4. As a result of visual or 
auditory input the robot’s head is turned towards the direction of the source. The ad-
vantages of using this environment are that environmental noise can be considered 
during detecting and tracking and the enhancement and depression phenomena can be 
studied. 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Experimental setup and robot platform for testing the multimodal integration model for 
an agent based on visual and auditory stimuli 

2.2   Auditory Data Processing 

The first set of experiments is based on collecting the auditory data from a tracking 
system within our experimental platform setup. We can determine the auditory sound 
source using the interaural time difference for two microphones [31] and the TDOA 
(Time Difference Of Arrival), which is used for calculating the distance from the 
sound source to the agent. The signal overlap of the left and right stimuli allows de-
termining the time difference.  

( )( ) ( )( ) rSRLxcorr
RLxcorrlength

TDOA ×
�
�
�

�
�
� −+= ,max

2

1,  

LED 



6 K. Ravulakollu et al. 

In the above equation ‘xcorr ()’ is the function that determines the cross-correlation 
of the left ‘L’ and right ‘R’ channels of a sound signal. Sr stands for sample rate of the 
sound card used by the agent. Once the time difference of arrival is determined the 
distance of the sound source from the agent is calculated using the following: 

 

Distance=TDOA x sound frequency 
 

The result is a vector map for further processing to generate the multimodal inte-
grated output. However, for unimodal data sets, we can determine the direction of the 
sound source in a simplified manner using geometry and the data available including 
speed of sound and distance between the ears of the agent that is shown in the circular 
diagram below. 
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Fig. 5. Determination of sound source directions using TDOA where c is the distance of the 
source and � is the angle to be determined based on TDOA and the speed of sound. The dis-
tance d between two microphones, L and R, is known. 

Assume the sound source is in far-field, i.e. c>>d, then �=�=��90 degree and the 
sound source direction can be calculated using triangulation as follows: 

�=�=arcsine(ML/d)=arcsine(TDOA*Vs/d) 

where Vs is the sound speed in air. 

From the above methodology the unimodal data for the auditory input is collected 
and the auditory stimuli can be made available for the integration model.  

2.3   Visual Data Processing 

We now consider visual data processing where simple activated LEDs represent the 
location of the visual stimulus in the environment. A change in the environment is  
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determined based on the difference between subsequent images.  By using a differ-
ence function, the difference between the two successive frames is calculated. 

DImg = abs_image_difference(image(i), image(i – 1)) 

Once the difference images are obtained containing only the variations of the light 
intensity, they are transformed into a vector. Once the vectors are extracted they can 
be used as direct inputs to the integrated neural model. However, in the case of uni-
modal data, difference images (DImg) are processed directly to identify the area of 
interest. The intensity of the light is also considered to identity an LED with larger 
brightness. Using this method a series of images is collected. From this vector the 
maximum color intensity location (maxindex) is identified and extracted. Using this 
information and the distance between the centre of the eyes to the visual aid, it is easy 
to determine the direction of the visual intensity changes in the environment using the 
following formula: 

( )
�
�
�

�
�
� ×−= −

o_sourcef_sensor_tdistance_oth x visual_wid

gevisual_ranl_widthhalf_visuamaxindex
tan 1θ  

After running this experiment based on a set of 5 LEDs the different difference  
images were collected. By transforming the image on a 180 degree horizontal map 
with 5 degree intervals, the angle of the source is identified. For the data collected in 
the visual environment, 85 – 95 % accuracy is achieved for single stimulus inputs, 
and 79 – 85% accuracy is observed for multiple stimuli.  

Later during the integration, the signal strength is also included in the network for 
generating the output. Stein and Meredith have previously identified two phenomena,  
 

Camera

Difference Image (DImg) 

 

Fig. 6. Difference Image (DImg) used for scaling and to determine the location of the high-
lighted area of the image in which the dash line represents the length of the visual range and 
distance between the two cameras 
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depression and enhancement, as crucial for multimodal integration. In our approach 
we have also considered the visual constraints from the consecutive frames for con-
firming whether a signal of low strength is a noise signal or not. By reducing the audi-
tory frequency to 100Hz for a weak auditory signal and by also reducing the LEDs in 
the behavioural environment we are able to generate a weak stimulus to study the 
enhancement response.  

3   Simplified Modelling of the Superior Colliculus 

3.1   Unimodal Experiments 

First, unimodal data from auditory and visual stimuli are collected and the desired 
result is estimated to serve as comparison data for the integrated model. The agent is a 
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Fig. 7. Graphical representation of auditory localization. The behavioural environment when 
there are two auditory inputs. The signal received at the left and right microphone are plotted 
on a graph with time on the x-axis and amplitude on the y-axis. Once the TDOA is calculated 
and the direction of the auditory source is located it can be shown in the range from -90 to 90 
degrees which in this case is identified as (a) 18 degree and (b) -10 degrees.   
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PeopleBot robot with a set of two microphones for auditory input and a camera for 
visual input.  

3.1.1   Auditory Experiments 
The agent used for auditory data collection has two microphones attached on either 
side of the head resembling ears. The speakers are stimulated using an external ampli-
fier to generate sound signals of strength within human audible limits. For these ex-
periments the signal levels of smaller frequencies are considered, since with these 
lower frequencies the multimodal behaviour can be identified and the behaviour can 
be studied at a more critical precision. Hence the frequencies with a range of 100 Hz - 
2K Hz are used. Sound stimuli are generated randomly from any of the different 
speakers, and by implementing the interaural time difference method from above, the 
direction of the stimulus is determined. The following table provide example results 
of these auditory experiments of various directions and stimuli levels. 

By running the above experiment for lower frequency ranges of 100 to 500 Hz 
with the amplitude level at 8 (as the recognition is effective at this level), initial ex-
periments were carried out and the results are presented below. For each frequency 
from 100Hz, the sound stimuli are activated at angles varying from -90 to 90 degrees. 
Below in table 1 we show the angles computed by the tracking system discussed in 
the above section.  

Table 1. This table depicts the accuracy level of the various frequencies from 100Hz to 500Hz. 

 Actual Angle 

Freq. vs 
Angle 

-90 -60 -45 -30 -20 -10 0 10 20 30 45 60 90 

100 -81.07 -61.39 -6.29 -31.44 -21.41 -8.4 0 10.52 21.41 33.97 41.07 63.39 50.04 

200 -71.07 -63.39 -42.11 -33.97 -25.97 -14.8 0 10.52 21.41 35.59 42.11 63.69 80.2 

300 -76.88 -63.39 -41.07 -29.97 -25.97 -14.8 -2.09 12.4 21.41 31.44 38.95 63.39 80.00 

400 -73.19 -63.39 -41.07 -75.6 -33.41 -10.52 -2.09 10.42 16.98 36.59 41.07 63.39 73.41 

500 -43.9 -63.4 -17 -22.14 -17 -10.5 0 10.52 21.41 29.29 48.4 63.39 53.41 

3.1.2   Visual Experiments 
The camera is directed to cover 120 degrees, from -60 to 60. The series of frames 
collected as input from the camera are processed and the output should determine 
which of the LEDs is active. The frames that are captured from the camera are used to 
produce the difference image (DImg) which contains only the changes that have oc-
curred in the visual environment of the agent. These difference images are calculated 
by measuring the RGB intensity variations from pixel to pixel in the two successive 
images.  

Below we show how these difference images are generated based on two succes-
sive frames where the first frame is a null image with no activation and the second 
frame has activation at two different locations. The third image is the difference  
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(a)                                                             (b)                                                                (c)

 

Fig. 8. (a) The visual environment without visual LED stimulus (b) The environment with vis-
ual LED stimulus. (c) The difference image (DImg). 

image generated from the first two frames. This series of difference images is used to 
identify change in the environment. The difference images can be plotted on a plane 
covering -90 to 90 degrees on a special scale to intensity values of the difference  
image signal strength. The following image represents one such plotting of the differ-
ence image signal intensity. 

Using this plot, the direction of the source from the centre of the agent is determined.  
The difference images are mapped on to a standard Horizontal Scale Frame (HSFr), to 
determine the location of the activation. The HSFr is a scale that divides the 180 degrees 
with 5 degrees of freedom. This scale image is different for different images.  

In this horizontal scale frame the horizontal axis is divided into 10 degree intervals. 
Hence all the visual information that arrives at the camera of the agent is transformed 
into a difference image intensity plot and finally plotted on an HSFr to locate the 
source in the visual environment. Within this process, different auditory and visual 
inputs are collected and later used as a test set for the neural network that can generate 
multimodal integrated output for the similar auditory and visual inputs.  

A synchronous timer is used to verify and confirm whether the visual and auditory 
stimuli are synchronized in terms of time of arrival (TOA). If the arrival of the stimuli 
is asynchronous then an integration of the inputs is not necessary, as the location of 
the source can be determined depending on the unimodal processing. In cases of mul-
tiple signals with a synchronous TOA, the signal strength is considered for both sig-
nals. Once the strongest signal is identified then the preference is given first to this 
signal and only later an additional preference may be associated with the other signal. 
This case occurs mainly with unimodal data such as a visual environment with two 
different visual stimuli or an auditory field with two different stimuli.  

3.2   Multimodal Experiments 

Now we focus on the combination of both auditory and visual processing as shown in 
Figure 4. The received auditory and visual inputs are preprocessed considering  
the functionality of the optic chiasm and the information flow in the optic tract. This  
 



 Towards Computational Modelling of Neural Multimodal Integration           11 

Difference Image

0 50 100 150 200 250 300 350
0

100

200

300

-80 -60 -40 -20 0 20 40 60 80
0

0.5

1
Visual Source Localization

 

Fig. 9. (a) The difference image (DImg) is shown scaled to a unique size for all the images to 
standardize as a vector for the map alignment in the multimodal phase. (b) Horizontal Scale 
Frame image (HSFr) is a frame scale which is scaled to -90 to 90 degrees used as a reference to 
check in which block the enlightened part of the difference image falls.  

 
Fig. 10. Schematic representation of stimuli flow from the external environment to the superior 
colliculus model  
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preprocessing generates the difference image (DImg) from the captured visual input 
and the time difference of arrival (TDOA) for the auditory stimulus as shown in  
Figure 10. The preprocessed information enters the network which performs multi-
modal integration of the available stimulus and a corresponding output is generated. 

The network model is mainly focused on map alignment to resemble the actual in-
tegration in the deep layers of the Superior Colliculus. In this network two types of 
inputs are considered: the TDOA auditory map and the DImg visual stimulus map are 
used for the integration. The TDOA is converted into a vector of specific size which 
in this case is 10 by 320 containing the information of the waveform with the intensi-
ties of the input signal. Similarly the difference image is converted into a vector of 
similar size containing only the information of horizontal intensity variations in the 
difference image.  

These two vector representations are the input for the multimodal integration 
model. Since we are focussing on horizontal saccades, only the variations at a hori-
zontal scale are considered at this point although this can be extended to vertical  
saccades. To identify the highest of multiple stimuli, a Bayesian probability-based 
approach is used to determine the signal strength as input to the network. A synchro-
nous timer is used for counting the time that lapses between the arrival of the various 
stimuli of the corresponding senses.  

The integration model is a two-layer neural network with the size 10 by 32 based 
on the size of the input images generated. Hence for the integration in the network the 
weighted average is considered as follows:  

Integrated Output = ((WV * V1) + (WA * A1))/(WV + WA) 

where Wv = Visual Vector Weight, WA = Auditory Vector Weight, V1 = normalised 
Visual Vector and A1 = normalised Auditory Vector. 

This weight function determines the weighted location of the source and provides a 
degree value where the source is. The difference between the two will allow the 
model to determine the stronger source.  

 
Integration Case Studies: 

• Multiple visual input stimuli: In case of more than one visual input in the 
environment, the difference image is generated highlighting the areas of visual 
interference. From the difference image the intensity of the signal is identified 
in terms of RGB values as shown below in figure 11. Examining the first and 
last spike shows that the green spike is low in intensity compared to the second 
one. Considering the second, the green and red spikes are high in the intensity 
when compared to the rest. However, the plot of the maximum values of the 
available RGB intensities determines the position of the source. By plotting the 
position onto a [-90, 90] scale the location of the source is determined, which 
in this example case in figure 11 is -30�. 
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Fig. 11. The figure depicts multiple visual input stimuli received by the agent and how the vis-
ual localization is determined using the difference image and intensity plotting. The maximum 
intensity is identified in the second peak where all RGB values are highest when compared with 
the rest of the peaks. 

If there are even more visual stimuli, the behaviour of our model is similar, and it 
calculates the intensities of the signals and plots the maximum of them in the standard 
plotting area [-90, 90]. In this case a close inspection of the spikes reveals the small 
difference that is present in the green spikes of each stimulus spike. 

• Low auditory and strong visual stimuli: If a low intensity auditory signal and 
a visual signal with strong intensity value are received at the same time as input 
to the multimodal integration system, after verifying the time frame to confirm 
the arrival of the signals, both inputs are considered. After preprocessing of the 
signals, the signal maps are generated. In the graphs we can observe that the 
signal in the auditory plot has a very low intensity and the angle is determined. 
For the visual stimulus, the single spikes in red and green are considered for the 
maximum signal value. When plotted on the standard space scale, the source 
locations are identified as two different locations but the overall integrated loca-
tion is identified as being close to the stronger visual stimulus.  

Difference Image



14 K. Ravulakollu et al. 

 

0 50 100 150 200 250 300 350
0

100

200

300

-80 -60 -40 -20 0 20 40 60 80
0

0.5

1
Visual Source Localization

 

Fig. 12. The figure depicts multiple visual stimuli and how the model deals with such  
input. The plot shows the maximum intensity peak location and how the preferred location is 
determined. 

• Strong Auditory and Low Visual Stimuli: In this case the intensity of the 
auditory signal is strong and the intensity of visual signal is low. For the visual 
stimulus, the strength of the green spikes is similar for both activation cases, 
while the red spikes vary. Determining the location of the two inputs individu-
ally, the locations are on different sides of the centre. When the multimodal 
output is generated, the location of the integrated output is close towards the 
auditory stronger stimulus.  

The above two representative cases are observed during multimodal integration 
with one of the signals being very strong in its intensity. The Superior Colliculus 
model focuses on the stimulus with the highest intensity and therefore the integrated 
decision is influenced by one of the stimuli. 

• Strong visual and strong auditory stimuli: In this case scenario, when the 
signals are received by the sensors, the signal intensities are calculated and the 
modalities are plotted on an intensity graph to determine the signal intensity. In 
the intensity graphs shown, the sources are located at either side of the centre 
and the activations are of high intensities. When the output is computed, the 
source is located close to the visually detected peak since the visual stimulus 
has greater priority than the auditory stimulus.   
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Fig. 13.  Auditory and visual input with strong visual stimulus determining the main preference 
for the localization. 
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Fig. 14. Multimodal input case with strong auditory stimulus. The integrated output is biased 
by the intensity of the stronger stimulus which in this case is auditory. 

It is not clear whether the superior colliculus will prioritize in every case, but in the 
case of multiple strong intensity stimuli the visual stimulus will have the higher prior-
ity while the strong auditory stimulus will have some influence on the multimodal 
integrated output.  

 



 Towards Computational Modelling of Neural Multimodal Integration           17 

0 50 100 150 200 250 300 350
0

100

200

300

-80 -60 -40 -20 0 20 40 60 80
0

0.5

1
Visual Source Localization

 

  

0.122 0.123 0.124 0.125 0.126 0.127 0.128 0.129 0.13 0.131
-0.2

0

0.2
Left Channel

0.122 0.123 0.124 0.125 0.126 0.127 0.128 0.129 0.13 0.131
-0.2

0

0.2
Right Channel

-80 -60 -40 -20 0 20 40 60 80
0

0.5

1
Sound Source Localization

 

-80 -60 -40 -20 0 20 40 60 80
0

0.5

1
Integrated Source Localization

 
 

Fig. 15. Multimodal enhancement response:  The integrated output is generated based on a 
distance function between the auditory and visual intensity. 
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Fig. 16. Multimodal depression response: The integrated output is generated based on a dis-
tance function between the auditory and visual intensity where the auditory signal is suppressed 
due to its low intensity and the visual stimulus is the only input available. Hence the distance 
function is biased towards the visual stimulus.  
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Fig. 17. Multimodal Depression Responses: a weak or low intensity auditory signal has  
suppressed the total multimodal response and generated a new signal that can achieve the re-
sponse accurately but with a very low signal strength. This phenomenon is observed once in 
twenty responses, as in the remaining cases, the model tries to classify the stimuli to generate 
the output. 
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• Low visual and low auditory: In circumstances where both visual and audi-
tory signals are of low intensities, the behaviour of the superior colliculus is 
often difficult to predict and determine. In this case, the superior colliculus can 
be thought of as a kind of search engine that keeps traversing the environment 
to locate any variations in the environment. When both auditory and visual 
signals are of low intensity, the SC suppresses the auditory signal due to its 
low intensity. Though the visual signal is low in its intensity, as far as the SC 
is concerned, it is the only sensory data available. Therefore, the source is 
identified much closer to the visual stimulus as shown in figure 16 below. 

 
In some cases, if the stimulus is not in the range of [-30, 30] degrees, depression 

may occur if the visual stimulus is getting out of range or the auditory stimulus is get-
ting less intense.  

4   Summary and Conclusion 

We have discussed a model of the SC in the context of evaluating the state of art in 
multimodal integration based on the SC. A neural computational model of the subcor-
tical Superior Colliculus is being designed to demonstrate the multimodal integration 
that is performed in the deep layers. The enhancement and depression phenomena 
with low signal strength are demonstrated and the impact of multimodal integration  
is discussed. The presented model provides a first insight into the computational mod-
eling and performance of the SC based on the concepts of Stein and Meredith and 
highlights the generated multimodal output. This work indicates a lot of potential for 
subsequent research for the model to emerge as a full computational multimodal sen-
sory data integration model of the Superior Colliculus.  
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