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Abstract. Person tracking is an important topic in ambient living systems as well as in computer vision. In particular, detecting a
person from a ceiling-mounted camera is a challenge since the person’s appearance is very different from the top or from the side
view, and the shape of the person changes significantly when moving around the room. This article presents a novel approach for a
real-time person tracking system based on particle filters with input from different visual streams. A new architecture is developed
that integrates different vision streams by means of a Sigma-Pi-like network. Moreover, a short-term memory mechanism is
modeled to enhance the robustness of the tracking system. Based on this architecture, the system can start localizing a person
with several cues and learn the features of other cues online. The experimental results show that robust real-time person tracking
can be achieved.
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1. Introduction

Ambient Intelligence (AmI) refers to environments
equipped with sensitive, intelligent devices that react
to motion or other signals of a person and support their
life [4]. An AmI environment system is able to monitor
a person using a ubiquitous sensor system and to assist
with life activities by means of actuators. In particular,
Ambient Assisted Living (AAL) addresses the care-
taking of elderly people and patients and is regarded
as one of the most important fields in AmI [4,39]. Ac-
cording to the estimate of the U.S. Census Bureau, the
population aged over 65 will grow from 13% to 20%
from 2010 to 2030 [19] due to worldwide population
aging. In Europe, more than 20% of the population
will be beyond 60 by 2020 [52] and by 2050 even 37%
will be beyond 60 [2]. It is expected that there will be
a large gap of persons at working age to support the
persons at the age of 65 or older. Hence, this increase
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motivates the development of autonomous, intelligent
home care systems.

In an AmI environment, different sensors are in-
stalled to gather personal information. After data anal-
ysis in the AmI server, the status of a person can be
estimated and the AmI system can provide appropri-
ate help and predict emergencies which then may be
avoided by means of warnings. A reliable person lo-
calization functionality is essential for the AmI sys-
tem to ensure that the status estimation is correct.

Fig. 1. Robot navigation based on person and robot localization by
a ceiling-mounted camera. The red bounding box indicates the posi-
tion of a target person and the yellow oval denotes the position of a
robot.
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With the development of technologies, the importance
of human-machine interaction in an AmI system in-
creases steadily [10,34]. In the absence of a care giver,
a service robot can assist a person’s life by bringing
medication, providing useful information, displaying
videos using a portable beamer or supporting a video
communication. A robust person tracking system is
therefore important and enables the robot to navigate
to the person’s position (Fig. 1).

However, person tracking in a complex home envi-
ronment is a major challenge for AmI systems. Non-
vision-based techniques of person localization, such
as those based on RFID tags [32,46] or radio waves,
require the person to carry certain technical devices
which are unsuitable in everyday situations. Motion
sensors [6,60] can detect a person entering or leaving a
room, but cannot provide the precise location informa-
tion. Infrared cameras are costly and suffer from high
degrees of noise in indoor settings. Compared to these
approaches, a vision system promises to provide good
performance and a wide use scope at a reasonable cost.
The vision system provides far more information than
the other kinds of sensors. It can be assessed whether
the person is standing, sitting or moving, as well as
an emergency situation such as a fall [38]. Hence, for
tracking a person, a color camera is our main sensor
of choice. Privacy concerns of camera surveillance can
be addressed by not storing image information, if the
person’s location is needed only for a short time.

In general, it is hard to get robust visual tracking
ability in a real, complex and unpredictable home envi-
ronment based on visual input. For example, a person
observed from the top produces very different shapes
at different locations thus it is difficult to be recog-
nized by static patterns (Fig. 2). A motion detector may
provide a good tracking indicator but cannot provide
information when a person does not move, for exam-
ple when the person is sitting on a sofa. The situation
could also be disturbed by moving environments and
changing light conditions. The color obtained from the
clothes and skin can be a reliable tracking feature, but
in a real life scenario, we have to learn the color in-
formation first from other information since the color
of a person’s clothes can change every day. Multiple
camera systems can help the tracking ability, but these
systems are expensive, complex and hard to install.

Considering that different visual information
sources can be used in combination to detect and local-
ize a person’s position reliably, a hybrid knowledge-
based architecture is approached that integrates the
different visual streams into a Sigma-Pi network ar-

Fig. 2. Person images from a ceiling-mounted camera. It is hard to
define a person by a fixed shape pattern.

chitecture [61]. The system is able to start localizing a
person with some of the cues and adapts the other cues
online. The reliabilities of cues, which indicate the
importance of each cue for decision making, are also
adapted. Based on the output of this network, a particle
filter [13] updates the probability distribution to esti-
mate the person’s position. A single ceiling-mounted
camera with a fish-eye lens is used to keep the system
simple and easy to install.

The context and related works are introduced in
Section 2. The system architecture is presented in Sec-
tion 3 and each visual cue will be described in
Section 4. The experimental results will be shown
in Section 5 with an evaluation and Section 6 con-
cludes this article with a discussion.

2. Context and related work

A growing number of research groups are develop-
ing AmI systems. An early approach was developed in
1999 by a research group at the Massachusetts Insti-
tute of Technology and industry partners in the Oxygen
project to create an environment that is aware of peo-
ple’s needs without requiring people learning how to
use computers [47]. The Aware Home of Georgia In-
stitute of Technology aims at developing a smart home
that is aware of its own state and the state of its inhab-
itants [30]. Industrial companies, such as Philips [3]
and Sony [1] have been committed to the development
of AmI system for many years.

In recent years, the human-machine interaction has
been drawing more attention to the AmI systems. The
ambient environment will not only react passively to a
change of a situation, but will also provide active help,
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such as via home electronics, motorized fittings or – in
the future – service robots. In the EU-funded project
Knowledgeable Service Robots for Aging (KSERA)
we are developing a socially assistive robot that sup-
ports some activities of daily life as well as health care
needs of an elderly person, specifically persons suffer-
ing from Chronic Obstructive Pulmonary Disease. For
this purpose, the status of the person will be observed
by sensors and anticipated with the help of statistical
or neural prediction. A small humanoid robot Nao [15]
is the main actuator that delivers feedback from the
AAL system to the person. For example, it gives health
advice based on medical sensor readings and acts as
a mobile communication platform for the person with
remote care givers.

In many AAL settings, persons are detected indi-
rectly for instance by measuring the open-closed state
of doors and drawers, or via passive infrared sensors
[56]. The precision of localization based on such status
information is very low, while on the other hand, laser
and stereo vision [50] offer high precision at a high
cost. Other suggested additional devices are motion
sensors worn by the tracked person [7], using correla-
tion of the motion sensor’s signal with the motion reg-
istered by the camera. Person tracking based on mul-
tiple sensors [31,40] can obtain extra information, but
the system complexity arises due to the data fusion and
system configuration.

Person tracking based on vision is a very active re-
search area. For instance, stereo vision systems [5,37]
can use the 3D information reconstructed by different
cameras to distinguish easily a person from the back-
ground. Multiple ceiling-mounted cameras are used in
combination [49] to compensate for the narrow field-
of-view of a single camera [33], or to overcome shad-
owing and occlusion problems [26]. Although these
multi-camera systems can detect and track multiple
persons, they are expensive and complex. For example,
the camera system has to be calibrated carefully not
only to eliminate the distortion effect of lens, but also
to indicate the correlation between different cameras.

A single ceiling-mounted camera is another possi-
bility for person tracking. West et al. [59] have de-
veloped a ceiling-mounted camera model in a kitchen
scenario to infer interaction of a person with kitchen
devices. The single ceiling-mounted camera can be
calibrated easily or can be used even without calibra-
tion. With a wide-angle view lens, for example a fish-
eye lens, the ceiling-mounted camera can observe the
entire room. Moreover, occlusion is not a problem
since the camera is at a position to see a person at any

position within the room.1 The main disadvantage of
the single ceiling-mounted camera setup is the limited
raw information contained by the camera. Therefore, a
sophisticated algorithm is essential to track a person.

There are many person detection methods based
on computer vision. The most common technique
for detecting a moving person is background sub-
traction [43], which finds the person based on the
difference between an input and a reference image.
Appearance-based models have been researched in the
recent years. Principal component analysis (PCA) [24]
and independent component analysis (ICA) [22], for
instance, represent the original data in a low dimen-
sional space by keeping major information. Some
other methods like scale-invariant feature transfor-
mation (SIFT) [35] or a speeded up robust feature
(SURF) [8] detect interest points (for example using
Harris corner [17]) for object detection. These meth-
ods are scale- and rotation invariant and are able to de-
tect similarities in different images. However, the com-
putation complexity of these methods is high and they
perform poorly with non-rigid objects. Person track-
ing based on body part analysis [14,18,45] can detect a
person precisely, but requires a very clear body shape
captured from a front view. In this case, a multiple
camera system has to be installed in a room environ-
ment to always get the body shape. The color obtained
from the clothes and skin can be a reliable tracking
feature [11,37,62], but this may have to be adapted
quickly after when the color changes.

In our approach we use a single ceiling-mounted
camera to track a person. Different visual information
is combined to detect and localize a person’s position
reliably, inspired by a model of combining different
information for face tracking [55]. Our approach can
track a person with or without motion information,
and is robust against environment noise such as mov-
ing furniture, changing light conditions and interacting
with other people. The target person can be memorized
through the adaptivity of the cues which act as a mem-
ory and enable the system to select a specific person
for tracking. A particle filter approach [28,33,44,51],
which has potential for tracking, is developed to lo-
calize the person based on visual cues, that are being
adaptively combined in a Sigma-Pi network architec-
ture.

1Only the small humanoid Nao robot, which we also use in our
project can sometimes be hidden by furniture, as seen from the ceil-
ing camera, but knowledge about its motor commands and odometry
allows for approximate position estimation from history.
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Fig. 3. Architecture of the tracking system.

3. System overview

In our home scenario, a person and a small hu-
manoid robot are being tracked. While both of them
are being tracked simultaneously, for simplicity, we
will only describe the algorithm for person tracking.
Human and humanoid tracking differ only in the train-
ing data used for the neural network that analyses the
tracked object’s shape.

Our model is illustrated in Fig. 3. A Sigma-Pi
network architecture integrates shape, motion, color
memory and shape memory streams and passes its
output to a particle filter which provides robust ob-
ject tracking based on the history of previous obser-
vations [13,20,57,58]. The work flow can be split into
two parts: prediction and adaptation.

In the prediction phase (black arrows in Fig. 3),
each particle segments a small image patch and eval-
uates this patch using the visual cues. Four cues are
used: a color memory cue based on the histogram, a
motion cue based on background subtraction, a fixed
shape cue based on a neural network and a shape
memory cue based on SURF features. The activities
of visual cues are generated via activation functions
and scaled by their connection weights which are
called reliabilities here. Through the polynomial com-
bination of cues represented by a Sigma-Pi network,
the weights of particles are computed. The particles
will then be resampled and the position of the par-

ticles will be updated (green arrows). After that, in
the adaptation phase, the reliability weights of the
Sigma-Pi network will be adapted. The estimated po-
sition of the person will be validated again using the
visual cues (see dashed red arrows in Fig. 3). The
color memory cue and shape memory cue will be
learned and the reliabilities of visual cues, which will
be described in Section 3.2, will be adapted based on
the validation results (labeled with the blue dashed
lines). With the collaborative contribution of each cue,
the tracking performance can be improved signifi-
cantly.

3.1. Particle filters

Particle filters are an approximation method that
represents a probability distribution with a set of par-
ticles and weight values. A particle filter is usually in-
tegrated in partially observable Markov decision pro-
cesses (POMDPs) [25]. A POMDP model consists of
unobserved states of an agent s, in our case the posi-
tion of the observed person, and observations of the
agent z. A transition model P (st|st−1) describes the
probability that the state changes from st−1 to st at
time t. If the agent executes the action at−1, the further
P (st|st−1, at−1) can be estimated based on the transi-
tion model. For simplicity, let us assume here that we
do not know about a person’s actions.
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Based on the Bayesian representation in a POMDP,
the agent’s state can be estimated as:

P (st|z0:t) = ηP (zt|st)∫
P (st−1|z0:t−1)P (st|st−1)dst−1 (1)

where η is a normalization constant, P (zt|st) is the
observation model and P (st|z0:t) is the probability of
a state given all previous observations from time 0 to
t. Because P (st|z0:t) describes “what the state looks
like”, it is also called the belief of the state.

In a discrete computing model, the belief of the state
st at time t under the observation z0:t can be com-
puted recursively according to the previous distribu-
tion P (st−1|z0:t−1):

P (st|z0:t) ≈ ηP (zt|st)
∑
i

π
(i)
t−1P (st|s(i)t−1) (2)

where the probability distribution of the states is rep-
resented with a set of particles {i}, with each particle
i containing the state information. The beliefs of the
states are expressed by corresponding weight values
π(i). Hence, the probability distribution can be approx-
imated in the form:

P (st|z0:t) ≈
∑
i

π
(i)
t−1δ(st − s

(i)
t−1) (3)

where π denotes the weight factor of each particle with∑
π = 1 and δ denotes the Dirac impulse function.

The higher the weight value, the more important this
particle is in the whole distribution. The mean value
of the distribution can be computed as

∑
i π

(i)
t−1st and

may be used to estimate the state of the agent if the
distribution is unimodal.

There are different ways to model a particle filter,
and we use the sequential importance resampling algo-
rithm which is described in Algorithm 1. In the person
tracking system, the person’s position is represented by
the x- and y-coordinates in the image, i.e. s = {x, y}.
The direction of a person’s motion is hard to pre-
dict, because, for example, an arm movement during
rest could be wrongly perceived as a body movement
into the corresponding direction. Hence, we do not use
direction of movement information, but describe the
transition model P (st|s(i)t−1, at−1) of the person with a
Gaussian distribution:

P (st|s(i)t−1, at−1) =
1√

2πσ(a)2
e
−

(s
(i)
t−1

−s
(i)
t )2

2σ(a)2 (4)

Algorithm 1 Sequential Importance Resampling (SIR)
Draw samples for N particles from the proposal distribu-
tion:

s
(i)
t ∼ q(st) =

∑
i

π
(i)
t−1P (st|s(i)t−1)

Update the importance weight π(j)
t :

π
(j)
t = π

(j)
t−1P (zt|s(j)t )

Normalize the importance weights {π(j)
t }:

π
(j)
t =

π
(j)
t∑

k π
(k)
t

Compute the effective number of particles:

N̂eff =
1

∑N
j=1

(
π
(j)
t

)2

If N̂eff is less than a threshold, resample the particles with
the probabilities proportional to their weights and reset the
weight values:

s
(j)
t ∝ π

(j)
t

π
(j)
t =

1

N
, for j = 1 . . . N

where σ(a)2 is the variance, s
(i)
t−1 are the previous

states, s(i)t is the current states and at−1 is the exe-
cuted action. Movement information from the motion
cue (see Section 4.2) in the action variable at, however,
is informative for the person’s movement distribution
which we account for by increasing σ(a) when motion
is detected. The σ(a) is then set to either of two values:

σ(a) =

{
v1 if motion detected

v2 else
(5)

where v1, v2 are constant parameters with v1 > v2.
When no motion is detected, the probabilistic distribu-
tion will shrink to a small area that allows the parti-
cles only to move close to the previous position. This
modulates the behavior in a way that when an object is
identified, a human would remember its position when
the object does not move.

At the beginning of the tracking, the particles are
placed randomly in the image. Then, a small patch sur-
rounding them is taken and probed to detect the person
with the visual cues. Where the sum of weighted cues
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returns large saliencies, the particles will get larger
weight values, raising the probability of this particle
in the distribution and showing that a person is more
likely to be in this position. In order to keep the net-
work exploring, 5% particles are replaced with random
positions at each step to search for possible position
of a person actively. This strategy accelerates the sys-
tem much compared with traditional pixelwise search
window methods.

3.2. Sigma-Pi network

In the tracking system, the weight factor π(i) of
particle i will be computed with a weighted polyno-
mial combination of visual cues inspired by the Sigma-
Pi network [61]. The activities of the different visual
cues are set as the input of the Sigma-Pi network and
the particle weights are calculated with the following
equation:

π(i) =
4∑
c

αl
c(t)Ac(s

(i)
t−1)

+

4∑
c1>c2

αq
c1c2(t)Ac1(s

(i)
t−1)Ac2(s

(i)
t−1)

+

4∑
c1>c2>c3

αc
c1c2c3(t)Ac1(s

(i)
t−1)

Ac2(s
(i)
t−1)Ac3(s

(i)
t−1) (6)

where Ac(s
(i)
t−1) ∈ [0, 1] is the activity of cue c at the

position of particle i which can be thought of as taken
from a saliency map over the entire image [23]. The
activities are scaled by a sigmoid activation function
which can be described with Eq. (7):

A(yc) =
1

1 + e−(g·yc)
(7)

where yc is the output of the visual cues and g is
a constant scale factor. The coefficients of the poly-
nomial cues, i.e. the network weights αl

c(t) denote
the linear reliability, αq

c1c2(t) and αc
c1c2c3(t) are the

quadratic and cubic combination reliabilities of the
different visual cues. The quadratic and cubic combi-
nations of the four basic cues yield the further com-
bination cues. Compared with traditional multi-layer
networks, the Sigma-Pi network contains the correla-
tion and higher-order correlation information between
the input values.

The reliability of some cues, like motion, are non-
adaptive, while others, like color, need to be adapted
on a short timescale. This requires a mixed adap-
tive framework, as inspired by models of combining
different information [9,55]. An issue is that an adap-
tive cue will be initially unreliable, but when adapted it
may have a high quality in predicting the person’s po-
sition. To balance the changing qualities between the
different cues, the reliabilities will be evaluated with
the following equation:

α(t) = (1− ε)α(t− 1) + εf(s′t) + β (8)

where ε is a constant learning rate and β is a constant
value. f(s′t) denotes an evaluation function and is
computed by the combination of visual cues’ activi-
ties:

fc(s
′
t) =

n∑
i �=c

Ai(s
′
t)Ac(s

′
t) (9)

where s′t is the estimated position and n is the num-
ber of the reliabilities. In this model n is 14 and
contains 4 linear, 6 quadratic and 4 cubic combina-
tion reliabilities. The function is large when more
cues are active at the same time, which leads to an
increase of the cues’ reliability α. The details of
each visual cue will be introduced in the next sec-
tion.

4. Processing different visual cues

The motion cue, shape cue, shape memory cue and
color memory cue are used to extract features from
the image and to update the probability of the per-
son or the robot at the particle’s position. For the
shape cue, we use the moment invariants to present
the shape information and train a multilayer perceptron
(MLP) network to classify the input image patch [29].
An MLP network has been chosen based on its ro-
bust classification learning properties. For the motion
cue, a background subtraction method has been imple-
mented. For the color memory cue, the probability of
image areas that belong to the estimated image posi-
tion is computed using a histogram backprojection al-
gorithm [54]. The shape memory cue is based on a set
of SURF features [8] weighted by the correlation with
adjacent frames. The details of these methods are in-
troduced in the following paragraphs.
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Fig. 4. Processing of the shape cue.

4.1. Shape cue

Since shape contains information irrelevant of the
light condition as well as the surface texture, it is usu-
ally used to present the significant feature of the object
in the image classification tasks. As shown in Fig. 4,
the image patch of the particles is preprocessed by a
Laplace filter with 3 × 3 pixel kernel and converted
to a counter image (see Fig. 4). The moment invari-
ant features are extracted based on these counter im-
ages and used as input to a multilayer perceptron neu-
ral network. We collected the training data of person,
Nao robot and background noise. The data collection
contained 6000 images. 75 percent of the data are used
for learning and 25 percent for testing. After the train-
ing phase, the network is able to classify new images.
For each particle, we take the output node “person” of
the neural network as the shape cue value.

4.1.1. Moment invariants
In computer vision, moment invariants are essential

to analyze or recognize objects independent of their
position, rotation or scale [29,36]. Because the per-
son’s shape, i.e. the counter image is converted using
a Laplace filter, changes significantly when moving
within the ceiling-mounted camera’s sight, it is diffi-
cult to detect the person using common pattern match-
ing methods. The Hu-Moments [21] provide therefore
a good method to solve this problem. For a M × M
grey-value image, the two-dimensional moments can
be computed as follows:

Mpq =

M−1∑
x=0

M−1∑
y=0

xpyqf(x, y); p, q = 0, 1, 2, . . . (10)

where x, y are the positions of image pixels and
f(x, y) is the intensity of point (x, y). Moments can
represent features of the image, for example the first
order moments can be used to calculate the center of
the mass (x̄, ȳ) with:

x̄ =
M10

M00
and ȳ =

M01

M00
(11)

which includes also the central moments. It is also pos-
sible to recalculate complex moments based on the raw
moments. A moment translated by (a, b) can be repre-
sented as:

μpq =
∑
x

∑
y

(x+ a)p(y + b)qf(x, y) (12)

The central moment μpq can be described as:

μpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qf(x, y) (13)

Normalizing the central moment with μ00, we get the
scale invariant moments using the following equation:

ηpq =
μpq

μ
(1+ p+q

2 )
00

(14)

According to the invariant moments, seven scale,
position and orientation invariant moments can be cal-
culated with the following equations:

M1 = (η20 + η02)

M2 = (η20 − η02)
2 + 4η211

M3 = (η30 − 3η12)
2 + (3η21 − η03)

2

M4 = (η30 + η12)
2 + (η21 + η03)

2

M5 = (η30 − 3η12)(η30 + η12)((η30 + η12)
2

− 3(η21 + η03)
2) + (3η21 − η03)(η21 + η03)

(3(η30 + η12)
2 − (η21 + η03)

2)

M6 = (η20 − η02)((η30 + η12)
2 − (η21 + η03)

2)

+ 4η11(η30 + η12)(η21 + η03)

M7 = (3η21 − η03)(η30 + η12)((η30 + η12)
2

− 3(η21 + η03)
2)

− (η30 + 3η12)(η21 + η03)

(3(η30 + η12)
2 − (η21 + η03)

2) (15)

This set of values is also called the Hu-Moments.
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Fig. 5. MLP network for shape classification with 7 Hu-Moments as
inputs (see Eq. (15)).

4.1.2. Multilayer perceptron
To detect the person from the moment invariants,

we train a multilayer perceptron [41,48] network for
the classification. This artificial neural network con-
sists of multiple layers of neurons which are connected
fully with the neurons in the neighbor layers. An MLP
network can be used for function approximation and
classification based on supervised learning. The MLP
for shape classification is shown in Fig. 5. Seven in-
put neurons connect directly with the Hu-Moments. In
the middle layer we use 30 neurons with the sigmoid
activation function.

There are three output neurons which represent the
detection of person, robot and noise. We train and
test the neural network with 3 groups of training im-
ages (person, robot and noise), each of them contain-
ing 1500 images for learning and 500 for testing. The
back-propagation algorithm is used to train the net-
work. For each training step, an error value between
the desired output and the actual output of the MLP is
computed:

E =
1

2

∑
i

(yout
i − di)

2 (16)

where yout
i is the output of the neuron i in the output

layer and di is the desired output. A learning rule is
applied to update the weight value of each connection
weight in the network:

w(t) = w(t− 1) + Δw(t) (17)

with

Δw(t) = −η
∂E

∂w(t)
+ αΔw(t− 1) (18)

After the training phase, the neural network is able
to generalize and classify new images. The output of
the neural network can be intuitively interpreted as
“whether the image segment looks like a person or a
robot”. The output neuron of the person returns the
classification result, which means yshape

c = yout
person.

If it is the same as the group index of particle fil-
ters, for instance the “person” output of the MLP net-
work is high and this particle belongs also to the group
“person”, the shape cue will receive a strong feedback.
The reliability αs(t) of the shape cue will be updated
according to Eq. (8).

4.2. Motion cue

Motion detection is a method to detect an object by
measuring difference in the image. We use here the
background subtraction method [43] that compares the
actual image with a reference image. Since the back-
ground stays mostly constant, the person can be found
when the difference of image is larger than a prede-
fined threshold. We convert the image from RGB color
space to the grey value color space. The intensity is
subtracted from the reference image using:

M(x, t) = |i(x, t)− i′(x, t− 1)| (19)

where i(x, t) is the intensity of image x at the time t
and i′(x, t − 1) is the intensity of the reference image
at time t−1. The difference M(x, t) is compared with
a threshold h and the area containing motion is defined
using a step function:

f(M(x, t)) =

{
0, if M(x, t)− h � 0

1, if M(x, t)− h > 0
(20)

The pixels are merged with blob detection which
allows that the connected pixels are labeled with the
same blob index and the motion objects are segmented
with this method. Compared with a reference size of
a person, the motion cue returns the likelihood ymotion

c

that a moving object is a person as:

ymotion
c = e−

(smo−sref)
2

2c2 (21)

where c denotes a fixed variance, smo is the size of the
motion object and sref is the reference size of a person.

Considering that the background may also change,
as when moving the furniture, the background is up-
dated smoothly with the following formula:
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i′(x, t) = (1− γ)i′(x, t− 1) + γi(x, t) (22)

where γ � 1 is an update rate. When the new input im-
age remains static for a longer time, for example while
a person is sitting in a chair, the background will be
converted to the new image, the person will merge into
the background and then will not be detected anymore.
In this case, the other visual cues will allow the system
to find the person.

4.3. Color memory cue

Color is an important feature for representing an ob-
ject, for example the cloth color of a person and the
surface color of an object. Since the color of objects
and person does not change quickly, it is a reliable fea-
ture for tracking.

A large number of tracking methods are based on
color information [12,42,62]. A histogram is used here
to describe the tracking target. A histogram in com-
puter vision is a representation of the color distribu-
tion in an image. Since the HSV color space is more
efficient for a computer vision system than the RGB
color space, the image colors are converted to the HSV
space [53]. Because the color information is mainly
represented by the Hue value (in RGB space the color
information is distributed in three dimensions), we use
a one-dimensional histogram to represent the Hue in-
formation.

Using a histogram backprojection algorithm [54], a
gray value image is generated that shows the proba-
bility of the pixels of the input image that belong to
the example histogram. The histogram backprojection
method computes the ratio histogram Ri according to
the target histogram Oi and the histogram of new input
image Ii:

Ri = min

(
Oi

Ii
, 1

)
(23)

where i denotes the index of bins in the histogram.
The target histogram Oi is updated according to
the evaluation of shape and color cues. When the
evaluation receives a positive feedback, the target his-
togram will update with the following formula:

Oi(t) = (1− ζ)Oi(t− 1) + ζIi(t) (24)

where ζ denotes an update rate. The ratio histogram
Ri represents the probability that a color belongs to
the target image. The pixel value of the new input

image will be replaced with the corresponding value
Ri considering the color index. For each particle, the
pixel values of the probability image inside of the seg-
mentation window are accumulated and return ycolor

c .
The higher the value is, the more this image segment
matches the histogram pattern.

Considering that the tracked person might wear
clothes with different colors at different days, there is
no defined color pattern for tracking at the beginning
and the cue of the color model is thought of as unreli-
able. However, when the correct color pattern is found,
the color matching model will be reliable because the
clothes’ color of a person does not change on a short
time scale. Hence, the dynamic cue adaptation should
help the shape classification to dominate the person
recognition when the color matching or the motion de-
tection are missing, and support the color cue for deci-
sion making when the color information is learned.

4.4. Shape memory cue

The shape memory cue is based on the target per-
son found in the previous frames. Because the status
of a person is continuous, a short time memory mech-
anism has been developed to track the person based
on previous features. We extract SURF features [8] for
representing the image objects. A feature buffer stores
the image features of the last 30 frames. The correla-
tions between the new input image feature and the fea-
tures in the previous frames are calculated. Consider-
ing that the change of the person’s shape is continu-
ous and slow, the features of neighboring frames in the
buffer should be similar. Weights of the buffer images
are calculated using the matching rates between the
adjacent frames. Features from a negative background
data set such as sofas, tables and chairs have a negative
contribution to the shape cue, which helps the particles
avoid the background. The system structure is shown
in Fig. 6. The output of this network returns the shape
memory cue ysm

c .

5. Experiments and results

The environment for testing the tracking system is
shown in Fig. 7. The fish-eye lens is calibrated and the
camera image is subsampled to the resolution 320 ×
240, which allows real-time processing. 10 different
videos have been tested. The experiment aims to de-
tect and locate a person or a mobile robot under static
conditions in the image as well as to track their motion
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Fig. 6. Structure of the shape memory cue.

trajectories when moving. One person will be tracked
in the experiment. Different disturbances, for exam-
ple when changing the furniture’s position, changing
the person’s appearance and the disturbance by another
person are tested. 30 particles were used for the per-
son tracking and therefore only a small part of the im-
ages is being processed. The segment area of the par-
ticle filters are set as 60 × 60 pixels according to the
approximate size of the tracked object. This acceler-
ates the system in comparison with a search window
method.

A reference image is captured at the beginning to
obtain the initial background model. The SURF fea-
tures of furniture in the background model are stored
as negative data set. When a person moves in the room
without a planned color pattern, the shape and mo-
tion cues will detect the person and the particles will
merge to the position of the person. The histogram of
the estimated position of the person will be updated
and the SURF features of this image patch will be ex-
tracted and be pushed into the memory buffer. The re-
liabilities of visual cues will be adapted according to
Eq. (8).

Different experimental scenarios were designed as
follows:

– Tracking a moving person
– Tracking a sitting person
– Changing light condition
– Changing furniture position
– Distracter person
– Distracter person using CLEAR 07 data set [27]

All these tests have been carried out in our ambient
laboratory. A similar room or data set can also be used
to evaluate the algorithm, but the calibration of the new
room and the training data of the MLP network are
needed. The detail description of scenarios as well as
their results are shown in the following sections.

5.1. Tracking a person moving in the room

A test example is shown in Fig. 7. The motion cue
will facilitate finding the person in this test. At the be-
ginning (frame 5), the particles are initialized at ran-
dom positions in the image. When a person enters the
room (frame 100), the weight values of the nearby
particles will increase so that the particles move to-
wards the person. The person will be detected and lo-
calized quickly (frame 149). The shape feature as well
as the color histogram will adapt themselves at the
same time.

5.2. Tracking a sitting person

A person can stay in a position for a long time, for
example while watching television, reading a book,
etc. In this case no motion will be detected and the mo-
tion cue will temporarily not work. It is important to
test if the other visual cues can help the system to con-
tinue the tracking successfully. A person moves to the
sofa and sits down in our experiment and the particles
can keep localizing the person for a long time.

5.3. Changing light condition

In a real environment, the light condition changes
continuously. It causes a problem for person tracking
because of the modified features and it is a large chal-
lenge for map building as well as for robot naviga-
tion. In this task we challenge the person localization
by changing the light condition. After a person is lo-
cated by the particle filters, we switch on/off some of
the lights.

One setup is shown in Fig. 8. We switch the lights
off and on after the person is localized by the particle
filter (frame 85). Due to the dramatic change of the in-
tensity, the particles lose the target person (frame 105).
But after a short time they recover and return to the
person (frame 115).

5.4. Changing furniture position

Another challenge is to modify the room structure.
The disturbance of a changing environment, for ex-
ample a moving table in the room (Fig. 9) will auto-
matically be corrected by the negative feedback of the
shape cue. Although the particles may follow the mo-
tion cue, the shape of the table from the background
model returns a negative feedback to the shape cue,
which helps the particles go back to the person soon.
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Fig. 7. Tracking a person moving into the room. Fig. 8. Changing light condition.

Fig. 9. Person tracking during change of environment. Fig. 10. A person crossing.

Fig. 11. Person sitting close on a sofa. Fig. 12. Test with CLEAR 07 data set.
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Table 1

Experiment results

Name Total Frame m fp MOTA (%)

Person moving scenario 1 2012 19 22 97.96

Person moving scenario 2 2258 169 12 91.98

Person moving and sitting scenario 1 1190 78 21 91.68

Person moving and sitting scenario 2 980 22 130 84.18

Change environment scenario 1 1151 89 30 89.66

Change environment scenario 2 1564 157 141 80.94

Change light condition in night scenario 160 17 59 52.5

Change light condition in day scenario 540 0 3 99.45

Distracter person scenario 1 1014 48 35 91.81

Distracter person scenario 2 700 57 26 88.14

Distracter person scenario CLEAR 07 2122 188 52 88.68

Total 13691 844 531 89.96

5.5. Distracter person

The target of presented tracking system is to localize
a single person, but it is common that multiple persons
are in the room. To select a specific person among them
for tracking is therefore essential for the system. In this
task we test the possibility of tracking a target person
when another person is in the room. Two persons will
move in the room, sit on the sofa together and move
again. The memory cue and the learned color cue will
recover the system when being disturbed by the motion
of the other person.

In Fig. 10 we show a test scenario that two persons
walk across. A person is tracked at the test beginning
(frame 317). When two people come very close (frame
324) to each other, the particles are still able to keep
tracking the target person. Figure 11 shows another test
scenario. The target person sits first on the sofa close
to another person (frame 386). Since the target person
does not move, the motion cue is disabled (frame 401).
After that, when the other person stands up and moves,
the particles are disturbed strongly by the motion cue
(frame 420). But the color and memory cue will re-
cover the system quickly and the particles will come
back to the target person again (frame 423).

5.6. Distracter person using CLEAR 07 data set

We conducted a set of experiments based on the
fish-eye camera video of CLEAR 07 short sample data
set to evaluate tracking performance based on exter-
nal data. The idea of our system is to monitor a tar-
get person when being alone in the room. Because the
CLEAR 07 multiple person tracking data set aims to
track multiple persons, our current system will rely on

selecting a target person. Therefore, we can only eval-
uate the system when one of the persons is tracked.
The experiment is shown in Fig. 12. When a person is
tracked successfully, the person will always be local-
ized until the end of this video.

5.7. Evaluation

The experimental results have been evaluated prin-
cipally according to the CLEAR MOT Metrics [27].
Since only a single person is tracked in the system,
based on our goal design, the frame number of misses
m and of false positives fp has been counted and the
multiple object tracking accuracy (MOTA) has been
calculated. The threshold distance of a false positive
was defined as 40 pixels; 11 videos were evaluated and
the results are summarized in Table 1. We can see that
89.96% of the images on average are tracked correctly.
The best case is the change light condition in the day
scenario which indicates that the slight change of light
under sufficient sunshine does not disturb the tracking
system at all. The worst case is the change light condi-
tion in the night scenario. However, it is also the hard-
est test because the lamps are the only light source.
The light condition is changed totally when most of
the lamps are switched off and a person can hardly
be observed from the camera video (see frame 95 in
Fig. 8). In comparison, the success rate of tracking per-
son based on single motion detection could reach 69%
on average and the color and memory cue alone can
not achieve the tracking task.

5.7.1. Reliabilities
The contribution of visual cues can be evaluated by

their reliability values. The more often a visual cue
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Fig. 13. Reliabilities of linear cues.

helps to find the person, the higher the reliability of
this cue will get. The reliabilities of linear visual cues
are shown in Fig. 13. The x axis of the diagram de-
notes the frame number and the y axis the weight val-
ues. At the beginning of the tracking, the color cue
has a small value since the histogram has not yet been
learned. When the color information is trained (for ex-
ample after frame 300), the color cue arises to a high
value that makes it important for the system. The mem-
ory cue has usually a high value because this cue mem-
orizes the shape of the target person which is very re-
liable. The motion cue has a median importance but
it is essential to notice the other cues. The shape cue
has a lower value than the others, because the shape
of a person changes always and is hard to be classified
continually. Nevertheless, this shape cue does help the
system to find the person in the image at the beginning.

5.7.2. Computational complexity
The worst case of computation complexity of the

used visual cues is O(n2), where n denotes the width
of the quadratic search window. Because these visual
cues are computed for each particle, the cost of com-
puting visual cues of all particles is then O(pmn2),
where m denotes the number of particles and p the
number of linear visual cues. To assign the relia-
bilities it takes O(p2) and to resample the particles
costs O(m). Thus the total computational effort is
O(pmn2)+O(p2m)+O(m). Because the number of
visual cues is constant, for example here p = 4, the to-
tal cost is then O(mn2). The particle filter accelerates
here the system speed in comparison with a pixelwise
search window method, because only a few particles
(30) process a small part of the images (60×60 pixels)
at each step. In Table 2 we list the computation time
for 100 frames with different number of particles. The

Table 2

Computational time with different particle numbers

Particles numbers Frames Used time (ms)

30 100 2947

50 100 4525

100 100 8063

200 100 15385

500 100 31266

1000 100 61483

particles are able to track the person correctly through-
out all these tests. Therefore this system is shown to
work under real-time condition.

6. Conclusion and future work

In this paper we have presented a novel approach
for real-time detecting and tracking a person from a
ceiling-mounted camera view. A hybrid probabilistic
algorithm is proposed for localizing the person based
on different visual cues. A Sigma-Pi like network inte-
grates the output of different cues together with corre-
sponding reliability factors which helps a particle fil-
ter to track the person. The model is to some extent
indicative of a human’s ability of recognizing objects
based on different features. When some of the features
are strongly disturbed, detection recovers by the inte-
gration of other features. The particle filter parallels an
active attention selection mechanism which allocates
most processing resources to positions of interest. It
has a high performance of detecting complex objects
that move relatively slowly in real time.

Advantages of this system are that the feature pat-
tern used for one cue, such as the color histogram, can
adapt online to provide a more robust identification of
a person. With this short-term memory mechanism, the
system could master the challenge of an unstructured
environment as well as moving objects in a real am-
bient intelligent system. Accordingly, our model has
potential as a robust method for object detection and
tracking in complex conditions. We are planning to
equip this architecture with a recurrent memory neural
network and improve the quality of visual cues to ob-
tain higher tracking precision and extend the functions
for detecting the pose of the person.

6.1. Future work

It may in the future be better if the system tracks a
person not only based on these four cues, but also on
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some further features. Principally, the more cues there
are, the better tracking performance we could get. In
addition, non-visual sensors could be used such as a
microphone, which provides new data to improve the
tracking accuracy.

The short-term memory enables the system to
localize objects rapidly without a-priori knowledge
about the target person. We have experimented with
a multilayer perceptron network based on moment in-
variant features [21] that was trained to recognize a
person. However, due to the variety of the person’s
shape observed from the top view, this a-priori knowl-
edge about the person can be improved to distinguish
the person from the background. We are considering
to include another person-specific cue in the future.

Though the initial design of the tracking system is
to monitor a single person when the person is alone at
home, it might be interesting to extend the system to
track multiple persons. Through the experiments our
system has been shown to track a specific person while
other people can be in the room (see Section 5.5). Our
hybrid system has the potential to achieve multiple
people tracking as well. The particle filter framework
will be adapted for multiple person tracking, for exam-
ple using the RJMCMC algorithm [16].
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