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Preface

This book is the result of a series of International Workshops organised by
the EmerNet project on Emergent Neural Computational Architectures based
on Neuroscience sponsored by the Engineering and Physical Sciences Research
Council (EPSRC). The overall aim of the book is to present a broad spectrum of
current research into biologically inspired computational systems and hence en-
courage the emergence of new computational approaches based on neuroscience.
It is generally understood that the present approaches for computing do not have
the performance, flexibility and reliability of biological information processing
systems. Although there is a massive body of knowledge regarding how process-
ing occurs in the brain and central nervous system this has had little impact on
mainstream computing so far.

The process of developing biologically inspired computerised systems involves
the examination of the functionality and architecture of the brain with an empha-
sis on the information processing activities. Biologically inspired computerised
systems address neural computation from the position of both neuroscience,
and computing by using experimental evidence to create general neuroscience-
inspired systems.

The book focuses on the main research areas of modular organisation and
robustness, timing and synchronisation, and learning and memory storage. The
issues considered as part of these include: How can the modularity in the brain
be used to produce large scale computational architectures? How does the hu-
man memory manage to continue to operate despite failure of its components?
How does the brain synchronise its processing? How does the brain compute
with relatively slow computing elements but still achieve rapid and real-time
performance? How can we build computational models of these processes and
architectures? How can we design incremental learning algorithms and dynamic
memory architectures? How can the natural information processing systems be
exploited for artificial computational methods?

We hope that this book stimulates and encourages new research in this area.
We would like to thank all contributors to this book and the few hundred partici-
pants of the various workshops. Especially we would like to express our thanks to
Mark Elshaw, network assistant in the EmerNet network who put in tremendous
effort during the process of publishing this book.

Finally, we would like to thank EPSRC and James Fleming for their support
and Alfred Hofmann and his staff at Springer for their continuing assistance.

March 2001

Stefan Wermter

Jim Austin

David Willshaw
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Abstract. Present approaches for computing do not have the perfor-
mance, flexibility and reliability of neural information processing sys-
tems. In order to overcome this, conventional computing systems could
benefit from various characteristics of the brain such as modular organi-
sation, robustness, timing and synchronisation, and learning and memory
storage in the central nervous system. This overview incorporates some
of the key research issues in the field of biologically inspired computing
systems.

1 Introduction

It is generally understood that the present approaches for computing do not have
the performance, flexibility and reliability of biological information processing
systems. Although there is a massive body of knowledge regarding how process-
ing occurs in the brain this has had little impact on mainstream computing. As a
response the EPSRC1 sponsored the project entitled Emergent Neural Compu-
tational Architectures based on Neuroscience (EmerNet) which was initiated by
the Universities of Sunderland, York and Edinburgh. Four workshops were held
in the USA, Scotland and England. This book is a response to the workshops
and explores how computational systems might benefit from the inclusion of the
architecture and processing characteristics of the brain.

The process of developing biologically inspired computerised systems involves
the examination of the functionality and architecture of the brain with an empha-
sis on the information processing activities. Biologically inspired computerised
1 Engineering and Physical Sciences Research Council.



systems examine the basics of neural computation from the position of both
neuroscience and computing by using experimental evidence to create general
neuroscience-inspired systems.

Various restrictions have limited the degree of progress made in using bi-
ological inspiration to improve computerised systems. Most of the biologically
realistic models have been very limited in terms of what they attempt to achieve
compared to the brain. Despite the advances made in understanding the neu-
ronal processing level and the connectivity of the brain, there is still much that
is not known about what happens at the various systems levels [26]. There is
disagreement over what the large amount of information provided on the brain
imaging techniques means for computational systems [51].

Nevertheless, the last decade has seen a significant growth in interest in
studying the brain. The likely reason for this is the expectation that it is possible
to exploit inspiration from the brain to improve the performance of computerised
systems [11]. Furthermore, we observe the benefits of biological neural systems
since even a child’s brain can currently outperform the most powerful computing
algorithms. Within biologically inspired computerised systems there is a growing
belief that one key factor to unlocking the performance capabilities of the brain
is its architecture and processing [47], and that this will lead to new forms of
computation.

There are several architectural and information processing characteristics
of the brain that could be included in computing systems to enable them to
achieve novel forms of performance, including modular organisation, robustness,
information processing and encoding approaches based on timing and synchro-
nisation, and learning and memory storage.

2 Some Key Research Issues

In this chapter and based on the EmerNet workshops we look at various key
research issues: For biologically inspired computerised systems it is critical to
consider what is offered by computer science when researching biological com-
putation and by biological and neural computation for computer science. By
considering four architectural and information processing forms of inspiration it
is possible to identify some research issues associated with each of them.

Modular Organisation: There is good knowledge of how to build artificial
neural networks to do real world tasks, but little knowledge of how we bring
these together in systems to solve larger tasks (such as in associative retrieval
and memory). There may be hints from studying the brain to give us ideas on
how to solve these problems.

Robustness: How does human memory manage to continue to operate de-
spite failure of its components? What are its properties? Current computers use
a fast but brittle memory, brains are slow but robust. Can we learn more about
the properties that can be used in conventional computers.

Sychronisation and Timing: How does the brain synchronise its process-
ing? How does the brain prevent the well known race conditions found in com-



puters? How does the brain schedule its processing? The brain operates without
a central clock (possibly). How is the asynchronous operation achieved? How
does the brain compute with relatively slow computing elements but still achieve
rapid and real-time performance? How does the brain deal with real-time? Do
they exploit any-time properties, do they use special scheduling methods. How
well do natural systems achieve this and can we learn from any methods they
may use?

Learning and Memory Storage: There is evidence from neuron, network
and brain levels that the internal state of such a neurobiological system has an
influence on processing, learning and memory. However, how can we build com-
putational models of these processes and states? How can we design incremental
learning algorithms and dynamic memory architectures?

3 Modular Organisation

Modularity in the brain developed over many thousands of years of evolution
to perform cognitive functions using a compact structure [47] and takes various
forms such as neurons, columns, regions or hemispheres [58].

3.1 Regional Modularity

The brain is viewed as various distributed neural networks in diverse regions
which carry out processing in a parallel fashion to perform specific cognitive
functions [21, 42, 58]. The brain is sometimes described as a group of collaborat-
ing specialists that achieve the overall cognitive function by splitting the task
into smaller elements [59]. The cerebral cortex which is the biggest part of the
human brain is highly organised into many regions that are responsible for higher
level functionality that would not be possible without regional modularity [72,
58]. A feature of regional modularity is the division of the activities required
to perform a cognitive function between different hemispheres of the brain. For
instances, in this volume, Hicks and Monaghan (2001) [38] show that the split
character of the visual processing between different brain hemispheres improves
visual word identification by producing a modular architecture.

Brain imaging techniques have successfully provided a great deal of infor-
mation on the regions associated with cognitive functions [27]. The oldest of
these techniques mainly involves the examination of the brain for lesions that
are held responsible for an observed cognitive deficit [29]. The lesion approach
has been criticised since it does not identify all the regions involved in a cog-
nitive function, produces misleading results due to naturally occurring lesions
and alternative imaging techniques contradict its findings [9]. Due to the diffi-
culties observed with the lesion approach and technical developments, four al-
ternative techniques known as positron emission tomography (PET), functional
magnetic resonance imaging (fMRI), electronencephalogram (EEG) and mag-
netoencephalogram (MEG) have received more attention. PET and fMRI both
examine precisely the neural activity within the brain in an indirect manner and



so create an image of the regions associated with a cognitive task [60, 9]. For
PET this is done by identifying the regions with the greatest blood flow, while
for fMRI the brain map is the blood oxygen levels. Although PET and fMRI
have good spatial attainment, their temporal competence is limited [68]. In con-
trast, EEG measures voltage fluctuations produced by regional brain activity
through electrodes position on the surface of the scalp. MEG uses variations in
the magnetic field to establish brain activity by exploiting sophisticated super-
conducting quantum devices. The temporal properties of EEG and MEG are
significantly better that PET and fMRI with a sensitivity of a millisecond [68].

A major issue that is currently being investigated by biological inspired com-
puter system researchers is the manner that modules in the brain interact [66].
In this volume Taylor (2001) [68] establishes an approach to examine the degree
of association between those regions identified as responsible for a subtask by
considering the correlation coefficients. This approach incorporates structural
modelling where linear associations among the active regions are accepted and
the path strengths are established via the correlation matrix. When bridging the
gap between the brain image information and underlying neural network opera-
tions, activity is described by coupled neural equations using basic neurons. The
outcomes from brain imaging, as well as from single cell examinations lead to
the identification of new conceptions for neural networks.

A related cortical approach is taken by Érdi and Kiss in this volume. Érdi
and Kiss (2001) [24] develop a model of the interaction between cortical regions.
Using sixty-five cortical regions, connection strengths and delay levels a connec-
tion matrix was devised of a dynamically outlined model of the cortex. Finally,
Reilly (2001) [59] identified both feedforward and feedback routes linking the
modules performing a particular cognitive function.

The concept of regional modularity in the brain has been used to develop
various computing systems. For example, Bryson and Stein (2001) [12] point
out in this volume that robotics used modularity for some time and has pro-
duced means of developing and coordinating modular systems. These authors
also show that these means can be used to make functioning models of brain-
inspired modular decomposition. Deco (2001) [18] in this volume also devises a
regional modular approach to visual attention for object recognition and visual
search. The system is based on three modules that match the two principal vi-
sual pathways of the visual cortex and performs in two modes: the learning and
recognition modes.

A biological inspired computer model of contour extraction processes was de-
vised by Hansen et al. (2001) [34] and Hansen and Neumann (2001) [33] that is
based on a modular approach. This approach involves long-range links, feedback
and feedforward processing, lateral competitive interaction and horizontal long-
range integration, and localised receptive fields for oriented contract processing.
The model depends on a simplified representation of visual cortex regions V1
and V2, the interaction between these regions and two layers of V1. Because
there is a large number of cortical regions, a description of their mutual connec-
tivity is complex. Weber and Obermayer (2001) [72] have devised computational



models for learning the relationships between simplified cortical areas. Based on
a paradigm of maximum likelihood reconstruction of artificial data, the archi-
tecture adapts to the data to represent it best.

3.2 Columnar Modularity of Cerebral Cortex

Turning to a more detailed interpretation of the brain’s modular construction,
Érdi and Kiss (2001) [24], Guigon et al. (1994) [31] and Fulvi Mari (2000) [28]
built on the fact that the cerebral cortex is composed completely of blocks of
repetitive modules known as cortical columns with basically the same six layer
structure [24, 28]. Variations in cognitive functionality are achieved as the colum-
nar organisations have diverse start and end connections, and the cortical neu-
rons have regional specific integrative and registering features [31]. According to
Reilly (2001) [59] the columns can be 0.03mm in diameter and include around
100 neurons. These columns are used to provide reliable distributed representa-
tions of cognitive functions by creating a spatio-temporal pattern of activation
and at any particular time millions are active. Their development was the re-
sult of the evolutionary need for better functionality and the bandwidth of the
sensory system. There are two extreme views on the form that representation
takes in the cerebral cortex. The older view sees representation as context in-
dependent and compositionality of the kind linked with formal linguistics and
logical depiction. The new view holds that the brain is a dynamic system and
that predicate calculus is relevant for describing brain functionality.

A model of the cortex and its columns designed by Doya points to a layered
structure and a very recurrent processing approach [22]. The system provides
both inhibitory and excitatory synaptic connections among three types of neu-
rons (pyramidal neurons, spiny stellate neurons and inhibitory neurons). The
pyramidal and spiny stellate neurons are responsible for passing an excitatory
signal to various other cells in the column including cells of the same kind. In-
hibitory neurons restrict the spiking of the pyramidal and spiny stellate neurons
that are near by, while the pyramidal and spiny stellate neurons use the in-
hibitory neurons to control themselves and other cells in the column. In this
volume, a related columnar model is devised by Bartsch et al. (2001) [7] when
considering the visual cortex. A prominent character of the neurons in the pri-
mary visual cortex is the preference input in their classical receptive field. The
model combines various structured orientation columns to produce a full hyper-
column. Orientation columns are mutually coupled by lateral links with Gaussian
profiles and are driven by weakly orientation-biased inputs.

There has been some research to create these multi-cellar models using cells
made from many linked compartments and so a higher degree of biological plau-
sibility. However, there is the difficulty of high processing time due to the ionic
channel processing elements within the compartments [39]. To a certain extent
this can be overcome by using Lie series solutions and Lie algebra to create a
restricted Hodgkin-Huxley type model [30].



In general, the brain consists of a distributed and recurrent interaction of
billions of neurons. However, a lot of insight and inspiration for computational
architectures can be gained from areas, regions or column organisation.

4 Robustness

A second important feature of the brain is its robustness. Robustness in the
human brain can be achieved through recovery of certain functions following
a defect. The brain has to compensate for the loss of neurons or even neuron
areas and whole functional networks on a constant basis. The degree of recovery
and hence of robustness is dependent on various factors such as the level of the
injury, the location and size of the lesion, and the age of the patient. Recovery
is felt to be best when the patient is younger and still in the maturation period,
but the approaches for recovery are complicated and variable [50, 43, 8].

Two approaches to recovery are: i) the repair of the damaged neural networks
and the reactivation of those networks which although not damaged due to
their close proximity to the injury stopped functioning; and ii) redistribution of
functionality to new regions of the brain [14]. There is mixed evidence about
the time it normally takes for repair of injured tissue. However, researchers have
found that the redistribution of functionality to new regions of the brain can
take longer and repair of the left superior temporal gyrus occurs over numerous
months following the injury [50]. Restoration of the cortex regions is critical to
good recovery of the functionality of the region and is known to inhibit the degree
of reallocation of functionality to new regions [71, 73]. According to Reggia et
al. (2001) [58] in this volume the reorganisation of the brain regions responsible
for a cognitive function explains the remarkable capacity to recover from injury
and robust, fault-tolerant processing.

4.1 Computerised Models of Recovery through Regeneration

It is possible to model recovery through tissue regeneration by considering the
neural network’s performance at various degrees of recovery. For instance, Martin
et al. (1996) [46] examined recovery through the regeneration of tissue in a deep
dysphasia by considering the attainment of a subject on naming and repetition
tests. The model used to examine robustness is associated with the interaction
activation and competition neural network and recovery comes from the decay
rate returning to more normal levels. Wright and Ahmad (1997) [81] have also
developed a modular neural network model that can be trained to perform the
naming function and then damaged to varying degrees to examining recovery. A
model that incorporates a method to achieve robustness through recovery that is
closer to the technique employed in the brain is that of Rust et al. (2001) [61] in
this volume, which considers the creation of neural systems that are dynamic and
adaptive. This computational model produces recovery by allowing adaptability
and so achieving self-repair of axons and dendrites to produce new links.



4.2 Computerised Model of Robustness through Functional
Reallocation

A second form of robustness is reallocation. When considering the recovery of
functionality through reallocation, Reggia et al. (2001) [58] in this volume devise
biologically plausible models of the regions of the cerebral cortex responsible for
the two functions of phoneme sequence creation and letter identification. The
former model is based on a recurrent unsupervised learning and the latter on
both unsupervised and supervised learning. When the sections of the models
that represent one hemisphere of the cerebral cortex were left undamaged they
contributed to the recovery of functionality, particularly when the level of injury
to the other hemisphere was significant. In general, such graded forms of dynamic
robustness go beyond current computing systems.

5 Timing and Synchronisation

Although the neurophysiological activity of the brain seems complicated, diverse
and random experimental data indicates the importance of temporal associations
in the activities of neurons, neural populations and brain regions [11]. Hence,
timing and synchronisation are features of the brain that are considered critical
in achieving high levels of performance [17]. According to Denham (2001) [19] in
this volume, the alterations of synaptic efficacy coming from pairing of pre- and
postsynaptic activity can significantly alter the synaptic links. The induction of
long-term alterations in synaptic efficacy through such pairing relies significantly
on the relative timing of the onset of excitatory post-synaptic potential (EPSP)
produced by the pre-synaptic action potential.

There is disagreement over the importance of the information encoding role
played by the interaction between the individual neurons in the form of synchro-
nisation. Schultz et al. (2001) [62] consider synchronisation as only secondary to
firing rates. However, other research has questioned this based on the temporal
organisation of spiking trains [11].

Another critical feature of timing in the brain is how it performs real-time
and fast processing despite relatively slow processing elements. For instance Bug-
mann (2001) [13] points to the role of the cerebellum in off-line planning to
achieve real-time processing. According to Panzeri et al. (2001) a commonly
held view is that fast processing speed in the cerebral cortex comes from an
entirely feedforward-oriented approach. However, Panzeri et al. (2001) [55] were
able to contradict this view by producing a model made up of three layers of
excitatory and inhibitory integrate-and-fire neurons that included within-layer
recurrent processing.

Given the importance of timing and synchronisation in the brain, compu-
tational modelling is used in several architectures to achieve various cognitive
functions including vision and language. For instance, Sterratt (2001) [67] ex-
amined how the brain synchronises and schedules its processing by considering
the locust olfactory system. The desert locust olfactory system’s neural activ-
ity has interesting spatiotemporal and synchronisation coding features. In the



olfactory system the receptor cells connect to both the projection neurons and
inhibitory local neurons in the Antennal Lobe, as well as the projection neu-
rons and inhibitory local neuron groups being interconnected. The projection
neurons appear to depict the odour via a spatiotemporal code in around one
second, which is made up of three principal elements: the slow spatiotemporal
activity, fast global oscillations and transient synchronisation. Synchronisation
in this system is used to refine the spatiotemporal depiction of the odours.

A biologically inspired computerised model of attention that considers the
role played by sychronisation was formulated by Borisyuk et al. (2001) [11] with
a central oscillator linked to peripheral oscillators via feedforward and feedback
links. In this approach the septo-hippocampal area acts like the central oscillator
and the peripheral oscillators are the cortical columns that are sensitive to par-
ticular characteristics. Attention is produced in the network via synchronisation
of the central oscillator with certain peripheral oscillators.

Henderson (2001) [37] devised a biologically inspired computing model of syn-
chronisation to segment patterns according to entities using simple synchrony
networks. Simple synchronisation networks are an enlargement of simple recur-
rent networks by using pulsing units. During each period pulsing units have
diverse activation levels for the phrases in the period.

A related biologically inspired model addresses the effects of axonal and den-
dritic conduction time delays on temporal coding in neural populations, Halliday
(2001) [32]. The model uses two cells with common and independent synaptic
input based on morphologically detailed models of the dendritic tree typical of
spinal a motoneurones. Temporal coding in the inputs is carried by weakly cor-
related components present in the common input spike trains. Temporal coding
in the outputs is manifest as a tendency for synchronized discharge between the
two output spike trains. Dendritic and axonal conduction delays of several ms
do not alter the sensitivity of the cells to the temporal coding present in the
input spike trains.

There is growing support for chaotic dynamics in biological neural activity
and that individual neurons create chaotic firing in certain conditions [52]. In a
new approach to brain chaos András (2001) [1] states in this volume that the
stimuli to the brain are represented as chaotic neural objects. Chaotic neural
objects provide stability characteristics as well as superior information represen-
tation. Such neural objects are dynamic activity patterns that can be described
by mathematical chaos.

Assadollahi and Pulvermüller (2001) [2] were able to identify the importance
of a spatio-temporal depiction of information in the brain. This was performed
by looking at the representations of single words by using a Kohonen network
to classify the words. Sixteen words from four lexico-semantic classes were used
and brain responses that represent the diverse characteristics of the words such
as their length, frequency and meaning measured using MEG.



6 Learning and Memory Storage

An additional structural characteristic of the brain and central nervous system
is the manner it learns and stores memories. Denham (2001) [19] argues that
the character of neural connections and the approach to learning and memory
storage in the brain currently does not have a major impact on computational
neural architectures despite the significant benefits that are available. A school
of though known as neo-constructivism lead by Elman (1999) [23] argue that
learning and its underlying brain structure does not come from a particular
organisation that is available at birth, but from modifications that results from
the many experiences that are faced over time. Although this model does have a
certain appeal, Marcus (2001) [45] points to various limitations with it, learning
mechanism have a certain degree of innateness as infants a few months old
often have the ability to learn ‘abstract rules’, developmental flexibility does not
necessarily entail learning and it relies too greatly on learning and neural activity.
Marcus (2001) [45] holds that neo-constructivists lack a toolkit of developmental
biology and has put forward his own approach to developing neural networks
that grow and offer self-organising without experience. This toolkit includes cell
division, migration and death, gene expression, cell-to-cell interaction and gene
hierarchies.

For many years computational scientists have attempted to incorporate learn-
ing and memory storage into artificial intelligent computer systems typically as
artificial neural networks. However, in most systems the computational elements
are still a gross simplification of biological neurons. There is too little biolog-
ical plausibility or indication of how the brain constrains can incorporated in
a better way [66, 12, 25]. Nevertheless, Hanson et al. (2001) [35] in this volume
outlines that artificial neural network such as recurrent ones can perform emer-
gent behaviour close to human cognitive performance. These networks are able
to produces an abstract structure that is situation sensitive, hierarchical and
extensible. When performing the activity of learning a grammar from valid set
of examples the recurrent network is able to recode the input to defer symbol
binding until it has received sufficient string sequences.

6.1 Synaptic Alteration to Achieve Learning and Memory Storage

Two regions of the brain that are fundamental in learning and memory storage
are the cortex and the hippocampus. However, these are not the only areas
involved as shown below by Prez-Uribe (2001) [57] who describes a basal ganglion
model and its role in trial-and-error learning. The hippocampus system is a
cortical subsystem found in the temporal lobe and has a fundamental role in
short-term memory storage and transferring of short-term memories to longer-
term ones. The cortex is the final location of such memories [48].

One of the first accounts of how learning occurs is that of Hebb (1949) [36]
who devised a model of how the brain stores memories through a simple synaptic
approach based on cell assemblies for cortical processing. Alterations in synaptic
strengths is the approach for learning, the persistence of memories and repeated



co-activation is used for memory retrieval. The determinant of an assembly is
the connectivity structure between neurons that lends support to one another’s
firing and hence have a greater probability of being co-activated in a reliable
fashion. Cell assemblies are found in working and long-term memory storage
and interact with other cell assemblies. There has been a substantial amount of
work on learning and memory [66, 54, 79, 74, 69, 49, 65].

Long-term potentiation (LTP) is a growth in synaptic strength that is caused
rapidly by short periods of synaptic stimulation and is close to the Hebb’s notion
of activity-reliant alterable synapses. Given that there is an approach like LTP
for strengthening links between synapses, it is likely that there is a device for
reducing the synaptic strength which is known as long-term depression (LTD).
Shastri (2001) [64] in this volume devises a computational abstraction of LTP
and LTD which is a greatly simplified representation of the processes involved in
the creation of LTP and LTD. A cell is represented as an idealised integrate-and-
fire neuron with spatio-temporal integration of activity arriving at a cell. Certain
cell-kinds have two firing modes: supra-active and normal. Neurally, the supra-
active model relates to a high-frequency burst reaction and the normal mode
relates to a basic spiking reaction made up of isolated spikes. LTP and LTD
are identified by Shastri (2001) [64] as critical in episodic memory through their
role in binding-detection. In Shastri’s model a structure for the fast production
of cell responses to binding matches is made up of three areas: role, entity and
bind. Areas role and entity are felt to have 750,000 primary cells each, and bind
15 million cells. The role and entity areas match the subareas of the entorhinal
cortex, and the bind area the dentrate gyrus.

Huyck (2001) [40] devised a biologically inspired model of cell assemblies
known as the CANT system. The CANT system is made up of a network of
neurons that may contain many cell assemblies that are unidirectionally linked
to other neurons. As with many neural network models connection strengths
are altered by the local Hebbian rule and learning through a Hebbian-based
unsupervised approach.

6.2 Models of Learning

There have been some recent models of learning in artificial systems which are
particularly interesting since they are based on neuroscience learning methods.
For instance, McClelland and Goddard (1996) [48] examined the role of the
hippocampal system in learning by devising a biologically inspired model. For-
ward pathways from the association regions of the neocortex to the entorhinal
cortex create a pattern of activation on the entorhinal cortex that maximises
preservation of knowledge about the neocortical pattern. The entorhinal cortex
gives inputs to the hippocampal memory system, which is recoded in the den-
tate gyrus and CA3 in a manner that is suitable for storage. The hippocampus
computerised model is split into three main subsystems: i) structure-preserving
invertible encoder subsystem; ii) memory separation, storage and retrieval sub-
system; and iii) memory decoding system.



The learning process is outlined by Denham (2001) [19] in this volume as a
simple biologically inspired computational model. The model requires the deter-
mination of the EPSP at the synapse and the back-propagating action potential.
A learning rule is then produced that relies on the integration of the product
of these two potentials. The EPSP at the synapse is determine by the effective
synapse current using the equation for the passive membrane mechanism.

Two biologically inspired computerised systems of learning are included in
robots, which shows that these systems can improve on existing technology.
Kazer and Sharkey (2001) [41] developed a model of how the hippocampus com-
bines memory and anxiety to produce novelty detection in a robot. The robot
offers knowledge for learning and an approach for making any alterations in anx-
iety behaviourally explicit. A learning robot was devised by Pérez-Uribe (2001)
[57] that uses a biologically inspired approach based on the basal ganglion to
learn by trial-and-error.

Bogacz et al. (2001) [10] devised a biologically plausible algorithm of familiar-
ity discrimination based on energy. This is based on the information processing
of the perirhinal cortex of the hippocampus system. This approach does not need
assumptions related to the distribution of patterns and discriminates if a certain
pattern was presented before and keeps knowledge on the familiar patterns in
the weights of Hopfield Networks.

A related biologically inspired computerised system was devised by Chady
(2001) [16] for compositionality and context-sensitive learning founded on a
group of Hopfield Networks. The inspiration comes from the cortical column
by using a two-dimensional grid of networks and basing interaction on the near-
est neighbour approach. In the model the individual network states are discrete
and their transitions synchronous. The state alteration of the grid is carried out
in an asynchronous fashion.

When considering a biological inspired computerised systems for natural lan-
guage understanding Moisl (2001) [51] proposes sequential processing using Free-
man’s work on brain intentionality and meaning. Moisl (2001) [51] proposed
approach will include: i) Processing components that output pulse trains as a
nonlinear reaction to input; ii) Modules of excitatory and inhibitory neurons that
create oscillatory actions; iii) Feedforward and feedback links between modules
to foster chaotic behaviour; and iv) A local learning mechanism such as Hebbian
learning to achieve self-organising in modules.

Pearce et al. (2001) [56] argues that the olfactory system offers an ideal model
for examining the issues of robust sensory signal transmission and efficient in-
formation representation in a neural system. A critical feature of mammalian
olfactory system is the large scale convergence of spiking receptor stimulus from
thousands of olfactory receptors, which seems fundamental for information rep-
resentation and greater sensitivity. Typically the information representation ap-
proaches used in the olfactory cortex are action and grading potentials, rate codes
and particular temporal codings. The study considered whether the rate-coded
depiction of the input restricts the quality of the signal that can be recovered in
the glomerulus of the olfactory bulb. This was done by looking at the outcomes



from two models, one that uses probabilistic spike trains and another which uses
graded receptor inputs.

Auditory perception has various characteristics with the brain having the
capability to detect growths in loudness as well as differentiating between two
clicks that are very close together. Based on the findings of Denham and Denham
(2001) [20] this is the result of the manner of information representation in the
primary auditory cortex through cortical synaptic dynamics. When synapses are
repeatedly activated they do not react in the same manner to every incoming
impulse and synapses might produce a short-term depression or facilitation.
When there is a great deal of activity in the synapse, the amount of resources
that are available is reduced, which is likely to be followed by a period of recovery
for the synapse. A leaky integrate-and-fire neuron model is then used, with the
input to the neuron model gained through summing the synaptic EPSPs. In the
examination of the model the reaction features of the neuron that incorporated
a dynamic synapse are close to those of the primary auditory cortex.

Caragea et al. (2001) [15] have proposed a set of biologically inspired ap-
proaches for knowledge discovery operations. The databases in this domain are
normally large, distributed and constantly growing in size. There is a need for
computerised approaches to achieve learning from distributed data that do not
reprocess already processed data. The techniques devised by Caragea et al.
(2001) [15] for distributed or incremental algorithms attempt to determine infor-
mation needs of the learner and devising effective approaches to providing this
in an distributed or incremental setting. By splitting the learning activity into
information extraction and hypothesis production stages this allows the enhance-
ment of current learning approaches to perform in a distributed context. The
hypothesis production element is the control part that causes the information
extraction component to occur. The long-term aim of the research is to develop
well-founded multi-agent systems that are able to learn through interaction with
open-ended dynamic systems from knowledge discovery activities.

6.3 Models of Memory Storage

In this section we provide an outline of the various biologically inspired comput-
erised models connected with memory storage in the brain. Knoblauch and Palm
(2001) [42] took a similar approach to autoassociative networks as by Willshaw
[79, 75, 78, 76, 80, 77] and extend it based on biological neurons and synapses. In
particular Knoblauch and Palm added characteristics that represent the spiking
actions of real neurons in addition to the characteristics of spatio-temporal in-
tegration on dendrites. Individual cells are modelled like ‘spiking neurons’: each
time the potential level is at a particular threshold a pulse-like action potential
is created. The Knoblauch and Palm (2001) [42] model of associative memory is
included in a model of reciprocally connected visual areas comprising three areas
(R, P and C) each made up of various neuron populations. In region R (retina)
input patterns matching input objects in the visual field and are depicted in a
100 x 100 bitmap. Area P (primary visual cortex) is made up of 100 x 100 exci-



tatory spike neurons and 100 x 100 inhibitory gradual neurons. Area C (central
visual area) is modelled as the SSI-variant of the spiking associative memory.

A biologically inspired model of episodic memory by Shastri (2000) [63]
known as SMRITI outlines how a transient pattern of rhythmic activity de-
picting an event can be altered swiftly into a persistent and robust memory
trace. Creation of such a memory trace matches the recruitment of a compli-
cated circuit in the hippocampal system that includes the required elements. In
order to analysis characteristics of the model its performance is examined using
plausible values of system variables. The outcomes display that robust memory
traces can be produced if one assumes there is an episodic memory capacity of
75,000 events made up of 300,000 bindings.

Forcada and Carrasco (2001) [25] argue that, although a finite-state ma-
chine could be modelled by any discrete-time recurrent neural network (DTRNN)
with discrete-time processing elements, biological networks perform in continu-
ous time and so methods for synchronisation and memory should be postulated.
It ought to be possible to produce a more natural and biologically plausible
approach to finite-state computation founded on continuous-time recurrent neu-
ral networks (CTRNN). CTRNN have inputs and outputs that are functions
of a continuous-time variable and neurons that have a temporal reaction. It is
possible to encode in an indirect manner finite-state machines using a sigmoid
DTRNN as a CTRNN and then changing the CTRNN into an integrate-and-fire
network.

A considerable amount of research has been carried out by Austin and his
associates at York into memory storage [6, 3, 5, 53, 4, 70, 82]. An example of this
work in this volume is the Correlation Matrix Memories (CMMs) which accord-
ing to Kustrin and Austin (2001) [44] are simple binary weighted feedforward
neural networks that are used for various tasks that offers an indication of how
memories are stored in the human cerebral cortex. CMMs are close to single
layer, binary weighted neural networks, but use much less complex learning and
recall algorithms.

7 Conclusion

There is no doubt that current computer systems are not able to perform many
of the cognitive functions such as vision, motion, language processing to the level
associated with the brain. It seems there is a strong need to use new architec-
tural and information processing characteristics to improve computerised sys-
tems. Although interest in biologically inspired computerised system has grown
significantly recently, the approaches currently available are simplistic and un-
derstanding of the brain at the system level is still limited. Key research issues for
biologically inspired computer systems relate to the fundamental architectural
features and processing-related associated with the brain, and what computer
science can learn from biological and neural computing.

The characteristics of the brain that potentially could benefit computerised
systems include modular organisation, robustness, timing and synchronisation



and learning and memory storage. Modularity in the brain takes various forms of
abstraction including regional, columnar and cellular, and is central to many bio-
logically inspired computerised systems. Robustness comes from the brain’s abil-
ity to recover functionality despite injury through tissue repair and re-allocation
of functionality to other brain regions. While conventional computer systems
are presently based on synchronised or clocked processing these systems could
potentially be enriched by basing information processing and encoding on the
timing and synchronisation approaches of the brain. Furthermore, as seen in this
chapter and volume a particular fertile research area is the development of bi-
ological inspired computing models of learning and memory storage to perform
various cognitive functions [42, 20, 63, 41, 25, 20].

To move the field of biological inspired computing systems forward, consid-
eration should be given to how the architectural features of the brain such as
modular organisation, robustness, timing and sychronisation, and learning and
memory could benefit the performance of computering systems. The most suit-
able level of neuroscience-inspired abstraction for producing such systems should
be identified. Although the findings offered by neuroscience research should be
taken serious, there is a need to understand the constraints offered by computer
hardware and software. Greater concentration should be given to dynamic net-
work architectures that can alter their structure based on experience by either
using elaborate circuitry or constant network modification. Finally, a more com-
prehensive understanding of the brain and the central nervous system is critical
to achieve better biologically inspired adaptive computing systems.
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