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Abstract. We present a brief overview of the chapters in this book
that relate to the development of intelligent robotic systems that are in-
spired by neuroscience concepts. Firstly, we concentrate on the research
of the MirrorBot project which focuses on biomimetic multimodal learn-
ing in a mirror neuron-based robot. This project has made significant
developments in biologically inspired neural models using inspiration
from the mirror neuron system and modular cerebral cortex organisa-
tion of actions for use in an intelligent robot within an extended ‘pick
and place’ type scenario. The hypothesis under investigation in the Mir-
rorBot project is whether a mirror neuron-based cell assembly model
can produce a life-like perception system for actions. Various models
were developed based on principles such as cell assemblies, associative
neural networks, and Hebbian-type learning in order to associate vision,
language and motor concepts. Furthermore, we introduce the chapters
of this book from other researchers who attended our Al-workshop on
NeuroBotics.

1 Introduction

Many classical robot systems ignore biological inspiration and so do not per-
form in a robust learned manner. This is reflected in most of the conventional
approaches to the programming of (semi-) autonomous robots: Many details of
the program have to be reprogrammed and fine-tuned by hand even for slight
changes in the application, which is time consuming and error-prone. Hence,
there is a need for a new type of computation that is able to take its inspira-
tion from neuroscience and perform in an intelligent adaptive manner to create
biomimetic robotic systems. Many researchers including the contributors to this



book hold that by taking inspiration from biological systems that would allow
the development of autonomous robots with more robust functionality than is
possible with current robots. An additional benefit of biomimetic robots is that
they can provide an indication of how the biological systems actually could work
in order to provide feedback to neuroscientists. In order to indicate the progress
made towards Biomimetic Neural Learning for Intelligent Robots this book is
split into two parts.

In the first part we present some of the research findings from the biomimetic
multimodal learning in a mirror neuron-based robot (MirrorBot) project. The
aim of this EU FET project was to develop models for biomimetic multimodal
learning using a mirror neuron-based robot to investigate an extended ‘pick and
place’ scenario. This task involves the search for objects and integrates multi-
modal sensory inputs to plan and guide behaviour. These perceptual processes
are examined using models of cortical assemblies and mirror neurons to explore
the emergence of semantic representations of actions, percepts, language and
concepts in a MirrorBot, a biologically-inspired neural robot. The hypothesis
under investigation and focus of this book is whether a mirror neuron-based
cell assembly model will produce a life-like perception system for actions. The
MirrorBot project combines leading researchers in the areas of neuroscience and
computational modeling from the University of Sunderland, Parma and Ulm,
INRIA Lorraine/LORIA-CNRS and Cognition and Brain Sciences Unit, Cam-
bridge. The findings of the neuroscience partners form the basis of the compu-
tational models that are used in the development of the robotic system. The
neuroscience partners concentrate on two cerebral cortex systems by examin-
ing how humans process and represent different word categories and the mirror
neuron system.

The extended ‘pick and place’ scenario involves the MirrorBot neural robot
assistant being positioned between two tables that have multiple objects posi-
tioned on them and is required to perform various behaviours on objects based
on a human verbal instruction. The robot takes in three or four word instruc-
tions that contain an actor, action and object such as ‘bot pick plum’ or ‘bot
show brown nut’. The instructional grammar developed for the MirrorBot con-
tains approximately 50 words with the actor being the ‘bot’. The actions that
are performed are divided into those that are performed by the hand, leg or
head. For instance, the action performed by the hand include ‘pick’, ‘put’ and
‘lift’, the leg actions include ‘go’ and ‘move’ and the head actions include ‘show’
and ‘turn-head’. The objects include natural objects such as ‘orange’, ‘nut’ and
artefact objects such as ‘ball’ and ‘cup’. In order to perform the appropriate
behaviours the robot assistant using neural learning must perform such diverse
activities as language recognition, object localization, object recognition, atten-
tion, grasping actions, docking, table localization, navigation, wandering and
camera positioning.

In the second part of the book we provide chapters from researchers in
the field of biomimetic robotic neural learning systems who attended the AI-
Workshop on NeuroBotics. The aim of this workshop and hence of this book



is to contribute to robotic systems which use methods of learning or artificial
neural networks and/or are inspired by observations and results in neuroscience
and animal behaviour. These chapters were selected to give an indication of the
diversity of the research that is being performed into biomimetic robotic learning
and to provide a broader perspective on neural robotics. For instance, chapters
will consider the development of a virtual platform for modeling biomimetic
robots, a robotic arm, robot recognition in RoboCup, sensory motor control of
robot limbs and navigation. These models are utilised by both robot simulators
and actual robots and make use of neural approaches that are both supervised
and unsupervised.

2 Modular Cerebral Cortex Organisation of Actions:
Neurocognitive Evidence for the MirrorBot Project

Neuroscience evidence reflected in the development of the MirrorBot biomimetic
robotic systems comes from research at Cambridge related to how words are
processed and represented in the cerebral cortex based on neurocognitive ex-
periments of Pulvermiiller. Accordingly, words are represented and processed
using Hebbian learning, synfire chains and by use of semantic features. Hebbian
learning supports the basis of higher cognitive behaviour through a simple synap-
tic approach based on cell assemblies for cortical processing [27, 30,28, 29]. Cell
assemblies rely on a connectivity structure between neurons that support one
another’s firing and hence have a greater probability of being co-activated in a
reliable fashion [43,41,47,23]. Synfire chains are formed from the spatiotemporal
firing patterns of different associated cell assemblies and rely on the activation
of one or more cell assemblies to activate the next assembly in the chain [27,
41, 18]. Hence, neurocognitive evidence on word representation and processing
in the cerebral cortex suggests that cognitive representations are distributed
among cortical neuronal populations [29,33,27]. The word meaning is critical
for determining the cortical populations that are activated for the cognitive rep-
resentation task.

When looking at the web of cell assemblies which process and represent
particular word types Pulvermiiller [27] notes that activation is found in both
hemispheres of the cerebral cortex for content words. Semantic word categories
elicit different activity patterns in the fronto-central areas of the cortex, in the
areas where body actions are known to be processed [40, 11]. Perception words
are represented by assemblies in the perisylvian cortex and posterior cortex
[27,31] and nouns related to animals activate the inferior temporal or occipital
cortices [28,27,29].

Emotional words are felt to activate the amygdala and cells in the limbic sys-
tem more than words associated with tools and their manipulation [26]. The link
between the assemblies in these two regions is achieved through the amygdala
and frontal septum [27]. For action words that involve moving ones own body
the perisylvian cell assembly is also associated with assemblies in the motor, pre-
motor and prefrontal cortices [27,30]. For content words the semantic features



that influence the cell assemblies come from various modalities and include the
complexity of activity performed, facial expression or sound, the type and num-
ber of muscles involved, the colour of the stimulus, the object complexity and
movement involved, the tool used, and whether the person can see itself doing
this activity. The combination of these characteristics into a single depiction is
produced by pathways linking sensory information from diverse modalities to the
same neurons. For objects the semantic features represented by cell assemblies
typically relate to their colour, smell and shape. If a word is repeatedly presented
with a stimulus the depiction of this stimulus is incorporated into the one for
the word to produce a new semantic feature. In general, words are depicted via
regions historically known as language regions and additional regions connected
with the words semantics.

Concerning a division between action related and non-action related words
[33], Pulvermiiller states that there is a finer-grained grounding of language
instruction in actions. This produces a division of the representation in the
cerebral cortex based on the part of the body that performs that action between
leg, head and hand [11,29,30,27,12]. It is well known that there is a division
in the motor cortex between the regions that perform head/face, hand/arm and
leg actions [25]. For instance, the region of the motor cortex that controls face
movement is found in the inferior precentral gyrus, hand and arm in the middle
region of the precentral gyrus and the leg actions are located in the dorsomedial
area [29, 30]. Given the difference in the regions of the cortex that are responsible
for performing actions it is also stated by Pulvermiiller that a similar difference
can be identified when representing action verbs and so grounding language
instructions in actions based on the part of the body that performs the action
[29].

Pulvermiiller and his colleagues have performed various experiments [28,12,
11,13,29,40] on cerebral cortex processing of action verbs to test their hypoth-
esis on the representation of action verbs based on the body part that performs.
These include experiments where (i) different groups of subjects are given leg-,
arm- and face-related action verbs and pseudo-words and asked to state whether
they are a word; (ii) subjects are asked to use a rating system to answer ques-
tions on the cognitive processes a word arouses; (iii) subjects rank words based
on whether they are leg-, arm- or head-related; and (iv) there is a comparison
between hearing walk- and talk-type verbs. In these experiments EEG electrodes
are positioned at various points along the scalp to produce recordings of cere-
bral cortex activation. From these experiments areas are identified where the
activation is the same for all action verbs and more importantly are different
depending on the action verbs based on the body parts they relate to.

Differences between the three types of action verbs based on the body parts
were observed by Pulvermiiller and his colleagues. They found a greater acti-
vation for face-words in the frontal-lateral regions of the left hemisphere close
to the premotor cortex associated with face and head. For face- and leg-related
action verbs there are different regions along the motor strip that are identified
to process verbs from these two verb categories. Leg-type words produce greater



activation in the cortical region of the cerebral cortex used to produce leg ac-
tions and for the face-words there is greater activation in the inferior regions
near to the face region of the motor cortex [32]. It is found that hand-related
words are located in more lateral regions of the cortex than leg-words. Consistent
with the somatotopy of the motor and premotor cortex [25], leg-words elicited
greater activation in the central cerebral cortex region around the vertex, with
face-words activating the inferior-frontal areas, thereby suggesting that the rel-
evant body part representations are differentially activated when action words
are being comprehended.

In addition the average response time for lexical decisions is faster for face-
associated words than for arm-associated words, and the arm-associated words
are faster than leg ones. There is also greater activation in the right parieto-
occipital areas for arm- and leg-words relative to head words. The evidence of
these experiments points to the word semantics being represented in different
parts of the cerebral cortex in a systematic way. Particularly the representation
of the word is related to the actual motor and premotor regions of the cerebral
cortex that perform the action.

3 Mirror Neuron System Inspiration for MirrorBot
Project

Research at Parma has provided a great deal of evidence on the mirror neuron
system that inspired the robotic research for the MirrorBot project. Rizzolatti
and co-workers [35, 8] found that neurons located in the rostral region of a pri-
mate’s inferior frontal cortex area, the F5 area, are activated by the movement
of the hand, mouth or both. These neurons fire as a result of the action, but not
of the isolated movements that make up this action. The recognition of motor
actions comes from the presence of a goal and so the motor system does not
solely control movements [9,37]. Hence, what turns a set of movement into an
action is the goal and holding the belief that performing the movements will
achieve a specific goal [1]. The F5 neurons are organised into diverse categories
based on the actions that cause them to fire, which are ‘grasping’, ‘holding’ and
‘tearing’ [34,9].

Certain grasping-related neurons fire when grasping an object whether it be
performed by the hand, mouth or both [7]. This supports both the view that
these neurons do not represent the motor action but the actual goal of performing
the grasping task. Within area F5 there are two types of neuron: the first known
as canonical neurons only respond to the performing of the action and the second
mirror neurons that respond not only when performing an action but also when
seeing or hearing the action performed [17,36,34]. Hence, the mirror neuron
system produces a neural representation that is identical for the performance
and recognition of the action [1].

These mirror neurons are typically found in area F5c and do not fire in
response to the presence of the object or mimicking of the action. Mirror neurons
required the action to interact with the actual object. They respond not only



to the aim of the action but also how the action is carried out [44]. However, as
shown by Umilta et al. 2001 [44] an understanding of an invisible present object
causes the activation of the mirror neurons if the hand reaches for the object in
the appropriate manner. This is achieved when they are first shown the action
being performed completely visible and then with the hand-object interaction
hidden. As the performance and recognition of an action causes activation in the
premotor areas which is responsible for the hand movements when observing the
action there is a set of mechanisms that prevent the behaviour being mimicked.
The mirror neuron system indicates that the motor cortex is not only involved
in the production of actions but in the action understanding from perceptual
information [36] and so the observer has the same internal representation of
action as the actor [44].

In this book Gallese [6] considers an exciting extension to findings related to
the mirror neuron system based on the system providing an understanding of the
emotional state of the performer for the observer. We do not exist independent
of the actions, emotions and sensations of others as we understand the intentions
of others. This indicates that as well as recognising an action the mirror neuron
system has a role in predicting the consequences of what is being performed.
Furthermore by allocating intentions to the actions monkeys and humans are
able to use the mirror neurons to aid social interactions. This is achieved through
the mirror neuron system providing intention to the motor sequence to identify
further goals from this sequence. Hence, Gallese [6] in this chapter notes that
we do not just see and recognise an action using the mirror neuron system but
by using this system we also associate emotions and sensations to this observed
behaviour. This occurs as if the observer is performing a similar action and
feeling the same feelings and sensations. This offers a form of mind reading by
the observed by attaching intentions to the behaviour. Hence, this points to the
ability through embodied simulation to gain insight into the minds of others.
Although this does not account for all social cognition.

It is observed that mirror neurons in humans are also excited by both the
performance and observation of an action [9]. The F5 area in primates corre-
sponds to various cortical areas in humans including the left superior temporal
sulcus, the left inferior parietal lobule and the anterior region of Broca’s area.
The association of mirror neurons with Broca’s area in humans and F5 in pri-
mates provides an indication that mirror neurons might have evolved in humans
into the language system [34]. The role of the mirror neuron system in language
can be seen from the findings of Pulvermiiller [30,11] in that processing and
representation of words includes the activation of some of the same regions as
those that are found to perform the action. The ability in the first instance to
recognise an action is required for the development of a communication system
between members of a group and finally for an elaborate language system [17,
34]. The concept of the mirror neuron system being the foundation of the lan-
guage system directs the multimodal models developed as part of the MirrorBot
project.



4 Computational Models in the MirrorBot Project

The neuroscience findings related to word processing and representation based
on the findings of research at Cambridge and the mirror neuron system from
research at Parma formed the basis for various computational robotic models
in the MirrorBot project. In this book we incorporate chapters that provide
some of these models that are able to perform language sequence detection [16,
18], spatial visual attention [46,4], auditory processing [22], navigation [3] and
language based multimodal input integration for robot control and multimodal
information fusion [18,4, 20,48, 24]. These models are a significant contribution
to the field of biomimetic neural learning for intelligent robots as they offer
brain-inspired robotic performance that is able to produce behaviour based on
the fusion of sensory data from multiple sources.

The research of Knoblauch and Pulvermiiller [16] described in this book re-
lates to the use of a computational system to consider if word sequences are
grammatically correct and so perform sequence detection. A particularly im-
portant feature of language is its syntactic structure. For a robot to be able to
perform language processing in a biomimetic manner it should be able to distin-
guish between grammatically correct and incorrect word sequences, categorise
words into syntactic classes and produce rules. The model of Knoblauch and
Pulvermiiller [16] incorporates a biologically realistic element in that it uses nu-
merous sequence detectors to show that associative Hebb-like learning is able to
identify word sequences, produces neural representations of grammatical struc-
tures, and links sequence detectors into neural assemblies that provides a biolog-
ical basis of syntactic rule knowledge. The approach consists of two populations
of neuron, the WW population for word webs and population SD for sequence
detectors. Each neuron is based on leaky-integrate units. The model was found
to create auto-associative substitution learning and generalized sequential or-
der to new examples and achieves the learning of putative neural correlate of
syntactical rules.

Vitay et al. [46] have developed a distributed model that allows to sequen-
tially focus salient targets on a real-world image. This computational model
relies on dynamical lateral-inhibition interactions within different neural maps
organized according to a biologically-inspired architecture. Despite the localized
computations, the global emergent behaviour mimics the serial mechanism of
attention-switching in the visual domain. Attention is understood here as the
ability to focus a given stimulus despite noise and distractors, what is repre-
sented here by a localized group of activated neurons. The task is to sequentially
move this bubble of activity on the different salient targets in the image. They
use a preprocessed representation of the image according to task requirements:
objects potentially interesting are made artificially salient by enhancing their
visual representation. Three mechanisms are involved to achieve that task: first
a mechanism allowing to focus a given stimulus despite noise and competing
stimuli; second a switching mechanism that can inhibit at demand the currently
focused target to let the first mechanism focus another location; third a working
memory system that remembers previously focused locations to avoid coming



back to a previously inspected object. The cooperation between these different
mechanisms is not sequential but totally dynamic and distributed: no need for a
central executive that would control the timing between the functionally differ-
ent systems, the inner dynamics of the neurons make the work. This model has
been successfully implemented on a robotic platform.

The chapter by Murray et al. [22] offers a biomimetically inspired hybrid ar-
chitecture that uses cross-correlation and recurrent neural networks for acoustic
tracking in robots. This research is motivated by gaining an understanding of
how the mammalian auditory system tracks sound sources and how to model the
mechanisms of the auditory cortex to enable acoustic localisation. The system
is based on certain concepts from the auditory system and by using a recurrent
neural network can dynamically track a sound as it changes azimuthally in the
environment. The first stage in the model determines the azimuth of the sound
source from within the environment by using Cross-Correlation and provides
this angle to the neural predictor to predict the next angle in the sequence with
the use of the recurrent neural network. To train the recurrent neural network
to recognize various speeds, a separate training sub-group was created for each
individual speed. This is to ensure that the network learns the correct temporal
sequence it needs to recognize and provide prediction for the speeds. It has been
shown that within the brain there is short term memory to perform such pre-
diction tasks and in order to forecast the trajectory of an object it is required
that previous positions are remembered to establish predicitons.

The navigation approach of Chokshi et al. [3] is based on modeling the place
cells by using self-organising maps. The overall aim of this approach is to lo-
calise a robot using two locations based on visual stimulus. An internal rep-
resentation of the world is produced by the robot in an unsupervised manner.
The self-organising maps receive visual images that are used to produce internal
representation of the environment that act like place codes using landmarks.
Localisation by the robot is achieved by a particular position being associated
with a specific active neuron. An overall architecture has been developed that
uses modules to do diverse operations such as visual information derivation and
motor control. The localisation was performed using a Khepera robot in an en-
vironment divided into 4 sections. These sections were also divided into squares
that were used to determine the place cell error. Landmarks of different coloured
cubes and pyramids were positioned at the edge of the environment. Each square
represented a place cell, with the training and testing involving the images asso-
ciated with each cell. An interesting finding of this study was that as the robot
approached a specific landmark it was found that the appropriate place cell in
the self-organising map output layer had great activation and once this robot
leaves the landmark the activation reduces until it reaches 0. Clustering was
also seen for landmarks that were close together and distinct landmarks were
positioned further apart on the self-organising map.

The first language model based on multimodal inputs from the MirrorBot
project considered in this book, is that of Markert et al. [18] who have developed
an approach that through associative memories and sparse distributed represen-



tations can associate words with objects and characteristics of the object and
actions. The approach enables a robot to process language instructions in a
manner that is neurobiologically inspired using cell assemblies. The fundamen-
tal concept behind the cortical model developed is the use of cortical regions
for different properties of an entity. Hence, a feature of the cortical model is the
combining of visual, tactile, auditory language, goal and motor regions. Each
of the regions is implemented using a spike counter architecture. Looking at re-
gional activations it is possible to describe how inputs from multiple modalities
are combined to create an action.

This language model using multimodal inputs is also used by Fay et al [4]
who developed a neurobiologically plausible robotic system that combines visual
attention, object recognition, language and action processing using neural asso-
ciative memory. This involves finding and pointing with the camera at a specific
fruit or object in a complex scene based on a spoken instruction. This requires
the understanding of the instruction, relating the noun with a specific object
that is recognised using the camera and coordinating motor output with plan-
ning and sensory information processing. The kinds of spoken commands that
the robot is able to parse include ‘bot show plum and ‘bot put apple to yellow
cup’. In the architecture preprocessing involves extracting features from the au-
ditory and the visual input chosen by attention control. The cortical model used
to perform speech recognition, language processing, action planning and object
recognition consists of various neural networks such as radial basis networks and
associator networks. A speech recogniser is used to receive the language instruc-
tion which is checked for syntactic consistency. This work is closely related to the
work by Knoblauch and Pulvermiiller described above. If the word sequence is
syntactically correct the global goal is divided into a sequence of subgoals whose
solution fulfills the overall goal. Object recognition is performed by a hierarchy of
radial-basis-function networks which divide a complex recognition task into var-
ious less complex tasks. The model is able to associate a restricted set of objects
with sentence like language instructions by associating the noun with properties
of the object such as colour and actions. The model is of particular significance
to this book as it shows how data from diverse modalities of language and vision
can be brought together to perform actions.

Wermter et al. [48] produce two architectures that are able to successfully
combine the three input modalities of high-level vision, language instructions
and motor directions to produce simulated robot behaviour. The flat multi-
modal architecture uses a Helmholtz machine and receives the three modalities
at the same time to learn to perform and recognise the three behaviours of ‘go,
‘pick’ and ‘lift’ . The hierarchical architecture at the lower-level uses a Helmholtz
machine and at the upper-level a SOM to perform feature binding. These mul-
timodal architectures are neuroscience-inspired by using concepts from action
verb processing based on neurocognitive evidence of Pulvermiiller and specifi-
cally features of the mirror neuron system. The architectures are able to display
certain features of the mirror neuron system which is a valuable development as
the activation patterns for both the performance of the action and its recogni-



tion are close. Furthermore, we are able to indicate the role played by the mirror
neuron system in language processing. A particular interesting finding obtained
with the hierarchical architecture is that certain neurons in the Helmholtz ma-
chine layer of the hierarchical model respond only to the motor input and so
act like the canonical neurons in area F5 and others to the visual stimulus and
so are analogous to the mirror neurons. Furthermore, the lower-level Helmholtz
machine is analogous to area F5 of the primate cortex and the SOM area to area
F6. The F5 area contains neurons that can produce a number of different grasp-
ing activities. F6 performs as a switch, facilitating or suppressing the effects of
F5 unit activations so that only the required units in the F5 region are activated
to perform or recognise the required action.

An additional multimodal model from the MirrorBot project described in this
book is that of Ménard et al. [20] which is a self-organising approach inspired
by cortical maps. When an input is given to the map, a distributed activation
pattern appears. From this a small group of units is selected by mutual inhibition
that contains the most active units. Unlike Kohonens self-organising maps where
this decision is made based on a global winner-takes-all approach, the decision is
based on a numerical distribution process. The fundamental processing element
of the Biologically-Inspired Joint Associative MAps (BIJAMA) model is a disk-
shaped map consisting of identical processing units. The global behaviour of
the map incorporates adaptive matching procedures and competitive learning.
Ménard et al. [20] use several self-organising maps that are linked to one another
to achieve cooperate processing by achieving word-action association. This multi-
associative model is used to associate multimodalities of language and action and
is able to deal with an association between modalities that is not one-one. The
main issue associated with this approach is that learning in a map is dependent
on the other maps, so that the inter-map connectivity biases the convergence to
a certain state. The model is able to organise word representation in such a way
that for instance a body word is associated with a body action.

Panchev [24] also developed a multimodal language processing model related
to the MirrorBot project. This model uses a spiking neural model that is able
to recognise a human instruction and then produce robot actions. Learning is
achieved through leaky Integrate-And-Fire neurons that have active dendrites
and dynamic synapses. Using spiking neurons the overall aim of this research is
to model the primary sensory regions, higher cognitive functional regions and
motor control regions. Hence, in this architecture there are modules that are
able to recognise single word instructions, recognise objects based on colour and
shape and a control system for navigation. The model uses a working memory
that is based on oscillatory activity of neural assemblies from the diverse modal-
ities. As this is one of the first robot control models that is based on spiking
neurons it offers the opportunity to consider new behaviours and computational
experiments that could be compared with the activity identified in the brain.
This research is a significant contribution to the MirrorBot project as it shows
the use of spiking neurons for spatiotemporal data processing. It is felt that
as this model is able to approximate current neuroscience evidence it could di-



rectly address future neuroscience studies in the area of multimodal language
processing. A future direction of this work is to consider the incorporation of
goal behaviours by having certain objects more attractive than others.

5 Biomimetic Cognitive Behaviour in Neural Robots

We now turn to the chapters in the book that relate to research into biomimetic
robots outside the MirrorBot project. The chapters summarised in this section
show the diversity necessary to build biomimetic intelligent systems.

Reinforcement and reward based learning has proved a successful technique
in biomimetic robots. In this book there are four chapter related to this tech-
nique from Jasso and Triesch [15], Hafner and Kaplan [10], Sung et al. [42] and
Sheynikhovich et al. [39]. Jasso and Triesch [15] who consider the development of
a virtual reality platform that is useful for biomimetic robots as it can be used to
model cognitive behaviour. This environment allows the examination how cogni-
tive skills are developed as it is now understood that these skills can be learned
through the interaction with the parent and the environment in changeable so-
cial settings. This learning relates to visual activities such as gaze and point
following and shared attention skills. Usually the models incorporate a single
child and a parent. The environment is a room that contains objects and furni-
ture and virtual agents that receive images from their camera. These images are
processed and used to influence the behaviour of the agent. The chapter shows
that the platform is suitable for modeling how gaze following emerges through
infant-parent interactions. Gaze following is the capacity to alter ones own at-
tention to an object that is the attention of another person. The environment
consists of a living room containing toys and furniture and contains a parent
agent and child agents. The child agents use reinforcement learning to alter its
gaze to that of the parent based on a reward.

Hafner and Kaplan [10] in this book present research on biomimetic robots
that are able to learn and understand pointing gestures from each other. Using
a simple feature-based neural approach it is possible to achieve discrimination
between left and right pointing gestures. The model is based on reward mecha-
nisms and is implemented on two AIBO robot dogs. The adult robot is positioned
pointing to an object using its left or right front leg and the child robot is po-
sitioned watching it. From the pointing gesture, the child robot learns to guess
the direction of the object the adult robot is attending to and starts searching
for it. The experiment used different viewing angles and distances between the
two robots as well as different lighting conditions. This is a first step in order to
bootstrap shared communication systems between robots by attention detection
and manipualtion.

A further learning approach for biomimetic robots is that of Sung et al.
[42] who use grid based function approximators for reinforcement learning. The
approach uses techniques gained from active learning to achieve active data
acquisition and make use of Q-learning methods that incorporate piecewise linear
grid-based approximators. A feature of active learning is active data acquisition



with algorithms being developed to reduce the effort required to produce training
data. The learning algorithm that relates piecewise linear based approximators
to reinforcement learning consists of two components. The first component is
used for data acquisition for learning and the second carries out the learning.
The suitability of the approach is tested on the 'Mountain-Car’ problem which
is typically used to evaluate reinforcement learning approaches. When doing so
it was found that the number of required state transitions during learning was
reduced. It is anticipated that this approach will be applicable to reinforcement
learning for a real-world problem.

As navigation is such an important activity for biomimetic robots this book
includes a second chapter on this by Sheynikhovich et al. [39]. Their biologically
inspired model is based on rodent navigation. The model is multimodal in that
it combines visual inputs from images and odometer readings to produce fir-
ing in artificial place cells using Hebbian synapses. By using reinforcement type
learning the model is able to recreate behaviours and actual neurophysiologi-
cal readings from the rodent. Although the model starts with no knowledge of
the environment learning occurs through populations of place cells as the arti-
ficial rodent interacts with the environment. In the model visual information is
correlated with odometer data related to the rotation and displacement using
Hebbian learning in order that ambiguity in the visual data is resolved using the
odometer readings. The model was implemented on a simulator and a mobile
Khephera robot and is able to achieve similar performance to animals. This was
seen when the robot learned the navigational task of reaching a hidden plat-
form from random positions in the environment. In training the robot was given
reward each time it found the platform and was able overtime to reduce the
number of steps required to find the platform.

With regards to biomimetic learning the approach of Bach [2] looks at using
distributed and localised representations to achieve learning and planning. To
perform plan-based control there is a need to have a localist representation of
the objects and events in the model of the world. In this approach composi-
tional hierarchies implemented using MicroPsi node nets are used as a form of
executable semantic networks that are seen as knowledge-based artificial neural
networks. By using MicroPsi node nets it is possible to achieve backpropagation
learning and symbolic plan representations. MicroPsi agents have a group of mo-
tivational variables that determine demands that direct how the agent performs.
In the first instance, the agent does not know what actions will fulfill their de-
sires and so performs trial-and-error actions. When the action is felt to have a
positive impact on the demand a link is established between them. Experiments
are performed by using a simulated environment that provides the agents with
resources and dangers.

Folgheraiter and Gini [5] have developed an artificial robotic arm that repli-
cates the functionality and structure of the human arm. In order to test the
control system architecture the arm was developed with a spherical joint with
3 degrees of freedom, and an elbow with 1 degree of freedom. The control is
arranged in a modular-hierarchical manner that has three levels: the lower level



replicates the spinal reflexes that is used to control artificial muscle activities; the
middle level produces the required arm movement trajectories; and at the higher
level the circuits in the cerebral cortex and the cerebellum are found to control
the path generator operation. The model uses a multilayer perceptron in order
to solve the inverse kinematics problem as it is possible to train the network from
actual readings from the human arm. In order to model the reflex behaviours a
simplified model of the human spinal cord was used that concentrates on mod-
eling membrane potential instead of spiking behaviour of the neurons. By using
light materials it is possible to include this arm into a humanoid robot.

The next chapter in this book includes a model of human-like controlling of
a biped robot [38]. Humanoid robots require complex design and complicated
mathematical models. Scarfogliero et al. [38] demonstrate that a Light Adaptive-
Reactive biped is simple, cheap and effective and is able to model the human
lower limb. By use of this model it is possible to understand how humans walk
and how this might be incorporated into a robot. The model is able to alter
joint stiffness for position-control by use of servo motors. Scarfogliero et al.
[38] devised a motor device based on torsional spring and damper to recreate
the elastic characteristics of muscles and tendons. By using this approach it is
possible to have good shock resistance and to determine the external load. As
the robot uses location and velocity feedback it is able to perform a fine position
operation even though it has no a-priori knowledge of external load.

The chapter in this book by Meng and Lee [21] considers the production of
a biologically plausible novelty habituation model based on topological mapping
for sensory-motor learning. Meng and Lee [21] examine embedded developmen-
tal learning algorithms by using a robotic system made up of two arms that are
fitted with two-fingered gripper and a pan/tilt head that includes a colour cam-
era. This robot is built in such away that it recreates the positioning of the head
and arms of a child. Novelty and habituation are fundamental for early learning
by assisting a system to examine new events/places while still monitoring the
current state to gain experience for the full environment. The chapter considers
the problem of sensory-motor control of limbs based on a childs arm movements
during the first three months of life. Learning is achieved through a hierarchical
mapping arrangement which consists of fields of diverse sizes and overlap at di-
verse mapping levels. The fields include local information such as sensory data
and data on movement from the motor and stimulus data. The maps contain
units known as fields that are receptive regions. In the experiments various pa-
rameters are considered such as the condition of the environment, field extent
and habituation variables. By using the concepts from novelty and habitation as
the basis of early robot learning it is possible to learn sensory-motor coordination
skills in the critical areas first, before going onto the less critical areas. Hence, the
robot uses novelty to learn to coordinate motor behaviour with sensory feedback.

Robot control using visual information was performed by Hermann et al.
[14] to examine modular learning using neural networks for biomimetic robots.
This chapter describes a modular architecture that is used to control the po-
sition/orientation of a robot manipulator by feedback from the visual system.



The outlined modular approach is felt to overcome some of the main limitations
associated with neural networks. Using modular learning is a useful approach for
robots as there is limited data for training, robots must function in real-time in a
real-time environment. A single neural network may not be sufficient to perform a
complex task, however by using a modular sequential and bidirectional arranges
of neural modules solutions can be found. Motivated by biological modularity
Hermann et al. [14] use extended Kohonen maps that combine a self-organising
map with ADA-Line networks (SOM-LLM) in the modular model. This neural
network approach was selected as the SOM-LLM is simple and offers a topo-
logical representation. To test the modular architecture it was used to control a
robot arm using two cameras that are positioned on a robot head. This chapter
is able to offer an approach that can combine a set of neural modules that can
converge and so learn complex systems.

In the area of RoboCup Mayer et al. [19] have developed a neural detection
system that achieves colour-based attention control and neural object recogni-
tion to determine whether another robot is observed. The ability to recognise
teammate robots and opposition robots is fundamental for robot soccer games.
Problems associated with self-localisation and communication between robot
teammates has lead to the need for an approach that is able to detect team-
mates and the opposition in a reliable manner based on vision. The approach
identified in Mayer et al. [19] in this book uses the following steps (i) identify
region of interest; (ii) gain features from this region; (iii) classify the features
using neural networks; and (iv) arbitrate the classification outcome to establish
if a robot is recognised and whether it is part of the own or opposition team.
Regions of interest are typically determined using blob search using a segmented
and colour-indexed picture. The types of features that are used in the robot are
width, how much black is in the image and an orientation histogram. Once the
features are established they are passed into two multilayer preceptron neural
networks that are used to classify the features. One network was used to process
the simple features and the other for the orientated histogram levels. These two
networks produce a probability value stating if a robot is present. A decision as
to whether a robot is present is based on whether the joint probablity from these
two neural networks is greater than a threshold. The team the robot belongs to
depends on the recognition of a colour marker. This approach has proved to give
very good performance when classifing the presence of a robot and whether it
belongs to the opposition or the own team.

Two approaches for visual homing using a descriptor that characterises local
image sections in a scale invariant fashion are considered by Vardy and Oppacher
[45] in this book. Visual homing is returning to a location by contrasting the
current image with the one at the goal. This approach is based on the behaviour
of insects like bees or ants. The two homing approaches rely on edges being
extracted from the input images using a Sobel filter. The first approach uses the
common technique of corresponding descriptors among images and the second
approach establishes a home vector by determining the local image regions which
are most similar between the two images, and assuming that these correspond



to the foci of expansion and contraction. This second approach makes use of the
structure of the motion field for pure translation. The second method found a
home vector more directly using the stationary local image region closest from
the two images. The first approach was able to out-perform the warping method,
while the second performs equivalently to the warping method.

6 Conclusion

As can be seen from this book there is much research being carried out towards
biomimetic robots. In particular, the MirrorBot project has contributed to the
development of biomimetic robots by taking neuroscience evidence and produc-
ing neural models, but also several other joint European projects have worked
in the same direction (SpikeFORCE, BIOLOCH, CIRCE, CYBREHAND, MIR-
ROR). The breadth of the international research community sharing the research
goal of biomimetic robotics can be seen not only from the contributions to this
workshop, but also from many closely related conferences that have been organ-
ised in recent years. The chapters included in this book show that the MirrorBot
project has successfully developed models that are able to check the syntactic
consistency of word sequences, visually explore scenes and integrate multiple in-
puts to produce sophisticated robotics systems. This shows that we can overcome
the present limitations of robotics and improve on some of the progress made by
basing robots on biological inspiration such as the mirror neuron concept and
modular cerebral cortex organisation of actions. The second part of the book
shows the diversity of the research in the field of biomimetic neural robot learn-
ing. Although this research produces different approaches to diverse sets of robot
function they are all connected by performance, flexibility and reliability that
can be achieved by those based on biological systems. The biological systems
thereby act as a common guideline for these diverse, cooperative, cooperating
and competing approaches. Hence, there is a need to base robotic systems on
biological concepts to achieve robust intelligent systems. As shown in this book
the current progress in biomimetic robotics is significant, however more time is
needed before we see it in full operation showing fully autonomous biomimetic
robots.

References

1. M. Arbib. From monkey-like action recognition to human language: An evolu-
tionary framework for neurolinguistics. Behavioral and Brain Science, pages 1-9,
2004.

2. J. Bach. Representations for a complex world: Combining distributed and localist
representations for learning and planning. In S. Wermter, G. Palm, and M. Elshaw,
editors, Biomimetic Neural Learning for Intelligent Robots. Springer-Verlag, Hei-
delberg, Germany, 2005.

3. K. Chokshi, S. Wermter, P. Panchev, and K. Burn. Image invariant robot navi-
gation based on self organising neural place codes. In S. Wermter, G. Palm, and



10.

11.

12.

13.

14.

15.

16.

17.

18.

M. Elshaw, editors, Biomimetic Neural Learning for Intelligent Robots. Springer-
Verlag, Heidelberg, Germany, 2005.

R. Fay, U. Kaufmann, A. Knoblauch, H. Markert, and G. Palm. Combining visual
attention, object recognition and associative information processing in a neurobotic
system. In S. Wermter, G. Palm, and M. Elshaw, editors, Biomimetic Neural
Learning for Intelligent Robots. Springer-Verlag, Heidelberg, Germany, 2005.

M. Folgheraiter and G. Gini. Maximumone: an anthropomorphic arm with bio-
inspired control system. In S. Wermter, G. Palm, and M. Elshaw, editors,
Biomimetic Neural Learning for Intelligent Robots. Springer-Verlag, Heidelberg,
Germany, 2005.

V. Gallese. The intentional attunement hypothesis. the mirror neuron system and
its role in interpersonal relations. In S. Wermter, G. Palm, and M. Elshaw, editors,
Biomimetic Neural Learning for Intelligent Robots. Springer-Verlag, Heidelberg,
Germany, 2005.

V. Gallese, L. Escola, I. Intskiveli, M. Umilta, M. Rochat, and G. Rizzolatti. Goal-
relatedness in area F5 of the macaque monkey during tool use. Technical Report 17,
MirrorBot, 2003.

V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti. Action recognition in the
premotor cortex. Current Opinion in Neurobiology, 119:593-609, 1996.

V. Gallese and A. Goldman. Mirror neurons and the simulation theory of mind-
reading. Trends in Cognitive Science, 2(12):493-501, 1998.

V. Hafner and F. Kaplan. Learning to interpret pointing gestures: Experiments
with four-legged autonomous robots. In S. Wermter, G. Palm, and M. Elshaw,
editors, Biomimetic Neural Learning for Intelligent Robots. Springer-Verlag, Hei-
delberg, Germany, 2005.

O. Hauk, I. Johnsrude, and F. Pulvermiiller. Somatotopic representation of action
of action words in human motor and premotor cortex. Neuron, 41:301-307, 2004.
O. Hauk and F. Pulvermiiller. Neurophysiological distinction of action words in
the frontal-central cortex. Technical Report 7, MirrorBot, 2003.

O. Hauk and F. Pulvermiiller. Neurophysiological distinction of action words in the
frontal lobe: An ERP study using minimum current estimates. European Journal
of Neuroscience, 21:1-10, 2004.

G. Hermann, P. Wira, and J-P Urban. Modular learning schemes for visual robot
control. In S. Wermter, G. Palm, and M. Elshaw, editors, Biomimetic Neural
Learning for Intelligent Robots. Springer-Verlag, Heidelberg, Germany, 2005.

H. Jasso and J. Triesch. A virtual reality platform for modeling cognitive devel-
opment. In S. Wermter, G. Palm, and M. Elshaw, editors, Biomimetic Neural
Learning for Intelligent Robots. Springer-Verlag, Heidelberg, Germany, 2005.

A. Knoblauch and F. Pulvermiiller. Sequence detector networks and associative
learning of grammatical categories. In S. Wermter, G. Palm, and M. Elshaw,
editors, Biomimetic Neural Learning for Intelligent Robots. Springer-Verlag, Hei-
delberg, Germany, 2005.

E. Kohler, C. Keysers, M. Umilta, L. Fogassi, V. Gallese, and G. Rizzolatti. Hearing
sounds, understanding actions: Action representation in mirror neurons. Science,
297:846-848, 2002.

H. Markert, A. Knoblauch, and G. Palm. Detecting sequences and understanding
language with neural associative memories and cell assemblies. In S. Wermter,
G. Palm, and M. Elshaw, editors, Biomimetic Neural Learning for Intelligent
Robots. Springer-Verlag, Heidelberg, Germany, 2005.



19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

G. Mayer, U. Kaufmann, G. Kraetzschmar, and Palm G. Neural robot detection
in robocup. In S. Wermter, G. Palm, and M. Elshaw, editors, Biomimetic Neural
Learning for Intelligent Robots. Springer-Verlag, Heidelberg, Germany, 2005.

O. Menard, F. Alexandre, and H. Frezza-Buet. Towards word semantics from
multi-modal acoustico-motor integration: Application of the bijama model to the
setting of action-dependant phonetic representations. In S. Wermter, G. Palm, and
M. Elshaw, editors, Biomimetic Neural Learning for Intelligent Robots. Springer-
Verlag, Heidelberg, Germany, 2005.

Q. Meng and M. Lee. Novelty and habituation: The driving force in early stage
learning for developmental robotics. In S. Wermter, G. Palm, and M. Elshaw,
editors, Biomimetic Neural Learning for Intelligent Robots. Springer-Verlag, Hei-
delberg, Germany, 2005.

J. Murray, H. Erwin, and S. Wermter. A hybrid architecture using cross-correlation
and recurrent neural networks for acoustic tracking in robots. In S. Wermter,
G. Palm, and M. Elshaw, editors, Biomimetic Neural Learning for Intelligent
Robots. Springer-Verlag, Heidelberg, Germany, 2005.

G. Palm. Neural Assemblies. An Alternative Approach to Artificial Intelligen e.
Springer-Verlag, 1982.

C. Panchev. A spiking neural network model of multi-modal language process-
ing of robot instructions. In S. Wermter, G. Palm, and M. Elshaw, editors,
Biomimetic Neural Learning for Intelligent Robots. Springer-Verlag, Heidelberg,
Germany, 2005.

W. Penfield and T. Rasmussen. The cerebral cortex of man. Macmillan, Cambridge,
MA, 1950.

D. Perani, S. Cappa, T. Schnur, M. Tettamanti, S. Collina, M. Rosa, and F. Fazio.
The neural correlates of verbs and noun processing a PET study. Brain, 122:2337-
2344, 1999.

F. Pulvermiiller. Words in the brain’s language. Behavioral and Brain Sciences,
22(2):253-336, 1999.

F. Pulvermiiller. Brain reflections of words and their meaning. Trends in Cognitive
Neuroscience, 5(12):517-524, 2001.

F. Pulvermiiller. A brain perspective on language mechanisms: from discrete neu-
ronal ensembles to serial order. Progress in Neurobiology, 67:85—-111, 2002.

F. Pulvermiiller. The Neuroscience of Language: On Bain Circuits of Words and.
Cambridge Press, Cambridge, UK, 2003.

F. Pulvermiiller, R. Assadollahi, and T. Elbert. Neuromagnetic evidence for early
semantic access in word recognition. FEuropean Journal of Neuroscience, 13:201—
205, 2001.

F. Pulvermiiller, M. Hire, and F. Hummel. Neurophysiological distinction of verb
categories. Cognitive Neuroscience, 11(12):2789-2793, 2000a.

F. Pulvermiiller, B. Mohr, and H. Schleichert. Semantic or lexico-syntactic factors:
What determines word class specific activity in the human brain? Neuroscience
Letters, 275(81-84):2789-2793, 1999.

G. Rizzolatti and M. Arbib. Language within our grasp. Trends in Neuroscience,
21(5):188-194, 1998.

G. Rizzolatti, L. Fadiga, V. Gallese, and L. Fogassi. The mirror system, imitation,
and the evolution of language. Cognitive Brain Research, 3:131-141, 1996.

G. Rizzolatti, L. Fogassi, and V. Gallese. Neurophysiological mechanisms under-
lying the understanding and imitation of action. Nature Review, 2:661-670, 2001.
G. Rizzolatti, L. Fogassi, and V. Gallese. Motor and cognitive functions of the
ventral premotor cortex. Current Opinion in Neurobiology, 12:149-154, 2002.



38

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

U. Scarfogliero, M. Folgheraiter, and G. Gini. Larp, biped robotics conceived as hu-
man modelling. In S. Wermter, G. Palm, and M. Elshaw, editors, Biomimetic Neu-
ral Learning for Intelligent Robots. Springer-Verlag, Heidelberg, Germany, 2005.
D. Sheynikhovich, R. Chavarriaga, T. Strosslin, and W. Gerstner. Spatial repre-
sentation and navigation in a bio-inspired robot. In S. Wermter, G. Palm, and
M. Elshaw, editors, Biomimetic Neural Learning for Intelligent Robots. Springer-
Verlag, Heidelberg, Germany, 2005.

O. Shtyrov, Y. Hauk and F. Pulvermiiller. Distributed neuronal networks for
encoding category-specific semantic information: the mismatch negativity to action
words. FEuropean Journal of Neuroscience, 19:1-10, 2004.

M. Spitzer. The Mind Within the Net: Models of Learning, Thinking and Acting.
MIT Press, Cambridge, MA, 1999.

A. Sung, A. Merke, and M. Riedmiller. Reinforcement learning using a grid
based function approximator. In S. Wermter, G. Palm, and M. Elshaw, editors,
Biomimetic Neural Learning for Intelligent Robots. Springer-Verlag, Heidelberg,
Germany, 2005.

A. Treves and E. Rolls. Computational analysis of the role of the hippocampus in
memory. Hippocampus, 4(3):374-391, 1994.

M. Umilta, E. Kohler, V. Gallese, L. Fogassi, L. Fadiga, and G. Keysers, C.and Riz-
zolatti. I know what you are doing: A neurophysical study. Neuron, 31:155-165,
2001.

A. Vardy and F. Oppacher. A scale invariant local image descriptor for visual
homing. In S. Wermter, G. Palm, and M. Elshaw, editors, Biomimetic Neural
Learning for Intelligent Robots. Springer-Verlag, Heidelberg, Germany, 2005.

J. Vitay, N. Rougier, and F. Alexandre. A distributed model of spatial visual
attention. In S. Wermter, G. Palm, and M. Elshaw, editors, Biomimetic Neural
Learning for Intelligent Robots. Springer-Verlag, Heidelberg, Germany, 2005.

S. Wermter, J. Austin, D. Willshaw, and M. Elshaw. Towards novel neuroscience-
inspired computing. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent
Neural Computational Architectures based on Neuroscience, pages 1-19. Springer-
Verlag, Heidelberg, Germany, 2001.

S. Wermter, C. Weber, V. Gallese, and F. Pulvermiiller. Neural grounding robot
language in action. In S. Wermter, G. Palm, and M. Elshaw, editors, Biomimetic
Neural Learning for Intelligent Robots. Springer-Verlag, Heidelberg, Germany,
2005.



