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Abstract. In this paper we describe two models for neural grounding
of robotic language processing in actions. These models are inspired by
concepts of the mirror neuron system in order to produce learning by
imitation by combining high-level vision, language and motor command
inputs. The models learn to perform and recognise three behaviours, ‘go’,
‘pick’ and ‘lift’. The first single-layer model uses an adapted Helmholtz
machine wake-sleep algorithm to act like a Kohonen self-organising net-
work that receives all inputs into a single layer. In contrast, the second,
hierarchical model has two layers. In the lower level hidden layer the
Helmholtz machine wake-sleep algorithm is used to learn the relation-
ship between action and vision, while the upper layer uses the Kohonen
self-organising approach to combine the output of the lower hidden layer
and the language input.

On the hidden layer of the single-layer model, the action words are
represented on non-overlapping regions and any neuron in each region
accounts for a corresponding sensory-motor binding. In the hierarchical
model rather separate sensory- and motor representations on the lower
level are bound to corresponding sensory-motor pairings via the top
level that organises according to the language input.

1 Introduction

In order to ground language with vision and actions in a robot we consider two
models, a single-layer and a hierarchical approach based on an imitation learn-
ing. Harnad 1990 and Harnad 2003 [10,11] devised the concept of the symbol
grounding problem in that abstract symbols must be grounded or associated to
objects and events in the real world to know what they actually mean. Hence,



in order to actually attribute meaning to language there must be interaction
with the world to provide relevance to the symbolic representation. In terms of
robotics there is a need to ground actions and visual information with symbolic
information provided by language to meaningfully portray what is meant [11].
For instance, the action verb ‘lift’ could be grounded in the real-world robot
behaviour of closing the gripper on an object, moving backward and turning
around. The importance of grounding abstract representations can be seen from
Glenberg and Kaschak 2002 [9] who found that the understanding of language
is grounded in the action, how the action can be achieved and the likelihood of
the action occurring.

Although the grounding problem is fundamental to achieve the development
of social robots, Roy [29] states that there has not been the grounding of language
in actions but abstract representations whose meaning must be interpreted by
humans. As a result limited progress has been made in the development of truly
social robots that can process multimodal inputs in a manner that grounds
language in vision and actions. For instance, robots like the tour-guide robots
Rhino [5] and Minerva [34] do not consider grounding of language with vision
and actions.

We pursue an imitation learning approach as it allows the observer robot to
ground language by creating a representation of the teacher’s behaviour, and
an understanding of the teacher’s aims [14]. As a result of the role played by
imitation learning in animal and human development there has been a great deal
of interest from diverse fields such as neuroscience, robotics, computation and
psychology. Imitation learning offers the ability to ground language with robot
actions by taking an external action and relating it with the student robot’s
internal representation of the action [32]. It is a promising approach for ground-
ing robots in language as it should allow them to learn to cope with complex
environments and reduces the search space and the number of training examples
compared with reinforcement learning [7].

In our language grounding approach we used the concepts of the mirror
neuron system by using multimodal inputs applied to predictive behaviour per-
ception and imitation. Mirror neurons are a class of neurons in the F5 motor
area of the monkey cortex which not only fire when the monkey performs an
action but also when it sees or hears the action being performed by someone
else [23]. Mirror neurons in humans [8] have been associated with Broca’s area
which indicates their role in language development [23]. Their sensory property
justifies our use of models designed for sensory systems that use self-organising
learning approaches such as the Helmholtz machine wake-sleep algorithm and
the Kohonen algorithm.

2 Robot approaches to grounding language in actions

Other approaches based on imitation learning have been developed to ground
robot language in neural action. For instance, Billard 1999 [1] used the Dynamic
Recurrent Associative Memory Architecture approach when grounding a proto-



language in actions through imitation. This approach uses a hierarchy of neural
networks and provides an abstract and high-level depiction of the neurological
structure that are the basis of the visuo-motor pathways. By using this recurrent
approach the student is able to learn actions and labels associated with them.
Experiments were performed using a doll-like robot. The robot can imitate the
arms and head movements of the human teacher after being trained to perform
a series of actions performed by the teacher and to label this series with a
name. The name is entered by using a keyboard attached to the robot. This was
also expanded to use proto-sentences such as ‘I touch left arm’ to describe the
actions. The experiments showed that the hierarchical imitation architecture was
able to ground a ’proto-language’ in actions performed by the human teacher
and recreated by the robot.

Vogt 2000 [36] considered the grounding of language in action using imitation
in robots through playing games. In the experiment two robots play various
language games while one follows the other. The robots are required to develop
various categories and a lexicon so they are able to ground language in actions
such as ‘turn left’ or ‘go forward’. The robots share the roles of teacher and
student, and language understanding is not preprogrammed. The experiments
consist of two stages. In the development stage the task is to acquire categories
and a lexicon related to the categories. In the test stage the aim is to determine
how well the robot performs the task when only receiving the lexicon. In this
phase the teacher and student swap roles after each language game. In this
imitation learning language approach only the motor signals are categorised as
the teacher and student robots have different sensory-motor signals to control
their actions. The categorisation achieved is found to be much more successful
than the naming.

In addition, a non-imitation approach to grounding language with robot
actions developed by Bailey et al. 1998 [3] investigates the neurally plausible
grounding of action verbs in motor actions, such that an agent could execute
the action it has learnt. They develop a system called VerbLearn that could
learn motor-action prototypes for verbs such as ‘slide’ or ‘push’ that allows both
recognition and execution of a learnt verb. Verb Learn learns from examples of
verb word/action pairs and employs Bayesian Model Merging to accommodate
different verb senses where representations of prototypical motor-actions for a
verb are created or merged according to a minimum description length criterion.
However, Bailey’s approach makes use of discrete values that rely on opinion
rather than on real world values.

3 Neurocognitive evidence as basis for robot language
neural grounding

The robot language grounding model developed in this chapter makes use of
neurocognitive evidence on word representation. The neurocognitive evidence of
Pulvermiiller states that cortical assemblies have been identified in the cortex
that activate in response to the performance of motor tasks at a semantic level
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Fig. 1. Based on the brain imaging studies a schematic of the distributed semantic rep-
resentation in the brain of action verb processing based on the body-parts performing
them.

[21,23, 24]. Accordingly, a cognitive representation is distributed among cortical
neuronal populations. Using MRI and CT scans it was found that these semantic
word categories elicit different activity patterns in the fronto-central areas of the
cortex, in the areas where body actions are known to be processed [24,12].

Pulvermiiller and his colleagues have performed various brain imaging ex-
periments [22,12] on the processing of action verbs to test their hypothesis on
a distributed semantic word representation. From these experiments it has been
possible to identify a distributed representation where the activation was differ-
ent between action verbs based on the body parts they relate to. It was found
that there were clustered activation patterns for the three types of action verbs
(arm, leg and face) in the left hemispheric inferior-temporal and inferior-frontal
gyrus foci. There were also however differences between these three types of
action verbs in terms of the average response times for lexical decisions. For
instance, the response time is faster for head-associated words than for arm-
associated words, and the arm-associated words are faster processed than leg
words. Consistent with the somatotopy of the motor and premotor cortex [20],
leg-words elicited greater activation in the central brain region around the ver-
tex, with face-words activating inferior-frontal areas, thereby suggesting that the
relevant body-part representations are differentially activated when words that
denote actions are being comprehended.

These findings suggest the word semantics is represented in different parts
of the brain in a systematic way. Particularly, the representation of the word
is related to the actual motor and premotor regions of the brain that perform
the action. This is evidence for distributed cortical assemblies that bind acoustic,
visual and motor information and stresses the role of fronto-central premotor cor-
tex as a prominent binding site for creating neural representations at an abstract
semantic level. Fig. 1 shows a schematic view of this distributed representation
of regions in the brain activated by leg, arm and face based on the brain imaging
experiments.
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Fig. 2. A neural model of the somatotopy of action words model.

Previously, we have developed a computational model of the somatotopy of
action words model that recreates the findings on action word processing [31, 30].
This neural model shown in Fig. 2 grounds language in the actual sensor readings
from an autonomous robot. In particular, the actual sensor readings represent
semantic features of the action verbs. The approach provides a computational
implementation of distributed cell assemblies representing and processing action
words along with the actions they can refer to [22]. In the novel architecture
presented in this paper, the link between perception and production and between
action and language is set up by one single map.

4 Mirror neuron grounding of robot language with
actions

The mirror neuron approach offers a biological explanation for the grounding of
language with vision and actions. Rizzolatti and Arbib 1998 [23], Gallese and
Goldman 1998 [8] and Umilta et al. 2001 [35] found that neurons located in the
rostral region of a primate’s F5 motor area were activated by the movement of
the hand, mouth or both. It was found that these neurons fire as a result of
the goal-oriented action but not the movements that make up this action. The
recognition of motor actions depends on the presence of a goal and so the motor
system does not solely control movement [8, 25]. Hence, the mirror neuron sys-
tem produces a neural representation that is identical for the performance and
recognition of the action [2]. Fig. 3 shows neuronal responses during recognition
and performance of object-related actions. The neurons are active during perfor-
mance of the action (shown for neurons 3 and 4) and during recognition where
recognition can be either visual or auditory. These mirror neurons do not fire in
response to the presence of the object or mimicking of the action. Mirror neuron
responses require the action to interact with the actual object. They differentiate



not only between the aim of the action but also how the action is carried out
[35]. What turns a set of movements into an action is the goal, with the belief
that performing the movements will achieve a specific goal [2]. Such a system
requires the recognition of the grasping hand and examination of its movement
and an examination of the association of the hand parameters to the position
and affordance to reach the object [2].

The role of mirror neurons was to depict actions so they are understood or
can be imitated [23]. Furthermore, the mirror neuron system is held to have
a major role in the immediate imitation if an action exists in the observer’s
repertoire [4]. According to Schaal et al. 2003 [33] and Demiris and Hayes, 2003
[7] imitation learning is common to everyday life and is able to speed up the
learning process. Imitation can take the form of mimicking the behaviour of the
demonstrator or learning how the demonstrator behaves, responds or deals with
unexpected events. Complex imitation not only has the capacity to recognise the
actions of another person as familiar movements and to produce them, but also
to identify that the action contains novel movements that can be approximated
by using movements already known. Imitation learning requires learning and
the ability to take the seen action and produce the appropriate motor action to
recreate the observed behaviour [4].

An explanation proposed by Rizzolatti and Luppino 2001 [26] for the ability
to imitate through the mirror neuron system is an internal vocabulary of actions
that are recognised by the mirror neurons. Normally the action is recognised even
when the final section is hidden [25]. Understanding comes through the recogni-
tion of the action and the intention of the indiviudal. This allows the observer to
predict the future actions of the action performers and so determine if they are
helpful, unhelpful, threatening and to act accordingly [8]. Such understanding
of others’ actions also allows primates to cooperate, perform teamwork and deal
with threats. The mirror neuron system was a critical discovery as it shows the
role played by the motor cortex in action depiction [27]. Hence, the observing
primate is put in the same internal state as the one performing the action.

The mirror neuron system also exists in humans [8]. Increased excitation was
found in the regions of the motor cortex that was responsible for performing
a movement even when the subject was simply observing it. Motor neurons in
humans are thus excited when both performing and observing an action [8]. The
F5 area in monkeys corresponds to various cortical areas in humans including
the left superior temporal sulcus of the left inferior parietal lobule and of the
anterior region of Broca’s area. The association of mirror neurons with Broca’s
area in human and F5 in primates points to their role in grounding of language
in vision and actions [17]. The ability to recognise an action is required for the
development of communication between members of a group and finally speech.
It is possible that the mirror neuron system was firstly part of an intentional
communication system based on hand and face gestures [17] and then in a lan-
guage based system [23]. Once language became associated with actions it was
no longer appropriate for it to be located in the emotional vocalisation centre. It
would emerge in the human Broca’s area from an F5-like region that had mirror
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Fig. 3. Responses of macaque F5 mirror neurons to actions. From left to right, the
four selected neurons and the chosen stimulus which is in each case a strong driving
stimulus. From top to bottom, their responses to vision plus sound, to sound only, and
for neurons 3 and 4 to vision of the action only and to the monkey’s own performance
of the action. For neurons 1 and 2, their reaction to a control sound is shown instead.
In each little figure, the above rastergram shows spikes during 10 trials, below which
a histogram is depicted (a vertical line indicates the time of the onset of the sound or
at which the monkey touches the object). In the case of sound stimuli, an oscillogram
of the sound is depicted below the histogram. It can be seen that neurons respond to
their driving action via any modality through which they perceive the action, but not
to the control stimuli. As an exception, neuron 4 does not respond if the monkey only
visually perceives the action. (from Kohler et al. 2002 [17] and Keysers et al. 2003 [15])



neuron features and a gesture system. The importance of gestures reduced until
they were seen as an accessory to language [23].

Arbib 2004 [2] examined the emergence of language from the mirror neuron
system by considering the neural and functional basis of language and the de-
velopment of the recognition ability of primates to the full language in humans.
In doing so Arbib produced a notion of language development over 7 stages:
(i) grasping; (ii) a mirror system for grasping; (iii) a simple imitation system
for object grasping; (iv) a complex imitation system that allows the recogni-
tion of a grasping action and then repeat; (v) a gesture based language system;
(vi) proto-speech and (vii) language that moves from action-object frames to a
semantic syntax based approach. Hence, evolution has enabled the language sys-
tem to develop from the basic mirror neuron system that recognises actions to a
complex system that allowed cultural development. This concept of the mirror
neurons forms the basis of our models for the grounding of robot language in
neural actions. In the remainder of this paper we will consider two models that
neurally learn to perform the grounding of language with actions.

5 Methods and Architectures

A robot simulator was produced with a teacher robot performing ‘go’; ‘pick’ and
‘lift” actions. The actions were performed one after another in a loop in an envi-
ronment (Fig. 4). The student robot observed the teacher robot performing the
behaviours and was trained by receiving multimodal inputs. These multimodal
inputs were (i) high-level visual inputs which were the z and y coordinates and
the rotation angle ¢ of the teacher robot relative to the front wall, (ii) the mo-
tor directions of the robot (‘forward’, ‘backward’, ‘turn left’ and ‘turn right’)
and (iii) a symbolic language description stating the behaviour the teacher is
performing (‘go’, ‘pick’ or ‘lift’).

The first behaviour, ‘go’, involves the robot moving forward in the environ-
ment until it reaches a wall and then turns away from it. The coordinates x and
o ensure that the robot avoids the wall, irrespective of y. The second behaviour,
‘pick’, involves the robot moving toward the target object depicted in Fig. 4 at
the top of the arena. This “docking” procedure is produced by a reinforcement
approach as described in [38] and uses all, z, y and ¢ coordinates. The final
behaviour, ‘lift’; involves moving backward to leave the table and then turning
around to face toward the middle of the arena. Coordinates x and ¢ determine
how far to move backward and in which direction to turn around. These coordi-
nates which are shared by teacher and learner are chosen such that they could
be retrieved once the imitation system is implemented on a real robot.

When receiving the multimodal inputs corresponding to the teacher’s actions
the student robot was required to learn these behaviours so that it could recog-
nise them in the future or perform them from a language instruction. Two neural
architectures were considered.



Fig. 4. The simulated environment containing the robot at coordinates z, y and rota-
tion angle . The robot has performed ten movement steps and currently turns away
from the wall in the learnt ‘go’ behaviour.

5.1 Single-layer and hierarchical architectures

Both imitation models used an associator network based on the Helmholtz ma-
chine approach [6]. The Helmholtz machine generates representations of data
using unsupervised learning. Bottom-up weights W generate a hidden repre-
sentation 7 of some input data z. Conversely, top-down weights Wt reconstruct
an approximation of the data Z from the hidden representation. Both sets of
weights are trained by the unsupervised wake-sleep algorithm which uses the
local delta rule. Parameterised by a sparse coding approach the Helmholtz ma-
chine creates biologically realistic edge detectors from natural images [37] and
unlike a pure bottom-up recognition model [18] produces also the generative
model of the data via neural connections. This is used during testing when we
regard either the language area or the motor area as the model’s output.

These two models’ multimodal inputs included the higher-level vision which
represents the z and y coordinates and rotation angle ¢ of the teacher robot,
a language input consisting of a 80-dimensional binary phoneme representation
and the motor directives of the four motor units as input.

For the single-layer model all inputs are fed into the hidden layer at the
same time during training. The hidden layer of the associator network in Fig. 5
that acted as the student robot’s “computatioal cortex” had 16 by 48 units. The
sparse coding paradigm of the wake-sleep algorithm leads to the extraction of
independent components in the data which is not desired since many of these
components would not span over multiple modalities. Therefore we augmented
the sparsity toward a winner-take-all mechanism as used in Kohonen networks
[18]. The drawback, however, of this winner coding is that the activation of
just one unit must account for all input modalities’ activations. So if there is a
variation in just one modality, for example if an action can be described by two
different words, then twice as many units are needed to represent this action.
This inefficiency motivates the hierarchical model.

In the hierarchical model there is the association of the motor and high-level
vision inputs using the first hidden layer, denoted HM area, which uses sparse
but distributed population coding. The activations of the first hidden layer are
then associated with the language region input at the second hidden layer, de-
noted SOM area. The first hidden layer uses a Helmholtz machine learning algo-



rithm and the second hidden layer uses Kohonen’s self-organising map learning
algorithm. Such an architecture allows the features created on the Helmholtz
machine hidden layer to relate a specific action to one of the three behaviours
given the particular high-level visual information to “flexible” associations of
pairs/patterns of activations on the hidden area.
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Fig. 5. a) A single-step (3-to-1) architecture. b) A two-layer hierarchical architecture.
Bottom-up weights are depicted dark, top-down weights light.

5.2 Processing of data

On the language region representations of phonemes were presented. This
approach used a feature description of 46 English phonemes based on the
phonemes in the CELEX lexical databases (http://www.kun.nl/celex/). Each of
the phonemes was represented by 20 phonetic features, which produced a differ-
ent binary pattern of activation in the language input region for each phoneme.
These features represent the phoneme sound properties for instance voiced or
unvoiced, so similar phonemes have similar structures. The input patterns rep-
resenting the three used words are depicted in Fig. 6.

The higher-level vision represents the x and y coordinates and rotation angle
o of the teacher robot. The z, y and ¢ coordinates in the environment were
represented by two arrays of 36 units and one array of 24 units, respectively. For
a close distance of the robot to the nearest wall, the z position was a Gaussian of
activation centred near the first unit while for a robot position near the middle
of the arena the Gaussian was centred near the last unit of the first column of
36 units. The next column of 36 units represented the y coordinates so that a
Gaussian centred near the middle unit represented the robot to be in the centre
of the environment along the y axis. Rotation angles ¢ from —180° to 180°
were represented along 24 units with the Gaussian centred on the centre unit if
@ =0°.

As final part of the multimodal inputs the teacher robot’s motor directives
were presented on the 4 motor units (forward, backward, turn right and turn



left) one for each of the possible actions with only one active at a time. The
activation values in all three input areas were between 0 and 1.

During training the models received all the inputs, however when testing,
either the language area or the motor inputs were omitted. The language input
was omitted when the student network was required to take the other inputs
that would be gained from observing the teacher robot and recognise the be-
haviour that was performed. Recognition was verified by comparing the units
which are activated on the language area via the top-down weights W (Fig. 5)
with the activation pattern belonging to the verbal description of the corre-
sponding behaviour. The motor input was omitted when the student robot was
required to perform the learnt behaviours based on a language instruction. It
then continuously received its own current z, y and ¢ coordinates and the lan-
guage instruction of the behaviour to be performed. Without motor input it had
to produce the appropriate motor activations via W*? which it had learnt from
observing the teacher to produce the required behaviour.

The size of the HM hidden layer is 32 by 32 units and the SOM layer has
24 by 24 units. The number of training steps was around 500000. The duration
of a single behaviour depended on the initial conditions and may average at
around 25 consecutive steps before the end condition (robot far from wall or
target object reached) was met.
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Fig. 6. The phonemes and the corresponding 4x20-dimensional vectors representing
‘go’, ‘pick’ and ‘lift’.

5.3 Training algorithms

The algorithms used the Helmholtz machine [6] and the self-organising map
(SOM) algorithm [18] generate internal representations of their training data
using unsupervised learning. Bottom-up weights W’ (Fig. 5) generate a hidden
representation r of some input data z. Conversely, top-down weights W*¢ an used
to reconstruct an approximation Z of the data from the hidden representation.
The characteristic of the SOM is that each single data point is represented
by a single active (“winning”) unit on the hidden area, thus only one element of
7 is non-zero. The network approximates a data point by this unit’s weights. In
contrary, the canonical Helmholtz machine’s internal representation r contains
a varying number of inactive and active, binary stochastic units. A data point is
thus reconstructed by a linear superposition of individual units’ contributions.
Their mean activation can be approximated using a continuous transfer function



instead of binary activations. Furthermore, by changing transfer function param-
eters the characteristics can be manipulated such that units are predominantly
inactive which leads to a sparse coding paradigm. At the extreme (that would
involve lateral inhibition) one unit might only be allowed to become active at a
time.

The learning algorithm for the single-layer model and the HM layer of the
hierarchical model is described in the following and consists of alternating wake-
and sleep phases to train the top-down and the bottom-up weights, respectively.

In the wake phase, a full data point z is presented which consists of the full
motor, higher-level vision and in the case of the single-layer model also language.
The linear hidden representation ! = W%%z is obtained first. In the single-layer
model, a competitive version r¢ is obtained from this by taking the winning unit
of r! (given by the strongest active unit) and assigning activation values under
a Gaussian envelope to the units around the winner. Thus, r¢ is effectively a
smoothed localist code. On the HM area of the hierarchical model, the linear
activation is converted into a sparse representation r° using the transfer function
ri= ef®i/ (eﬂT;' +n), where 8 = 2 controls the slope and n = 64 the sparseness
of firing. The reconstruction of the data is obtained by = W4 r¢/* and the
top-down weights from units j to units ¢ are modified according to

Awlf = 777‘;/5 (i — %) (1)

with an empirically determined learning rate n = 0.001. The learning rate was
increased 5-fold whenever the active motor unit of the teacher changed. This was
critical during the ‘go’ behaviour when the robot turned for a while in front of a
wall until it would do its first step forward. Without emphasising the ‘forward’
step, the student would learn only the ‘turn’ command which dominates this
situation. Behaviour changes are significant events [13] and neuroscience evidence
supports that the brain has a network of neurons that detect novel or significant
behaviour to aid learning [16,19].

In the sleep phase, a random hidden code =" is produced to initialise the ac-
tivation flow. Binary activation values were assigned under a Gaussian envelope
centred on a random position on the hidden layer. Its linear input representation
2" = Wtdr" is obtained, and then the reconstructed linear hidden representation
77 = W2 From this, in the single-layer model we obtain a competitive version
7°¢ by assigning activation values under a Gaussian envelope centred around the
winner. In the HM area of the hierarchical model, we obtain a sparse version 7°
using the above transfer function and parameters on the linear representation.
The bottom-up weights from units 4 to units j are modified according to

Awllt = e (wlft —27) - 7/° 2)
with an empirically determined learning rate e = 0.01.

The learning rates 1 and e were decreased linearly to zero during the last
quarter of training in order to reduce noise. All weights W*? and W were
rectified to be non-negative at every learning step. In the single-layer model, the



bottom-up weights W% of each hidden unit were normalised to unit length. In
the HM area of the hierarchical model, to ensure that weights did not grow too
large, a weight decay term of —0.015- wﬁ}i is added to Eq. 1 and —0.015- w;’f to
Eq. 2.

Only the wake phases of training involved multimodal inputs from the motor,
higher visual and language regions z based on observing the actions of the teacher
robot performing the three behaviours. The sleep phases on the other hand use
only random initial activations.

The SOM area of the hierarchical model was trained by the classical self-
organising map algorithm [18]. The hidden representation o is in our model the
activation vector on the SOM area while its input data ¢ is the concatenated
vector from the language input together with the HM area activation . Only the
bottom-up weights, depicted dark in Fig. 5 b), are trained. Top-down weights
are not modelled but can formally be obtained from the bottom-up weights by
taking the transpose of the weight matrix. Training of the SOM area weights
was done after the HM area weight learning was completed.

The representation oy of unit k is established by determining the Euclidean
distance of the weight vector to its inputs, given by: o = |lwy — ¢||. The
weights are originally randomised and hence a unit of the network will react
more strongly than others to a specific input representation. The winning unit is
the unit ¥ where the distance o, is smallest. The weight vector of this winning
unit k' as well as the neighbouring units are altered based on the following
equation which leads to the weight vectors resembling more the data:

Awkj = aTkk' . (’ij - wkj).

The learning rate o was set to 0.01. The neighbour function was a Gaussian:
Ty = exp(—d3 . /20%), where d; ;s is the distance between unit k and the

winning unit k£ on the SOM area grid.

At the beginning of training, a larger neighbourhood (¢ = 12) achieved broad
topologic learning following a reduction during training to (¢ = 0.1). Additional
finer training was done with smaller neighbourhood interaction widths by reduc-
ing o from 0.1 to 0.01.

6 Single-layer model results

The single-layer associator network imitation learning robot performed well when
recognising the behaviour being performed by the teacher robot and performing
the behaviour based on a language instruction. Recognition was tested by the
network producing a phonological representation on the language area which
was compared to the appropriate language instruction.

Furthermore, when considering if the trained student robot was able to pro-
duce a certain behaviour requested by a language input, the movement traces
in Fig. 7 on the next page show that when positioned in the same location the
robot performs these different behaviours successfully.
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Fig. 7. The simulated trained student robot performance when positioned at the same
point in the environment but instructed with different language input. The robot was
initially placed in the top middle of the arena facing upward. In the ‘go’ behaviour it
moves around the arena; during ‘pick‘ it approaches the middle of the top wall (target
position) and then alternates between left- and right turns; during ‘lift’ it moves back
and then keeps turning.

Fig. 8 indicates that the three behaviours are represented at three separate
regions on the hidden area. In contrast, the four motor outputs are represented
each at more scattered patches on the hidden area (Fig. 9). This indicates that
language has been more dominant in the clustering process.
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Fig. 8. Trained weights W' to four selected language units of the student robot. Each
rectangle denotes the hidden area, dark are strong connections from the corresponding
regions. Each of the three left units is active only at one input which is denoted above.
The rightmost unit is active at all language words.

7 Hierarchical model results

First, we have trained a HM area to perform a single behaviour, ‘pick’, without
the use of a higher-level SOM area. The robot thereby self-imitates a behaviour
it has previously learnt by reinforcement [38]. Example videos of its movements
can be seen on-line at: www.his.sunderland.ac.uk/supplements/AI04/.

Fig. 10 a) shows the total incoming innervation originating from the motor
units (left) and the high-level vision units (right) on the HM area. The figure has
been obtained by activating all four motor units or all high-level vision units,
respectively, with activation 1 and by displaying the resulting activation pattern
on the HM area.

It can be seen that the patches of motor innervation avoid areas of high-
density sensory innervation, and vice versa. This effect is due to competitive
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Fig. 9. The trained weights W*¢ to the four motor units of the student robot. As
in Fig. 8 the regions from which strong connections originate in the hidden area are
depicted dark.
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Fig. 10. a) Left, the projections of the four motor units onto the HM area. Right, the
projections of all high-level vision inputs on to the HM area. b) Four neighbouring SOM
units’ RFs in the HM area. These selected units are active during the ‘go’ behaviour.
Circles indicate that the leftmost units’ RFs overlap with those of the ‘left’ motor unit
while the rightmost unit’s RF overlaps with the RF of the ‘forward’ motor unit.

effects between incoming innervation. This does not mean that motor activation
is independent of sensory activation: Fig. 10 b) shows the innervation of SOM
area units on the HM area which bind regions specialised on motor- and sensory
input.

The leftmost of the four units binds the “left” motor action with some sen-
sory input while the rightmost binds the “forward” motor action with partially
different sensory input. In the cortex we would expect such binding not only to
occur via another cortical area (such as the SOM area in our model) but also
via horizontal lateral inner-area connections which we do not model.

The action patterns during recognition of the ‘go’ behaviour action sequence
depicted in Fig. 4 and during its performance are shown in Figs. 11 and 12,
respectively. At first glance, the activation patterns on the HM- and SOM areas
are very similar between recognition and performance which suggests that most
neurons display mirror neuron properties.

The largest difference can be seen within performance between the two ac-
tivation steps of the HM area: in the first step it is activated from vision alone
(top row of Fig. 12) in order to perceive the robot state and in the second step it
is activated from the SOM area (bottom row of Fig. 12) in order to relay activa-
tion to the associated motor unit. The difference between these two steps comes
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Fig. 11. Activation sequences during observation of a ‘go’ behaviour, without language
input. Strong activations are depicted dark, and shown at ten time steps from left to
right. Circles mark the bottom-up input of the active motor unit of the teacher which
changes from ‘forward’ in the first 6 steps to ‘turn left’ during the last 4 steps (cf.
Fig. 10 b)). Language classification is correct except for the last time step which is
classified as ‘pick’ (cf. Fig. 6)).

from the lack of motor input in the first step and the completion of the pattern
to include the motor induced activation as would come during full observation
in the second step. Naturally, the second step’s activation pattern resembles the
pattern during recognition in the top row of Fig. 11, since patterns reconstructed
from SOM units resemble the training data.

The differences in HM area unit activation patterns during recognition and
performance are thus localised at the RF site of the active motor unit. If during
training, the input differs only by the motor input (which happens if in the same
situation a different action is performed according to a different behaviour) then
the difference must be large enough to activate a different SOM unit, so that it
can differentiate between behaviours. During performance, however, the absence
of the motor input is not desired to have a too strong effect on the HM area
representation, because the winner in the SOM area would become unpredictable
and the performed action a random one.

The last row in Fig. 11 shows the activations of the language area as a result
of the top-down influence from the winning SOM area unit during recognition.
An error is made at the last time step which as far as the input is concerned (HM
area activation in top row) is barely distinguishable from the second last time
step. Note that the recognition error is in general difficult to quantify since large
parts of some behaviours are ambiguous: for example, during ‘go’ and ‘pick’, a
forward movement toward the front wall is made in large areas of the arena at
certain orientation angles ¢, or a ‘turn’ movement near the wall toward the centre
might also be a result of either behaviour. Inclusion of additional information



like the presence of a goal object or the action history could disambiguate many
situations, if a more complex model was used.

HM area activation based only on high-level vision input
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Fig. 12. Activation sequences during performance of a ‘go’ behaviour, i.e. without
motor input. The performed sequence is visualised in Fig. 4. Circles mark the region
on the HM area at each time step which has the decisive influence on the action being
performed (cf. Fig. 10).

In the examples depicted in Figs. 11 and 12, the teacher and learner robots
are initialised at the same position. Both then act similar during the first 4 time
steps after which the learner decides to turn, while the teacher turns only after
6 time steps (see the circled areas in these figures).

8 Discussion

Each model recreates some of the neurocognitive evidence on word representation
and the mirror neuron system. While for the single layer model a single unit is
active at a specific time-step, for the hierarchical model multiple units are active.
In terms of the neurocognitive evidence it can be argued that the hierarchical
model is closer to the brain as it involves a distributed representation.

The ability of the single-layer and hierarchical model controlled robot to
both recognise an observed behaviour and perform the behaviour that it has
learnt by imitating a teacher shows the models were able to recreate one core
concept of the mirror neuron system. For instance, in the single-layer model the
student robot displays mirror neuron properties by producing similar regional
unit activation patterns when observing the behaviour and performing it, as
seen on some examples in Fig. 13. Furthermore, the achieved common “action
understanding” between the teacher and student on the behaviour’s meaning
through language corresponds to the findings in the human mirror neuron system
expressed by Arbib [2] whereby language would be allowed to emerge.
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Fig. 13. Activations for the associator network summed up during short phases while
the student robot a) correctly predicts the behaviours and b) performs them based on
a language instruction.

With regard to the hierarchical model it is suggested to identify the HM area
of the model with area F5 of the primate cortex and the SOM area with F6. F5
represents motor primitives where the stimulation of neurons leads to involuntary
limb movements. F6 rather acts as a switch, facilitating or suppressing the effects
of F5 unit activations but it is itself unable to evoke reliable and fast motor
responses. In our model, the HM area is directly linked to the motor output and
identifiable groups of neurons activate specific motor units while the SOM area
represents the channel through which a verbal command must pass in order to
reach the motor related HM units.

Mirror neurons have so far been reported in F5. By design, the hierarchical
model uses the HM area for both, recognition and production, so an overlap in
the activation patterns as observed in mirror neurons is expected. This overlap
is mainly due to those neurons which receive high-level vision input. This per-
ceptual input is tightly related to the motor action as it is necessarily present
during the performance of an action and contributes to the “motor affordances”
[8]. The decisive influence on the motor action, however, is localised in our model
on smaller regions on the HM area, as defined by the motor units’ receptive fields
(Fig. 10 a)). The units in these regions would correspond to the canonical motor
neurons which make up one third of F5 neurons. These non-mirror neurons have
only motor control function and are not activated by action observation alone.

A prediction of our model would then be that if the visually related mirror
neurons alone are activated, e.g. by electrode stimulation, then neurons down-
stream would not be directly excited and no motor action would take place. It
is, however, difficult to activate such a distinguished group of neurons since hor-
izontal, lateral connections in the cortex are likely to link them to the canonical
motor neurons.

9 Conclusion

We have developed both a single-layer and an hierarchical approach to robot
learning by imitation. We considered an approach to ground language with vi-
sion and actions to learn three behaviours in a robot system. The single-layer



model relies on a competitive winner-take-all coding scheme. However, the hi-
erarchical approach combines a sparse, distributed coding scheme on the lower
layer with winner-take-all coding on the top layer. Although both models of-
fer neural based robot language grounding by recreating concepts of the mirror
neuron system in region F5, the hierarchical model suggests analogies to the
organisation of motor cortical areas F5 and F6 and to the properties of mirror
neurons found in these areas. In doing so it provides insight to the organisa-
tion and activation of sensory-motor schemata from a computational modelling
perspective. Considering functional processing logics it explains the position of
mirror neurons connecting multiple modalities in the brain. This hierarchical
architecture based on multi-modal inputs can be extended in the future to the
inclusion of reward values that are also represented in cortical structures [28] to
achieve goal driven teleological behaviour.
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