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Abstract. Audition is one of our most important modalities and is widely used
to communicate and sense the environment around us. We present an auditory
robotic system capable of computing the angle of incidence (azimuth) of a
sound source on the horizontal plane. The system is based on some principles
drawn from the mammalian auditory system and using a recurrent neural net-
work (RNN) is able to dynamically track a sound source as it changes azimuth-
ally within the environment. The RNN is used to enable fast tracking responses
to the overall system. The development of a hybrid system incorporating cross-
correlation and recurrent neural networks is shown to be an effective mecha-
nism for the control of a robot tracking sound sources azimuthally.

1. Introduction

The way in which the human auditory system localizes external sounds has been of
interest to neuroscientists for many years. Jeffress [1] defined several models of how
auditory localization occurs within the Auditory Cortex (AC) of the mammalian
brain. He developed a model for showing how one of the acoustic cues, namely that
of the Interaural Time Difference (ITD) is calculated. This model describes the use of
neurons within the auditory cortex as coincidence detectors [2]. Jeffress also de-
scribes the use of coincidence detectors for other auditory cues, namely Interaural
Level Difference within the auditory cortex. These two cues (ITD and ILD) together
enable the auditory system to localize a sound source within the external environment,
calculating both the azimuth and distance from the observer.

Recently, robotics research has become interested in the ability to localize sound
sources within the environment [3-4]. Audition is a vital sense for interpreting the
world around us as audition enables us to perceive any object with an acoustic ele-
ment. For localization and navigation purposes, the primary modality in robotics has
been that of vision [5-6]. However, audition has some advantages over vision in that
for us to visually see an object it must be within line of sight, i.e. not hidden by other
objects. Acoustic objects however do not have to be within line of sight of the ob-
server and can be detected around corners and when obscured by other objects.



This paper describes an acoustic tracking robotic system that is capable of sound
source angle estimation and prediction along the horizontal plane. This system draws
from some basic principles that exist in its biological equivalent, i.e. that of ITD, tra-
jectory predictions, and the mammalian auditory cortex. Our system also has the abil-
ity to detect the angle of incidence of a sound source based on Interaural time differ-
ence.

2. Motivation for Research

How does the mammalian auditory system track sound sources so accurately within
the environment? What mechanisms exist within the AC to enable acoustic localiza-
tion and how can these be modeled? The AC of the mammalian brain works with ex-
cellent accuracy [7] and quick response times to the tracking and localization of dy-
namic sound sources.

With the increasing use of robots in areas such as service and danger scenarios [4],
we are looking into the mechanisms that govern the tracking and azimuth estimation
and predictions of sound sources within the mammalian AC to guide a model for
sound source tracking within a robotic system. Our motivation comes from being
able to create an acoustic sound source tracking robot capable of tracking azimuthally
the angle of a dynamically moving stimulus.

With the scenario of interactive service robots, we can envisage the robot as a
waiter in a restaurant serving drinks to the patrons. In order for this to be possible the
customers would need to be able to attract the robot waiter’s attention. The robot
would need to detect the direction the sound comes from and attend to it. Fig. 1
shows an example of this scenario.
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Fig. 1. Shows an example of a robot attending to sounds



3. The System Model

The model for our system has two main components; these are Azimuth Estimation
and Neural Prediction. The first component in our model determines the azimuth of
the sound source from the environment using Cross-Correlation and presents this an-
gle to the Neural Predictor for estimation of the next predicted angle in the sequence
using an RNN. The Neural Predictor receives a set of input angles passed from esti-
mations of the angle of incidence from the azimuth estimation stage in the model and
uses these to predict the angle for the robot to attend to next. The idea behind this is
to enable the robot to move to the next position where it expects to hear the sound and
then waits to see if it hears it. The system therefore has a faster response time to its
tracking ability as the robot is not constantly calculating the position of the sound
source, then attending and repeating this phase recursively, as this would mean the
robot would be in constant lag of the actual position for the sound source. Instead our
system has an active model for predicting the location of the sound source.

The system requires two valid sound inputs (as discussed in section 3.2). When the
network receives its second input at time t, the network provided an output activation
to attend to next. This is when the robot is informed to go at time t, as opposed to the
passion the sound was detected at during time t; itself. Our system therefore provides
a faster response in attending to the position of the dynamic sound source enabling
more real-time tracking.

3.1 Azimuth Estimation

Azimuth estimation is the first stage of the overall system model and is used to deter-
mine the angle of incidence of the dynamic sound source from the environment. The
azimuth estimation is performed by a signal processing variation of Cross-Correlation
(Eq. 1). It has also been shown that the AC employs the use of Cross-Correlation as
discussed by Licklider [8] for angle estimation. Therefore, we have employed Cross-
Correlation to analyze the two signals g(#) and A(z) received at the left and right mi-
crophones in our system. Ultimately, Cross-Correlation as discussed in [9] is used for
determining the ITD with the use of coincidence detectors [1].

Within our model the Cross-Correlation method is used to check g(¢) and A(t) for
the position of maximum similarity between the two signals, which results in the crea-
tion of a product vector C where each location represents the products of signals g(z)
and /(z) at each time step. The robot records a 20ms sample of sound at each micro-
phone resulting in an N x M matrix of 2 x 8820 where each row represents the signal
received at each of the microphones. To correlate the two signals they are initially
offset by their maximum length. At each time step signal /4(z) is ‘slid’ across signal
g(t) and the product of the signals is calculated and stored in the product vector C.

N-1
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Fig. 2 below shows an example of how the two signals g(z) and /(2) are checked for
similarity. As can be seen in the graph of Fig. 2a we can see that the function starts



by offsetting the right channel /() to the beginning of the left channel g(?) and gradu-
ally ‘slides’ across until /(2) leads g(?) by the length of the matrix (graph in Fig. 2c).
When the signals are in phase (shown by the shaded area in the graph of Fig. 2b) the
resultant correlation vector will produce a maximum value at this time step position in
the product vector C.
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Fig. 2. Shows the ‘sliding’ of the signals presented to the cross-correlation function.
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Fig. 3. Shows the product vector C of the Cross-Correlation of signals g(?) and /(%)

The maximum position within the resultant correlation vector represents the point
of maximum similarity between g(?) and A(#). If the angle of incidence was at 0° then
this would result in g(?) and A(?) being in phase with each other therefore resulting in
the maximum value in C being in the middle location of the vector. See Fig. 4 for an
example of the creation of a correlation vector from two slightly offset signals.

Therefore, to determine the amount of delay offsets for the ITD we subtract the lo-
cation of the maximum point in C from the size of C/2. We divide the correlation
vector C by 2 as the method of cross-correlation creates a vector that is twice the size
of the original signal (due to the sliding window) and therefore to find the mid point
of the vector (i.e. zero degrees) we divide by 2. This result is used to help determine
the angle of incidence of the sound source. The sounds within the system are re-
corded with a sample rate of 44.1 KHz resulting in a time increment A of 22.67ps.
Therefore, each position within the correlation vector is equal to A and represents
2.2677 seconds of time. Knowing the amount of time per delay increment and know-
ing the number of delay increments (from the correlation vector C) then using equa-
tion 2 we can calculate the ITD, or more precisely in terms of our model, the time de-
lay of arrival (TDOA) of the sound source between the two microphones.

TODA = ((length(C) / 2) — Cyax)*A )

This result gives us the time difference of the reception of the signal at the left and
right microphones; this in turn is used in conjunction with trigometric functions to
provide us with @ the angle of incidence of the sound source in question. Looking at
Fig. 5 we can determine which trigometric function we need to use to determine the
angle of incidence.

We have a constant value for side ‘c’ set at 0.30 meters (the distance on the robot
between the two microphones, see Fig. 10) and ‘a’ can be determined from the ITD or
TDOA from Eq. 2 substituted into Eq. 3. Therefore, in order to determine the azi-
muth of the sound source we can use the inverse sine rule as shown in Eq 5.

Distance = Speed x Time = 384x TDOA (3)



where, Speed is the speed of sound = 384m/s at room temperature of 24°C at sea
level. TDOA is the value returned from Eq. 2.

Fig. 4. Shows how the sliding-window of the Cross-Correlation method builds the Correlation
vector C. As the signals get more in phase the value in C increases.
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Fig. 5. Geometric diagram of sin(x) and cos(x)
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From these equations we can see that depending on the value of the TDOA we can
determine the azimuth of the dynamic sound source. TDOA values can range from -
90° to +90°. The values of ® returned are used to provide input to the recurrent neural
network of the second stage within the system for prediction of azimuth positions.
This initial part of the model has shown that it is indeed possible to create a robotic
system capable of modeling ITD to emulate similar robotic tasks. That is, we have
looked at functional mechanisms within the AC and represented the output of these
mechanisms within our robot model.

3.2. Speed Estimation and Prediction

Speed estimation and prediction is the second stage in our model and is used to esti-
mate the speed of the sound source and predict the next expected location. It has been
shown that within the brain there exists a type of short term memory that is used for
such prediction tasks and in order to predict the trajectory of an object it is required
that previous positions are remembered [10] to create temporal sequences.

Within this stage of our model, we create a recurrent neural network (RNN) with
the aim to train this network to detect the speed of a sound source and provide esti-
mated prediction positions for the robot to attend to. This stage in the model receives
its input from the previous azimuth estimation stage as activation on the relevant neu-
ron within the input layer of the network. Each neuron within the input and output
layers represent 2° of azimuth, therefore an angle of 1° will cause activation on the
first input neuron whilst an angle of 3° will cause activation on the second input neu-
ron. As can be seen in Fig. 6 the input and out layers of the network have 45 units
each with each unit representing 2° of azimuth. Therefore, the layers only represent a
maximum of 90° azimuth, however as the sign (i.e. + or — angle recorded by the cross-
correlation function) is used to determine if the source is left or right of the robots
center then the network can be used to represent +90° and -90° thus covering the front
hemisphere of the robot.

The RNN consists of four separate layers with weight projections connecting neu-
rons between layers. The architecture of the network is as follows:

Layer 1 — Input — 45 Units
Layer 2 — Hidden — 30 Units
Layer 3 — Context — 30 Units
Layer 4 — Output — 45 Units

Fig. 6 shows the layout of the architecture within the network along with the fully
connected layers. The network developed is based on the Elman network [11] which
provides a method for retaining context between successive input patterns. In order
for the network to adapt to sequential temporal patterns a context layer is used. To
provide context the hidden layer has one-to-one projections to the context layer within
the network (both the context and hidden layers must contain the same amount of



neurons). The hidden layer activation at time t, is copied to the context layer so that
the activation is available to the network at time step t during the presentation of the
second pattern within the temporal sequence. This therefore enables the network to
learn temporal sequences which are required for the speed prediction task.

The input to the RNN is provided as activation on the input neuron that corre-
sponds to the current angle calculated from the first stage in the model. In order for
the network to make a prediction it must receive two sequential input activation pat-
terns at times t; and t,. This enables the RNN to recognize the temporal pattern and
provide the relevant output activation.

Context

Input

Fig. 6. Recurrent Neural Network architecture used in model.

Due to the RNN output activation only being set for the predicted angle to attend
to, it is necessary to still provide the system with an angle of incidence to move to be-
fore the prediction is made. The angle recorded by the initial stage of the system is
referred to as the perceived angle due to this being the angle of the sound source rela-
tive to the robot. The system also maintains a variable containing the current angle of
the robot from its initial starting position of 0°. Therefore the input activation for the
RNN is calculated from Current angle + Perceived angle with the output activation
being the angle from the starting position. Therefore, the angle to move to is RNN
output angle — current angle.

The weight update algorithm for the network is based on that of the normal back-
propagation as shown in Eq 7, with the stopping criterion for the network being set to
0.04 for the Sum Squared Error (SSE). This value was chosen as it was the highest
value of the SSE that classified all patterns within the least number of epochs. The
value of the SSE is checked after each epoch. If the change in the SSE is below 0.04
between epochs then training stops and the network is said to have converged, other-
wise the weights are adapted and presentation of training patterns continues.

al (t+) =a (1) (©)
Aw;(n+1) =nd 0, + ahw,(n) (7)
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where, Aw;; = the weight change between neurons i and j, n = current pattern pre-
sented to the network, n = learning rate = 0.25, §; = error of neuron j, o; = output of
neuron i, o = momentum term used to prevent the weight change entering oscillation
by adding a small amount of the previous weight change to the current weight change.

The RNN architecture provides the system with the ability to recognize a prede-
termined number of speeds (provided during training) from a sequential temporal pat-
tern and therefore introducing a form of short-term memory into the model. After the
RNN receives two time steps a prediction of the next location of the sound source is
provided for the robot to attend to. This enables a faster response from the system
and therefore enables a more real-time implementation of the sound source tracking
system. This is due to the fact that the system does not have to wait for a subsequent
third sound sample in order to determine the location in azimuth of the sound source.

3.3 Training the RNN

In order to train the RNN to recognize the various speeds, a separate training sub-
group was created within the training environment for each individual speed. Each
sub-group within the training environment contains the events required to train the
network to individual speeds.

The events (input sequences i.e. angle representations) are activations of ‘1’ on the
neuron they represent and are presented for training to the network sequentially in the
order expected from a sound source (and shown in Table 2). This is to ensure the
network learns the correct temporal sequence for the speeds it needs to recognize and
provide prediction for.

The environment shown in Fig. 7 presents the nine events in a sequential manner,
that is, every time the pattern is presented to the network the events are given in the
same order Event 0 - Event 8. However, the last two events (Event 7 and
Event 8) within the training sub-group deviate from the temporal order and output ac-
tivation of the first 7 events. These two events are provided to ensure the network
does not only learn to provide activation output on the presentation of input activation
on neuron 2 in Fig. 7 but also ensures that past context is taken into account and out-
put activation is only set if a valid temporal pattern is provided to the network, in this
case, at time t; activation on input neuron 1 and at time t, activation on input neuron
2 resulting in an output activation at time t, on the third output neuron in the network.
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Fig. 7. Sub-group training environment for speed = 1 showing the required input activations in
order to create an output activation remembering that the patterns are temporal.

Within the training environment 20 sub-groups were created with each sub-group
representing a set speed, as each sub-group contains 9 training events this gives us a
total of 180 events to present to the network. As previously mentioned, we trained the
network by presenting the events within the sub-groups in a sequential order. How-
ever, each sub-group was presented in a random fashion to the network so as to pre-
vent the network learning the presentation sequence of the sub-groups themselves.
The network took on average 35000 epochs to converge, this varied slightly however
due to varying initialization weights in the network when training.

4. Testing the System Model

The testing is carried out in two separate phases for the system model, with the azi-
muth estimation stage first being tested to ensure correct operation, i.e. correct estima-
tion of the sound source along the horizontal plane. Once this stage is confirmed to
be operating correctly, the output results are stored to file and used as the input to the
second stage in that model, the Neural Predictor stage.

The results from the second stage on the model are checked against results from
both predetermined input activation and randomly generated output activations to en-
sure the system does not respond erroneously due to unexpected input sequences, or
incorrect weight updating and convergence.



4.1. Stage 1

We test the azimuth estimation stage of the model to ensure the correct azimuth val-
ues were being calculated and presented to the RNN. For this the robot was placed in
the middle of a room with a speaker placed 1.5 meters from the center of the robot.
The speaker was placed at 10 separate angles around the front 180° of the robot. Each
angle was tested five times with the results shown in table 1.

Table 1. Tests of Azimuth Estimation stage of model

Test Actual Angle Robot Position Accuracy
(Average) %
Test 1 -90 +4 95.5
Test 2 -50 +2 96
Test 3 -40 +1 97.5
Test 4 -30 +0 100
Test 5 0 +2 98
Test 6 +10 +2 80
Test 7 +20 +1 95
Test 8 +35 +2 943
Test 9 +45 +2 95.6
Test 10 +70 +3 95.7

As can be seen from table 1 the maximum average error was +1.9°. That is, the
averages in column 3 summed and divided by number of test cases to give the average
system error (+19/10 = 1.9). As shown in [7] the human auditory system can achieve
an accuracy of +£1.5° azimuth. Therefore, the results from the initial tests for this
stage in our model show that the use of cross-correlation for calculating TDOA and
ultimately the angle of incidence is an effective system for determining the azimuth
position of a sound source.

Furthermore, the results passed into the second stage of our model are also accu-
rately representative of the actual position of the sound source within the environment
and therefore a useful input into the RNN for predicting the next angle.

4.2 Stage 2

Testing of the RNN after training was done with the aid of azimuth results, i.e. a data
file was created with the angles returned of the initial stage of the model as the sound
source was moved around the robot at various speed levels. This data was then pre-
sented to the network in order to check the response of the system to actual external
data as opposed to simulated environments.

Fig. 8 shows the response of the network when the test data presented activation in
an accepted sequential order. The first angle presented in Fig. 8a was within the
range 0° > 2° and therefore provided input activation to the first neuron. Next, in
Fig. 8b the angle presented was within the range 2.01° - 4° and therefore activated
input neuron 2; this resulted in a recognizable temporal pattern therefore providing
output activation for the next predicted position as shown in the output layer of the
network in Fig. 8b.



Fig. 9 shows the response of the RNN to a different sequence (speed) to that pre-
sented in Fig. 8. Fig 9a shows the first pattern at t;; with an activation on the first in-
put neuron, representing an azimuth estimation of 0° = 2°. The second pattern pre-
sented at time t, (Fig. 9b) is on the 11 input neuron and so represents an azimuth
angle of 20° = 21.9°. Output activation is also provided in Fig. 9b on the 21* output
neuron representing an angle of azimuth of 40° = 41.9° for the robot to attend to.
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Fig. 8. Shows the response of the RNN after input activations at t.; and t, for speed 1

Output
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Fig. 9. Shows the response of the RNN after input activations at t.; and t, for speed 8

There are always going to be cases when a set of angles presented to the network
do not match any predetermined speed representations. To ensure the system pro-
vides correct output activation for unforeseen input sequences a testing environment
of 10000 randomly generated events was created.

Once the environment was created it was first passed through an algorithm to ana-
lyze the input layer activations within the training environment to determine the cor-
rect output activation that should be seen; these ‘desired’ input (with calculated) out-
put activation patterns are then stored to file to later compare with the actual output
activation received from the network once the randomly generated test environment
has been passed to the system.

The output activations of the network were recorded and compared with the ‘de-
sired’ stored results to ensure they matched. The comparison showed that from the
randomly created test environment only one pair of unforeseen sequences caused a



misclassification. Fig. 10 shows the particular misclassification found within the RNN
during the specific temporal pair of input sequence patterns. Fig. 10a shows at t; in-
put activation falls on neuron 28 and at time t, Fig. 10b shows that input activation
falls on neuron 18. Clearly this is not one of out trained speeds (as the sequence goes
backwards) however output activation is set at time t, to neuron 39.

Output
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Input Input
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Fig. 10. Shows an misclassification within the trained RNN providing undesired output activa-
tion to the system.

Table 2. Representation of input activations for the first 4 speeds.

Speed Input Representation

1y 1000000000.................
1o 0100000000.................
24 1000000000.................
20 0010000000.................
34 1000000000.................
30 0001000000.................
4 1000000000.................
4 0000100000.................

Table 2 gives an example of the input sequences for the first four trained speeds.
The binary pattern represents activation on the input neurons of the RNN where ‘1’
shows activation on the relevant neuron. As can be seen from the table, each speed is
determined by the increment in neuron activation between t; and t, in the temporal
sequence.

The results from the testing of the RNN shows that it is possible to encode several
temporal patterns within a RNN using a context layer to act as a form of short-term
memory within the system to provide history information for the network to use in
classifying temporally encoded patterns. With the exception of the temporal sequence
shown in Fig. 10 which shows a misclassification in the system for a temporal se-
quence pair, all other combinations of sequences within the testing environments
10000 events provided correct desired output activation i.e. either no output at all for
undesired temporal pairs or single neuron output activation for desired temporal se-
quence pairs.



With the introduction of new sub-groups within the training environment it is pos-
sible to remove anomalies from the network. This would be accomplished by includ-
ing the temporal sequence shown in Fig. 10 but having no output activation set. How-
ever misclassifications will not be detected until the sequence that generates them is
presented to the network.

5. Discussion

Much research has been conducted in the field of acoustic robotics. However, many
of the systems developed have concentrated more on the principles of engineering
rather than that of drawing inspiration from biology. Auditory robots have been cre-
ated which use arrays of microphones to calculate independent TDOA between mi-
crophone pairs [12]. Research has also been conducted into the AC of a robotic barn
owl [13] for attending to objects within the environment. However, such systems in-
clude other modalities such as vision to aid the localization of the spatial object.

The currently developed model described here, whilst providing excellent results
for sound source azimuth estimation and tracking can not adapt in an intuitive way to
the dynamics of real world acoustic objects. Further study is currently being con-
ducted into creating an architecture that can learn to recognize the temporal sequences
of new speeds the system may encounter but does not have in its training set. Using
this adaptive network to recognize new temporal patterns, it may also be possible for
the network to learn how to recognize acceleration and deceleration patterns through
this adaptive model. This adaptive network would provide the system with the ability
to more accurately track sound sources whose dynamic motion is not a fixed constant
but rather varies its speed randomly.

& LU,

Fig. 11. The robot used for sound source tracg with the two microphones as ears.



6. Conclusion

A hybrid architecture has been presented with inspiration drawn from the mechanisms
that have been shown to exist within the AC [1, 7, 14] of the mammalian. By using
biological inspiration we can take advantage of the cues and mechanisms that already
exist to build our model. The model has been shown to utilize the ITD cue to deter-
mine the angle of incidence of the sound source and present this to a RNN for tempo-
ral processing to determine the current speed and predict the next location for the ro-
bot to attend to. The hybrid architecture shown has proven to have excellent potential
for developing robotic sound source tracking system which draws inspiration from
their biological counterpart. The results of our model have shown comparable with
the capabilities of the human AC with the azimuth localization differing by an aver-
age of £0.4°.

As more information on the workings of the AC becomes known it would be pos-
sible to further adapt and create neural network architectures that emulate the func-
tionality of the various components of the AC giving rise to robotic system which op-
erate in the acoustic modality in much the same manner as the mammalian.
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