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Abstract. For this special session of EU projects in the area of NeuroIT,
we will review the progress of the MirrorBot project with special empha-
sis on its relation to reinforcement learning and future perspectives. Mod-
els inspired by mirror neurons in the cortex, while enabling a system to
understand its actions, also help in the solving of the curse of dimension-
ality problem of reinforcement learning. Reinforcement learning, which
is primarily linked to the basal ganglia, is a powerful method to teach
an agent such as a robot a goal-directed action strategy. Its limitation is
mainly that the perceived situation has to be mapped to a state space,
which grows exponentially with input dimensionality. Cortex-inspired
computation can alleviate this problem by pre-processing sensory infor-
mation and supplying motor primitives that can act as modules for a
superordinate reinforcement learning scheme.

1 Introduction

Brain-inspired computation has the prospect of unprecedented control of artifi-
cial agents in addition to giving insights into neural processing. In the MirrorBot
project, cortical mirror neurons which link perception and action have been cho-
sen as a topic of study and a source of inspiration for building artificial systems.
Mirror neurons which have been found in the motor cortex of the monkey are
not only active when a monkey performs an action, but also when it observes
the corresponding action being performed by somebody else (e.g. [1]). Thus,
they have sensory neuron properties. This justifies that we generalise models of
the sensory cortex, in particular from vision, to the motor cortex. Such models
can learn, instead of a representation of a visual image, a representation of a
sensory-motor mapping that has been given as input during learning and that
may originate from a reinforcement learner. In reinforcement learning, the input
state space grows exponentially if actions are extended. Here a motor cortex
module can become a replacement. The hierarchical structure of the cortex fur-
thermore suggests a capability of action organisation, and if given motivational
input such as the reward (or Q-value) used for reinforcement learning [2] then the
cortex might represent and act in response to such values. A view emerges that
a reward-driven reinforcement module is surrounded by a cortex that not only
pre-processes its input but also learns to understand, duplicate and anticipate
it. We use a simple, but expandable robot docking manoeuvre as an example of
a real world demonstration.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 305–310, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



306 C. Weber et al.

2 A Visually Guided Robotic Docking Task

Grasping of an object is a fundamental task for monkeys and humans. The robot
equivalent is the docking, where it has to approach a table in a fashion that it
can grasp an object lying on it. Figure 1 shows the geometry. A video can be
seen at: http://www.his.sunderland.ac.uk/robotimages/Cap0001.mpg.

We have managed to control the robot performing this task based almost
entirely on neural networks. Figure 2 shows the model. This consists of several
modules which have partially been trained independent of each other.

First, the lower visual system consists of the mapping from the raw pixel
image I to the hidden feature representation u. This is trained unsupervised
according to a generative model. Accordingly, the image has to be generated
from the hidden code via feedback weights which are used only during training.

Second, the location associator weights from u to the area representing the
perceived location p are trained supervised with the target object position given
during training. After training the location can be filled in if it is missing, thus
the attractor network does pattern-completion to localise the object.

Third, an action strategy is learnt by reinforcement using an actor-critic
paradigm. Its input is the state f which is constructed as the outer product of
p and a vector representing the robot angle ϕ w.r.t. the table. The critic value
c represents the goodness of the current robotic state which is rewarded if the
target object is at a graspable position, i.e. perceived near and in middle of view,
and while ϕ = 0. During learning, the motor actions acquire a strategy to reach
this goal [3]. In the following we will show that an alternative module can copy
this action strategy to replace the reinforcement learner after task acquisition.

ϕ

Fig. 1. Left, the PeopleBot robot aiming to grasp an orange fruit from a narrow table.
Its camera is below the top-plate and is assumed fixed throughout learning and per-
formance. Right, the geometry of the scenario with the table and target, above, and
the robot with its grippers, below. The robot’s input is the visual field (outlined by a
dotted rectangle) and its angle ϕ to the table, obtained from internal odometry.
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Fig. 2. The neural network which performs visually guided docking. The information
flow is as follows: An RGB colour image I from the robot camera is given as input. A
representation u is obtained on what we would identify as a V1 visual area, and from
this we obtain the perceived location p of the target object within the image. This
location and the rotation angle ϕ of the robot, together contain the information which
is collated as state space vector f . This is evaluated during learning by the critic c,
and the motor actions m drive the robot’s wheels. After task acquisition, the motor
cortex representation r binds sensory-motor associations, and can produce actions m

based on inputs p and ϕ by itself. This makes the state space available for learning
other tasks. Thick arrows represent trained weights, the lighter of which are used only
during learning. Shaded areas are supposed to belong to the cortex.

3 Motor Cortical Neurons Performing Docking

A further fourth module is a cortical representation r which associates this area’s
inputs p, ϕ and m. The combined input allows it to perform the stimulus-
response mapping already performed via the state space. The intra-area at-
tractor network connections are trained for prediction, allowing the network
in addition to perform mental simulation. The idea is that automatic perfor-
mance of the motor primitive by the motor cortex module makes the state
space redundant and thereby makes it available to learn other tasks. A video
showing the robot controlled by the simulated motor cortex can be seen at:
http://www.his.sunderland.ac.uk/supplements/NN04/MOV01065.MPG

We propose to identify the model’s state space with the basal ganglia, as
these have been linked with reinforcement learning. There is biological evi-
dence that the basal ganglia are active only during early phases of task
acquisition [4].
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4 Mirror Neurons for Multiple Actions

One advantage of the cortical modular motor action over reinforcement-trained
agents is that cortical representations can easily be structured hierarchically,
allowing multiple and composed actions to be represented. We produced three
simulated robotic actions, “pick” which corresponds to the docking, “lift” during
which (after picking an object) the robot would move back and turn and “go”
during which the robot avoids objects and wanders around. We designed the
environment and the robotic perception so that all behaviours act based on the
same sensory input. The robot rotation angle ϕ and the distance to the wall and
object p are contained in a “high-level vision” sensory input array.

Figure 3 shows the network architecture which performs these tasks which
we have implemented on a simulator [5]. A top level area is added containing a
vector s, implemented as a SOM [6], which binds language input l together with
a representation r that performs previously acquired sensory-motor bindings.
Given language as input and thereby influencing the winner among s will influ-
ence the sensory-motor mapping. Vice versa, if complete sensory-motor stimuli
are given, then the winner among s identifies the action which is being per-
formed. Production and recognition share the same neural substrate as is the
case for mirror neurons [1]. Also, action words are topographically arranged [7].

5 Extension of Docking via a Long-Range Strategy

The visually guided docking described in Section 2 requires that the robot is
very close to the table and that the target object is visible. We are currently im-
plementing a long-range table approach by reinforcement learning. While the ro-
bot’s camera cannot find and identify the target object from a large distance, the
table can be identified. This is particularly easy by an additional omni-directional
camera fitted on top of the PeopleBot robot. Several design implementations are
considered to integrate long-range and short-range docking.

(i) A straightforward approach is a monolithic state space spanning long- and
short-range sensory input. In this case, however, the state space would become
too large. In order to overcome these problems, it has been proposed to use
adaptive state recruitment schemes [8][9].

(ii) A second approach is to train long-range and short-range behaviours
separately using separate modules and to combine them sequentially. While this
specific partitioning scheme might sound arbitrary, the switch between the use
of the omni-directional camera for the long-range and the standard robot cam-
era for the short-range clearly marks a boundary for the behaviour change. In
humans, the switch might not be determined by the use of different sensors,
but of actuators instead, such as the use of legs for long-range approach and of
arms for the short range. Having defined behaviour modules, or partial policies
which accomplish subtasks, it has been proposed to hierarchically implement a
superordinate reinforcement scheme that acquires a policy for optimally switch-
ing between the subtasks as if they were primitive actions [10][11], see also [12].
This scheme, however, seems too powerful if there are just two modules.
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Fig. 3. a) The model architecture for multiple actions. The sensory-motor area rep-
resenting r and binding sensory inputs (p, ϕ) with motor actions m stems from the
model in Figure 2. New is the top-level SOM area where s associates language input l

with a certain motor program r. b) Left, the sensory-motor area and its innervation
from the four motor area units. Each motor unit projects only onto a small (circled)
region on this area. Right, the sensory-motor area and its combined innervation from
the sensory inputs. One can see that the four areas which receive motor input (circled)
are avoided by sensory input. c) Receptive fields of four SOM area units in the sensory-
motor area. It can be seen that each SOM unit receives innervation from patchy regions
in the sensory-motor area. The leftmost unit contains a sub-region (circled) that also
receives input from the “left” motor unit, while the rightmost unit has a coinciding
region (circled) with the “forward” motor unit. Thus the SOM area units perform
dynamical feature binding, associating slightly different sensory input with different
motor actions. The four units shown are all active during the “go” action; SOM units
corresponding to different actions perform different bindings.

(iii) Contributing to such a hierarchical implementation, a behaviour module,
or action sequence may be represented on the motor cortex, as we have proposed
in Section 3. In this case the motor cortical units coding for that action sequence
would be addressable by the reinforcement module just as single motor units
are in the canonical implementation. The state space then would not need to
consider any input that is accounted for by the cortical units. Both, long-range
and short-range docking could be implemented by such motor units.

6 Discussion

Mirror neurons may play a major role in a distributed language representation of
actions [7] by their multimodality [1]. In the MirrorBot project, also a modular
neural architecture was devised to parse and understand a sentence [13] which
we will integrate with the model described here. Further improvements have
been done on attractor network models for visually focussing objects [14].

We have seen in Section 2 that a visual cortex-inspired module can deliver an
object representation as required as input to a state space. This requires a fixed
camera so that a visually perceived position can readily be used in the robot’s
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motor coordinates. We are currently developing a coordinate transformation
attractor network which will allow the camera to be rotated while the robot
is docking. It associates (i) the visually perceived object location and (ii) the
camera pan-tilt angle with (iii) the body-centred position of the target object.
This is another strategy to extend the action range and limiting the state space.

In Section 3 we have seen that a motor-cortex inspired module can obviate
the reinforcement module, and Section 4 demonstrated the potential of cortical
action organisation. Our cortical models are inspired by the theory of generative
models which reconstruct training data. Therefore, a “teacher” module, such as
the reinforcement trained module, is required for any new action that the cortex
then performs habitually. If the cortex receives the motivational, reward value
used for reinforcement learning as additional input, then it is able to specifically
perform such state-action associations which lead to a high reward [2]. With its
associative and predictive capabilities, the cortex might directly use incoming
stimuli to predict motivations of the agent, and enable a teleological behaviour.
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