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1. Introduction 

The human body has a complex shape requiring a control structure of matching complexity. 
This involves keeping track of several body parts that are best represented in different 
frames of reference (coordinate systems). In performing a complex action, representations in 
more than one system are active at a time, and switches from one set of coordinate systems 
to another are performed. During a simple act of grasping, for example, an object is 
represented in a purely visual, retina-centered coordinate system and is transformed into 
head- and body-centered representations. On the control side, 3-dimensional movement 
fields, found in the motor cortex, surround the body and determine the goal position of a 
reaching movement. A conceptual, object-centered coordinate space representing the 
difference between target object and hand position may be used for movement corrections 
near the end of grasping. As a guideline for the development of more sophisticated robotic 
actions, we take inspiration from the brain. A cortical area represents information about an 
object or an actuator in a specific coordinate system. This view is generalized in the light of 
population coding and distributed object representations. In the motor system, neurons 
represent motor "affordances" which code for certain configurations of object- and effector 
positions, while mirror neurons code actions in an abstract fashion. 
One challenge to the technological development of a robotic / humanoid action control 
system is – besides vision – its complexity, another is learning. One must explain the cortical 
mechanisms which support the several processing stages that transform retinal stimulation 
into the mirror neuron and motor neuron responses (Oztop et al., 2006). Recently, we have 
trained a frame of reference transformation network by unsupervised learning (Weber & 
Wermter, 2006). It transforms between representations in two reference frames which may 
dynamically change their position to each other. For example the mapping between retinal 
and body-centered coordinates while the eyes may move. We will briefly but concisely 
present this self-organizing network in the context of grasping. We will also discuss 
mechanisms required for unsupervised learning such as requested slowness of neuronal 
response changes in those frames of reference that tend to remain constant during a task. 
This book chapter shall guide and inspire the development of sensory-motor control 
strategies for humanoids. 
This book chapter is organized as follows. Section 2 reviews neurobiological findings; 
Section 3 reviews robotic research. Then, after motivating learning in Section 4, we will 
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carefully introduce neural frame of reference transformations in Section 5, and in Section 6 
present a model for their unsupervised learning. Section 7 discusses the biological context, 
the model's solution for visual routing, and open questions for motor control. 

2. Neurobiology 

2.1 Cortical Areas Involved in Sensory Motor Control 

This section addresses some individual cortical areas, based primarily on macaque data 
(Luppino & Rizzolatti, 2000), highlighting the variety of frames of reference that exist in the 
cortex. In lower visual areas such as V1 and V2, neurons are responsive only to visual 
stimuli shown at a defined region in the visual field, the receptive field. They code in a 
retinal (eye-centered) coordinate frame. In higher visual areas the receptive fields become 
larger and can comprise half of the visual field. IT (infero temporal cortex) responses are for 
example dominated by the presence of an object. The retinal coordinate frame is 
unimportant, neither is any other spatial frame of reference. MT/MST (middle temporal / 
medial superior temporal) neurons respond to motion stimuli. 

Figure 1. Cortical areas involved in visuomotor computations.  The figure is schematic 
rather than faithful (drawn after Luppino and Rizzolatti (2000) and Van Essen et al. (1992)) 

Of specific interest to frame of reference transformations are the areas of the posterior 
parietal cortex (PPC): 
• LIP (lateral intraparietal) neurons encode locations retinotopically i.e. in eye-centered 

coordinates (Duhamel et al., 1997). 
• VIP (ventral IP) neurons encode locations in eye- and also in head-centered coordinates 

(Duhamel et al., 1997). Some cells show response fields that shift only partway with the 
eyes as gaze changes (Batista, 2002) ("intermediate reference frame"). Others have a 
head-centered response: the receptive field is fixed w.r.t. the head, but the response 
magnitude can be scaled depending on the position of the eyes. Because of this 
multiplicative interaction these are termed "gain fields". 
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Many parietal neurons, such as in LIP and VIP, respond when an eye movement brings 
the site of a previously flashed stimulus into the receptive field (Duhamel et al., 1992). 
Hence they predict reference frame changes caused by eye movement. 

• MIP (medial IP) neurons represent reach plans in a retinal coordinate frame. For 
example, a neuron fires during reaching movements, but only when the eyes are 
centered at the reach target (Batista, 2002). 

• PRR (parietal reach region) neurons code the next planned reaching movement.   In the 
neighboring area 5 of the PPC, targets are coded w.r.t. both eye and hand (Buneo et al., 
2002).  Buneo et al.  (2002) suggest that the transformation between these two reference 
frames may be achieved by subtracting hand location from target location, both coded 
in eye centered coordinates. 

The motor cortex (for reviews see Rizzolatti et al. (2001); Luppino and Rizzolatti (2000); 
Graziano (2006)) is also called agranular cortex, because it misses the granular layer which 
in sensory areas receives the bottom-up sensory input. The motor areas can be subdivided 
into two groups. One group of motor areas connects to the spinal cord. These more caudally 
situated areas transform the sensory information into motor commands: 
• F1 projections end directly on motor neurons. Neural activations are correlated with 

hand position, finger control, and velocity to perform actions such as grasping, with 
lesion studies showing that damage to this area prevents hand grasping (Fadiga & 
Craighero, 2003). 

F2, F3 and parts of F4, F5 activate preformed medullar circuits and also send connections to 
Fl (Luppino & Rizzolatti, 2000). 
• F2 encodes motor execution and motor preparation and is somatotopically organized. 

There are few visually responsive neurons ( 16%), mostly within parts of the forelimb 
representation (Fogassi et al., 1999).

• F3 encodes complete body movements.   Stimulation evokes proximal and axial muscle 
movements; typically a combination of different joints. There are frequent responses to 
somato-sensory stimulation (Luppino & Rizzolatti, 2000). 

• F4 is active at simple movements, e.g. toward mouth or body. It responds to sensory 
stimulation: 50% of neurons to somato-sensory 50% to somato-sensory and visual 
stimuli (Luppino & Rizzolatti, 2000).  Visual receptive fields are 3-dimensional, located 
around the tactile receptive fields, such as on face, body or arms. Hence, there is are 
egocentric, body-part centered frames of reference. 

• F5 controls hand and mouth. Neuronal firing is correlated with action execution, such 
as precision- or power grip, but not with its individual movements. Some neurons do 
not respond to vision, some respond to a sheer 3-dimensional presentation of objects 
(pragmatic representation of graspable objects), finally, "mirror neurons" respond to 
action observation. They will be described in more detail in Section 2.3. 

The other group of motor areas do not have direct connections to the spinal cord, nor to Fl. 
These more frontally situated areas are involved in controlling the more caudal motor areas: 
• F6 neurons display long leading activity during preparation of movement. They are 

modulated by the possibility of grasping an object. Stimulation, only with high 
currents, leads to slow complex movements which are restricted to the arm. Visual 
responses are common. It receives input from cingulate cortical areas which are 
associated with working memory, temporal planning of movements, motivation 
(Rizzolatti & Luppino, 2001). 
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• F7 displays visual responses.  It may be involved in coding object locations in space for 
orienting and coordinated arm-body movements (Luppino & Rizzolatti, 2000). 

Because of different investigation methods, there are different classification schemes of 
cortical areas. The primary motor cortex F1 is also referred to as MI. The dorsal premotor 
area (PMd) comprises F2 and F7. F3 is referred to as supplementary motor area (SMA), and 
F6 as pre-SMA. The ventral premotor area (PMv) comprises F4 and F5 (Matsumoto et al., 
2006).

2.2 Key Aspects of Functionality 

We summarize the following general observations: 
• There are many frames of reference, accounting for the dynamic complexity of the 

body. Some frame of reference transformations are likely to depend on the correct 
functioning of certain others, while others may function in parallel as independent 
systems. 

• Some neurons code in "intermediate" reference frames, such as between eye- and head-
centered coordinates. Likewise, neurons with a constant receptive field position (in a 
certain reference frame) may have their responses modulated by, e.g. eye position 
("gain fields"). 

• There is convergence: For example, an object position can be computed in a body-
centered frame from visual input; the hand position can be computed from somato-
sensory signals; from these two positions, a motor error (the difference between target 
object and hand) can be computed. On the other hand, when both hand and object are 
in sight, this difference can be read directly in retinal coordinates (Buneo et al., 2002). 
This redundancy may be used to align different frames of reference, or supervise the 
learning of one representation by the representation of another. 

Frame of reference transformations enable the understanding of actions performed by 
others, as observed in the mirror neurons in F5. This is a prerequisite for social 
communication, and because of its importance we will discuss the mirror neuron system in 
the following. 

2.3 Mirror Neurons 

Rizzolatti and Arbib (1998) and Umilta et al. (2001) describe neurons located in the rostral 
region of a primate's inferior area, the F5 area (see Fig. 1), which are activated by the 
movement of the hand, mouth, or both. These neurons fire as a result of the action, not of 
the movements that are the components of this action. The recognition of motor actions 
depends on the presence of a goal, so the motor system does not solely control movement 
(Gallese & Goldman, 1998; Rizzolatti et al., 2002). A seen tool also activates regions in the 
premotor cortex, an effect which increases when subjects name the tool use (Grafton et al., 
1997). The F5 neurons are organized into action categories such as 'grasping', 'holding' and 
'tearing' (Gallese & Goldman, 1998; Rizzolatti & Arbib, 1998). More generally, the motor 
cortex is partly organized around action-defined categories (Graziano, 2006). 
Certain grasping-related neurons fire when grasping an object, whether the grasping is per-
formed by the hand, mouth, or both. This supports the view that these neurons do not rep-
resent the motor action but the actual goal of performing the grasping task. Within area F5 
the pure motor neurons only respond to the performing of the action. Visuomotor neurons 
also respond to the presentation of an object ("canonical neurons") or when a monkey sees 
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the action performed (mirror neurons) (Kohler et al., 2002; Rizzolatti & Arbib, 1998; 
Rizzolatti et al., 2001). The mirror neuron system indicates that the motor cortex is not only 
involved in the production of actions but in the action understanding from visual and 
auditory information (Rizzolatti et al., 2002; Rizzolatti & Luppino, 2001; Rizzolatti & Arbib, 
1998) and so the observer has the same internal representation of action as the actor (Umilta 
et al., 2001).
These mirror neurons are typically found in area F5c and do not fire in response to the 
presence of the object or mimicking of the action. Mirror neurons require the action to 
interact with the actual object. They respond not only to the aim of the action but also how 
the action is carried out (Umilta et al., 2001). Already an understanding that the object is 
there without being visible causes the activation of the mirror neurons if the hand reaches 
for the object in the appropriate manner. This is achieved when primates are first shown the 
action being performed completely visible and then with the hand-object interaction hidden 
behind an opaque sliding screen (Umilta et al., 2001). Since these areas are active during 
both performance and recognition, when simply observing the action, there must be a set of 
mechanisms that suppress the movements to perform the action. 

Figure 2. Responses of a macaque F5 mirror neuron during action recognition and 
performance (from Kohler et al. (2002), with permission) 

Fig. 2 provides mirror neuron responses. The individual pictures show at the top a raster-
gram that represents the spikes during 10 trials, below which is a histogram (the central line 
represents onset of stimulus). Recognition is achieved through visual stimuli, left, or audi-
tory stimuli, middle, for which oscillograms are shown below. The motor readings, right, 
are recordings of the primate when performing the action. It can be seen that this mirror 
neuron is active when the monkey breaks a peanut or observes someone performing this 
action, but not during a control action of ring grasping. These audiovisual mirror neurons 
have a role in the discrimination of different actions, and constitute together with Broca's 
area for language representation, a part of a "hearing-doing" system (Lahav et al., 2007). 

2.4 Mirror Neurons and Imitation 

One possible application for the mirror neuron system is imitation learning. According to 
Schaal et al. (2003) and Demiris and Hayes (2002) imitation learning is common to everyday 
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life and is able to speed up the learning process. Imitation learning allows the observer to 
gain skills by creating an abstract representation of the teacher's behavior, understanding 
the aims of the teacher and creating the solution (Dillmann, 2003). Imitation requires the 
ability to understand the seen action and produce the appropriate motor primitives to 
recreate it (Buccino et al., 2004). The role of mirror neurons is to encode actions so they are 
understood or can be imitated, by gaining the reason for the action (Rizzolatti & Arbib, 1998; 
Sauser & Billard, 2005a). 
A possible explanation for the ability to imitate is the internal vocabulary of actions that are 
recognized by the mirror neurons (Rizzolatti & Luppino, 2001). This ability to understand 
others' actions, beliefs, goals and expectations aids the inclusiveness of the group. This 
allows the observer to predict the actions and so determine if they are helpful, unhelpful, 
threatening, and to act accordingly (Gallese & Goldman, 1998; Gallese, 2005). It is argued by 
Demiris and Hayes (2002) that through the mirror neuron system when a primate or human 
watches an action they are to imitate they put themselves in the place of the demonstrator. 
Understanding the actions of the demonstrator comes from creating alternatives and 
choosing the most appropriate one. A requirement for imitation is to connect the sensory 
system with the motor system so that the multimodal inputs are linked to the appropriate 
actions.

2.5 Mirror Neurons and Frame of Reference Transformations 

If mirror neurons are involved in imitation then they have to mediate between different 
coordinate systems in order to establish a mapping from the visual representation of 
another agent's action to an appropriate motor behavior. If the observed action is targeted at 
a specific object, then a visual representation of agent and object in retinal coordinates must 
be transferred into an object centered representation of the action. If the object-directed 
action is then to be imitated, it has to be transfered to the appropriate motor commands 
taking into account a potentially different relative position of the imitator to the object. 
A very instructive example is that of gaze following. Gaze following is the skill of looking to 
an object because another agent turns to look at it. In this case the object-directed action is 
simply to look at it. Human infants seem to learn this behavior during their first two years 
of life presumably because they learn that whereever other people are looking there is 
typically something interesting to see — such as another person, an interesting object, or the 
other person's hands manipulating something (Triesch, Teuscher et al., 2006). Consider the 
situation of an infant and her mother facing each other. When the mother turns to her right 
to look at something, the infant will see the head of the mother turning. But how does the 
infant know that she needs to turn her own head to the left and how much she needs to turn 
to look at the same object? The question is not trivial and in fact infants seem to need more 
than 18 month to fully master this skill. The infant needs to learn to associate different 
locations and head poses of the mother with potential locations in space where the mother 
may be looking. These locations comprise the line of sight of the mother, which is 
represented, presumably, in an ego-centric reference frame of the infant. Recently, Triesch, 
Jasso and Deáak (2006) presented a simple model that demonstrates how such a mapping 
can be learnt with generic reinforcement learning mechanisms. Specific head poses of the 
mother become associated with gaze shifts of the infant that have a high probability of 
matching the location where the mother is looking. This learning process is driven by 
rewards the infant receives for looking at interesting objects, whose locations are predicted 
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by the looking direction of the mother. Interestingly, the model develops a mirror-neuron-
like premotor representation with a population of model neurons that become activated 
when the infant plans to look at a certain location or when the infant sees the mother 
looking in the direction of that location. The existence of a similar representation in the brain 
is the major prediction of the model.
The example demonstrates that the three-dimensional pose of the agent and the imitator and 
their interrelation need not be fully computed to achieve imitation behavior. On the other 
hand, Sauser and Billard (2005b) present a model (cf. Section 3.2) in which imitation is 
performed, only by constructing several consecutive frame of reference transformations, in 
order to map from an agent- to an imitator coordinate system. How much geometry has to 
be calculated for imitation? 
In another view, mirror neurons represent actions in an abstract fashion, such as when 
activated by sound (cf. Fig. 2), but are in general unresponsive to the individual movements 
that make up an action. Hence, they are invariant with respect to the exact geometrical 
constellations. The demand for invariances makes geometrical frame of reference 
computations even more challenging, and encourages an alternative view in which the mere 
presence of features, such as a sound, are detected by mirror neurons with little involvement 
of geometry. Both views can be reconciled by the notion of convergence (cf. Section 2.2): the 
result of a geometrical frame of reference computation may be supported by, e.g., the target 
being successfully focused, or grasped. The error- or reinforcement signal at the end of a 
successfully completed action can give feedback to the learning of the geometrical 
calculations. 

3. Action in Robotics 

The complex geometry of humanoid robots complicates the mapping between sensors and 
actuators. Additionally, sensors (head, eyes/camera, ears/microphone) may be moved 
independently of the body on which the actuators are mounted. This is demonstrated in Fig. 
3. The robot must know not only the visually seen direction of the object (blue dotted arrow) 
in retinal coordinates, but also the gaze direction (yellow arrow) which defines the retinal 
reference frame, before acting in the body-centered reference frame (defined by the long red 
arrow). Geometrical calculations are complicated by the fact that axes do not coalign, nor do 
they lie in the centers of sensors. 

3.1 Coordinate Transformations in Robotics 

There has been a lot of traditional and current research on coordinate transformations in 
robotics since traditional robotic models rely extensively on converting perceptual input to 
internal representations and external actions. For instance, at the most recent Intelligent 
Robotics and Systems international conference proceedings, 2006, there are 62 papers 
addressing "coordinate transformations" in some form. Coordinate transformations are used 
in traditional control modeling for instance for motion generation, ball catching, sound 
localization, visual tracking, simultaneous localization and mapping, path following, motion 
planning, cooperating manipulators, balancing tasks, dance step selection, or pedestrian 
tracking. If multiple audio visual and motor maps are all involved in controlling robot 
behavior these maps have to be coordinated. Most of the existing coordinate transformation 
approaches in robotics rely on traditional inverse dynamics / inverse kinematics models 
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based on control approaches. However, for new intelligent robotics and in particular 
humanoid robots with many degrees of freedom researchers look for new and alternative 
solutions to coordinate transformations. For instance, one important cluster of work relates 
to the motion generation and motion interpretation for humanoid robots (Harada et al., 
2006) and in order to grasp a cup with a handle from a table, the robotic head and the arm 
have to be coordinated (Tsay & Lai, 2006). For such tasks several different coordinate 
transformations are involved in a simple grasping action, e.g. including an object coordinate 
system, a palm coordinate system, gaze coordinate system, arm base coordinate system, and 
wrist coordinate system etc. Furthermore, if sound maps are involved, for instance different 
sizes of heads, ear shapes have an influence on the sound maps and coordinate 
transformations in reality are difficult to calibrate from sound to vision or motor maps 
(Hoernstein et al., 2006). 

Figure 3. Grasping by a humanoid robot. The object is localized in a visual reference frame 
(yellow arrow points into gaze direction) by the direction of the dotted, blue arrow. The 
grasping is performed in a body-centered reference frame (long red arrow). The relation 
between visual and body-centered systems varies when the head turns 

Particularly challenging are also coordinate transformations between different maps of 
different robots, the so-called multi robot map alignment problem. A new approach has 
been proposed to use the relative pose measurements of each of two robots to determine the 
coordinate transformation between two maps while assuming that the initial poses of the 
robots are not known (Zhou & Roumeliotis, 2006). 
Besides these traditional approaches based on formal algebraic transformations there are 
more and more non-traditional approaches to motor control based on biomimetic or 
cognitive approaches. The general problem of movement control is to map from a cartesian 
task space to a solution in joint space. Especially for higher degrees of freedom robots with 
30-40 degrees of freedom (similar to humans) the task of inverse dynamics of computing 
these coordinate transformations is very demanding. Therefore, different from traditional 
approaches some new bioinspired control models have been suggested to address 
computational efficiency with task independent motor control, only involving those joints 
which also participate in the task (Gu & Ballard, 2006). This approach by Gu and Ballard 
proposes that actions are planned in segments with equilibrium end points in joint space. 
Movements are done by moving between equilibrium points. 
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Another interesting novel approach has been proposed as a learning-based neurocontroller 
for a humanoid arm. This approach is based on a self-organizing neural network model and 
does not assume knowledge about the geometry of the manipulators. Essential is an action-
perception cycle which helps to learn transformations from spatial movement to joint move-
ments in the neural map (Asuni et al., 2006). Another new approach to biologically inspired 
cross modal mapping is further pursued for robotic eye-hand systems (Meng & Lee, 2006) 
where they incrementally construct mapping networks for eye hand coordination based on 
extended Kalman filters and radial basis function networks. The system converts the 
location of a target to an eye-centered coordinate system from which it is mapped via 
another network into a hand-based coordinate system. Then the difference between the 
actual and desired position can be computed to steer the motor commands. 

3.2 Robot Mirror Neuron System Imitation Learning 

The mirror neuron system's principles offer inspiration for developing robotic systems 
particularly with regards to imitation learning to allow robots to cope with complex 
environments by reducing the search space (Belpaeme et al., 2003; Triesch et al., 1999). 
A mirror neuron-based approach for imitation that relies on learning the reference frame 
transformation is that of Sauser and Billard (2005b, 2005a). This approach for three-
dimensional frames of reference transformations is based on a recurrent multi-layer neural 
network. This two layer neural network can create a non-linear composition from its inputs. 
The model includes an attractor network in the first layer with lateral weights, with the 
second layer containing neurons that receive inputs from a recurrent population but lack 
lateral connections. This network is able to represent two characteristics, direction and 
amplitude, in a population vector code. It is able to perform translation or rotation of 
vectorial activities. To perform non-linear transformation such as rotation there was the 
need for an intermediary population known as the gain field. A rotation around an axis the 
rotation is split into three transformations. When carrying out rotation for a reaching 
activity the target is observed using the visual system and represented using head-centered 
coordinate neurons. The angle between the head and body is represented in neurons that 
get proprioceptive information from the appropriate muscles receptors. To produce a 
movement to the target there is a need to take the head- centered coordinate representation 
and alter it so it is a body-centered frame of reference vector represented in a population of 
neurons. 
However many of the approaches simplify the problem to get round the need to include a 
learnt approach for reference transformation. Takahashi et al. (2006) have put forward a 
mirror neuron-based model for learning behaviors and others' intentions that does not 
depend on a precise model of the world or coordinate transforms. This approach relies on 
reinforcement learning to perform activities including navigation and ball passing with in a 
modular approach. Once the observer robot has developed the appropriate behaviors 
through reinforcement learning, the observer watchers the behavior and maps the sensory 
information from the observer's position to that of the performers based on state variables 
created during reinforcement. This model is based on a modular learning system made up 
of behavior modules. 
An additional robotics approach that uses imitation learning based on mirror neurons is that 
of Demiris and Hayes (2002) and Demiris and Johnson (2003) through behavior and forward 
models. A reference transformation is made in that the observer and the actor robots face 
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each other. The behavior model gives information on the current state and the goal and 
produces the required motor commands. The forward model then creates the expected next 
state based on the output from the behavior model. The predicted state is compared with 
the actual state of the demonstrator to produce an error signal. A confidence value is created 
from the error signal and used to establish the confidence by which a particular action or 
series of actions is identified by the observer robot. The architecture not only allows the 
observer robot to produce the appropriate behavior but also to recognize the behavior being 
performed by the demonstrator. 
A further mirror neuron-based approach is that of Billard and Matari  (2001) who use a 
hierarchy of neural networks and provides an abstract and high level depiction of the 
neurological structure that is the basis of the visuomotor pathways to examine the ability to 
reproduce human arm movements. The model consists of three parts for visual recognition, 
motor control and learning and uses seven modules. A module based on the temporal cortex 
processes visual information to identify the direction and orientation of the teacher's arms 
with reference to a point on the teacher's body. The temporal cortex model receives as input 
Cartesian coordinates for the limbs of the person demonstrating the action and this is 
transformed into the frame of reference of the observer. This transfer is supported by studies 
that have observed orientation-sensitive cells in the temporal cortex. The motor control is 
based on a hierarchical model with a spinal cord module at the lower level. Learning of 
movement occurs in the pre-motor cortex and cerebellum modules and learning creates 
links between the primary motor cortex, premotor cortex and the cerebellum and within the 
premotor cortex and the cerebellum. These modules use a dynamic recurrent associative 
memory architecture which is a fully connected recurrent network that enables time series 
and spatio-temporal data to be learnt using short-term memory. The model when tested on 
series of arm movements is found to reproduce all motions despite the noisy environment. 
An additional mirror neuron system based approach for grounding is that of Tani et al. 
(2004). A recurrent neural network with parametric biases (RNNPB) learns to recognize and 
produce multiple behaviors with distributed coding using a self-organizing technique. The 
reference transformation takes the spatial coordinates of the actor's hands which are 
mapped to the robot's hands using centered cartesian coordinates without learning. In this 
approach, sections of spatio-temporal data of sensory-motor flow are depicted by using 
vectors of small dimensions. The nonlinear dynamical system is produced using a Jordan-
type recurrent network that has parametric biases (PB) incorporated in the input layer 
function. Learning is achieved through the self-organizing mapping of the PB and the 
behavior representation. To reproduce the characteristics of the mirror neuron system, the 
RNNPB creates the appropriate dynamic pattern from fixed PB to learn and perform 
recognition by producing the PB from a target pattern. Movement patterns are learnt using 
the forward model by producing the PB vectors and a synaptic weight matrix. Following 
learning it is possible to produce sensory-motor series by using the forward dynamics of the 
RNNPB with the parameter biases fixed. When the network produces a behavior it operates 
in a closed loop where the prediction of the next action is fed back as an input. 
As part of the MirrorBot project a mirror neuron-based docking action was generated using 
a 4-step model. First, feature detectors from the visual input of neurons in a "what" area are 
learnt unsupervised. Second, associator weights within and between the "what" area and a 
"where" area are learnt supervised. After training, these two levels visually localize an object 
in a camera-centered coordinate system. Third, weights to a robot motor output are trained 
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by reinforcement learning to drive the robot to a position to grasp the object (Weber et al., 
2004). Since the position of the camera was held fixed, the pixel coordinates could be directly 
used for motor control, and no dynamic reference frame transformation was needed. In an 
equivalent approach, Martinez-Marin and Duckett (2005) make the camera always focus at a 
grasp target, which allows to use the camera gaze angle directly to control the robot. In 
(Weber et al., 2006) finally, a fourth layer observes the self-performed actions and learns to 
perform and to predict them based on only visual input. This loosely mimics mirror 
neurons, but as visual recognition of other robots was not done, neurons are active only 
when observing self-performance. Another, higher level with additional language input 
learnt to associate words to actions (Wermter et al., 2005). In simulation, the network could 
perform and recognize three behaviors, docking ('pick'), wander ('go'), and move away 
('lift').

4. Importance of Learning 

Maybe one of the most fundamental questions we can ask about coordinate transformations 
is how the brain comes to know how to compute them. More precisely, to what extent is the 
ability to compute proper coordinate transformations already built into our brains at birth 
and can be seen as a product of our evolutionary heritage? And to what extent is it the 
product of experience dependent learning mechanisms, i.e. a product of our lifetime 
experience? This set of questions is a particular example of what is often called the 
nature/nurture debate (Elman et al., 1996). 
Several pieces of evidence point to an important role of evolution in setting up proper sen-
sorimotor coordinate mappings in our brains. Most important, maybe, is the fact that even 
newborn infants are robustly capable of computing certain sensorimotor transformations. 
For example they will readily turn their head in the direction of a salient visual stimulus, 
requiring them to map the location of a visually perceived object represented in retinotopic 
coordinates to the appropriate motor commands for turning the head. This finding is 
important, because it shows that some sensorimotor transformations are already in place 
minutes after birth, before there was much time for any experience dependent processes to 
learn such a mapping. The sensorimotor abilities of other species are even more striking. In 
some precocious species like gazelles, newborns will be able to run at high speeds a few 
hours after birth, successfully avoiding obstacles and navigating across uneven terrain. 
The remarkable sensorimotor abilities of some species at birth suggest that much of the solu-
tion may be "hardwired" into our brains, but experience dependent learning processes must 
also play an important role in setting up and maintaining proper coordinate 
transformations. A chief reason for this is that the required coordinate transformations are 
not constant but change during the organism's development as the body grows and the 
geometry of sense organs and limbs matures. In fact, our ability to constantly adapt our 
sensorimotor coordination seems to be ubiquitous and it even persists into adulthood. A 
well-studied example is that of prism adaptation (Harris, 1965). When subjects wear glasses 
with wedge prisms that produce a sidewards shift of the visual scene, they will initially be 
quite inaccurate at a task like throwing darts at a target. The prism glasses introduce a bias 
to throw the dart to one side. Within a brief period, however, subjects are able to adapt their 
sensorimotor mappings to compensate for the effect of the prism glasses and their throws 
become accurate again. If the glasses are now taken away again, the subjects will again make 
errors — but this time in the opposite direction. Thus, our sensorimotor mappings can be 
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viewed as being the product of adaptation processes that change the required coordinate 
transformations whenever needed. At this point it is clear that both nature and nurture play 
important roles in allowing us to become so adept at performing sophisticated coordinate 
transformations. The fact that our coordinate transformations are so adaptable suggests that 
humanoid robots may also benefit from the flexibility to learn and adapt their coordinate 
transformations during their "life-time". 

5. Neural Frame of Reference Transformations 

5.1 Neural Population Code 

Figure 4. Neural population code. A scalar value, e.g. 0.65, is encoded by the activation rates 
of an array of neurons, the population vector

A continuous number is likely to be represented in the brain on an array of neurons, rather 
than in the firing rate of a single neuron. Fig. 4 visualizes how neurons may encode a 
continuous value by a neural population code. Each neuron codes for one value for which it 
will fire maximally, but it also responds to similar values. The set of neurons must cover all 
values that can be coded. The coded value can be read from the center of mass of the 
activation hill. One reason for such a code in the brain may be that a cortical neuron's firing 
is noisy and its firing rate is hard to adjust precisely. Many neurons for example decrease 
their firing rate within a few seconds of constant stimulus presentation, a phenomenon 
called firing rate adaptation (Blakemore & Campbell, 1969). 
A second reason for population coding may be that sensory neurons are spatially 
distributed. A seen object activates a blob of neurons on the retina, so it is computationally 
straightforward to retain the positional information topographically in cortical visual areas. 
Furthermore, there is more information in such a code than just the value coded in the 
maximally active neuron. A wider, or narrower hill of activation may account for 
uncertainty in the network's estimate of the encoded value. If two estimates, e.g. in the dark 
an uncertain visual position estimation and a more precise sound-based estimation are 
combined, networks that perform Bayesian cue integration can combine the information to 
obtain an estimate that has higher saliency than an estimate based on one cue alone 
(Battaglia et al., 2003). A neural activation pattern not only encodes location information. A 
visual stimulus activates several hierarchically organized cortical areas, each analyzing a 
different aspect, such as color, shape, identity, etc. The pure location information of an object 
may be most beneficial in the motor cortex, but also there, information like object 
orientation, size and expected weight is relevant, e.g. if the object is to be grasped. A more 
complex shape of the neural activation pattern can represent such additional information. 
However, if the activation pattern becomes too complex, then information might interfere, 
and the coded variables may be read out incorrectly. 
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5.2 Principles of Frame of Reference Transformations 

Coordinate transformations exist in several complexities. In the simple case, for example 
visual coordinates representing a grasp target are transformed into arm angle 
coordinates  used for reaching the target. This can be described as a fixed (non-
linear) mapping , and assumes that only the arm moves. The body of the agent, 
its head, eyes, and the object are statically fixed (Ghahramani et al., 1996). The mapping gets 
more involved if the arm angle coordinates have redundant degrees of freedom, as is the 
case in human(oid)s (Asuni et al., 2006). 
In this book chapter we are focusing on the more complex, dynamic coordinate 
transformations. In the example, the visual-motor mapping would be altered by other 
influences, such as the gaze direction , which is determined by the posture of eyes and 
head. Since the mapping is now also influenced by the values of , we may express it 
as . It is these dynamic transformations that are in the literature referred to 
as frame of reference transformations. 
Our paramount example (for population variables and representing scalar variables) is 
that  is the horizontal object position on the retina, and is the horizontal gaze angle 
(composed of eye- and head-angle). Then the body-centered horizontal position of the target 
is

 (1) 

This is challenging, because there is no other sensory input supplying and the 
computation is done with population codes. 
For this scalar case, Fig. 5 shows how a neural frame of reference transformation can be 
performed. The scalar variables  and define the centers of Gaussian hills of neural 
activations and , each along one dimension. The outer product of these population codes 
is then represented on two dimensions, depicted as squares in Fig. 5. These two dimensions 
contain all information of and , be it in a rather wasteful manner. The advantage is that 
for each constant , a diagonal line in that square represents all possible combinations of 

 and for which Eq. 1 holds. 

Figure 5. Schematic of a frame of reference transformation. Three different variations of the 
inputs are shown for each of three different results of the transformation, i.e. resulting in small, 
medium and large sums. The input is a pair of Gaussian population vectors, e.g. ,
representing  and , the to be transformed variables. Different combinations of  and 
are possible that lead to the same sum; these combinations lie on a diagonal on the depicted 
squares. A neuron that responds to a given sum will retrieve its input from one such diagonal 
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A straightforward method to get the result is to plaster the square with neurons which give 
input to a one-dimensional array of output neurons. Each output neuron receives its input 
from a diagonal line with an offset corresponding to the result  that it represents (Rossum 
& Renart, 2004). 
Such networks have been termed "basis function networks" (Deneve et al., 2001) referring to 
the units on the middle (square) layer, and partially shifting receptive fields of these units in 
response to a change of their input have been reported, akin to responses in several parietal 
and premotor areas. The term "gain field architecture" (Sauser & Billard, 2005a) refers to the 
multiplication of the two inputs (a component of  times a component of ) which effects 
the middle layer responses, a behavior also observed in some cortical areas (see Section 2). 
A problem in such a two-layer neural network is to find an unsupervised learning scheme. 
This is important, because, in the above example,  is not directly available, hence there is 
no supervisor. We will present in Section 6 a network that replaces the middle layer by 
enhanced synapses of the output layer neurons, and which allows unsupervised training. 
It is also worthwhile mentioning that the body geometry may considerably constrain, and 
therefore simplify, the possible transformations. For example, if the head turns far right, 
then no object on the left side of the body is visible. Hence, one input such as already
constrains the result  without any knowledge of the other input  (assuming that only 
visible objects are of interest). A simple transformation network without any middle layer 
that was trained in a supervised fashion takes advantage of this simplification (Weber et al., 
2005).

6. A Mapping with Sigma-Pi Units 

A standard connectionist unit i is activated by the sum of input activations weighted by 
its weights :

 (2) 

This net input ai is then usually passed through a transfer function. A Sigma-Pi neuron i
evaluates the weighted sum of multiplications 

 (3) 

As a specific case, the input vector  can be the same as , but in our example we have 
different input layers. In general, Sigma-Pi units may evaluate the product of more than just 
two terms. 
The advantage of the Sigma-Pi neuron for our problem can be seen in Fig. 6. Consider a 
neuron that shall be active if, and only if, leads to a medium sum, as in Fig. 5 
middle. We can construct it by assigning non-zero weights to the according combinations in 
the x- and y-input layers, as depicted by the small blobs on the diagonal of the square in Fig. 
6, and zero weights away from the diagonal. This neuron will be activated according to 

 (4) 
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so it will be activated by the selected combinations of x- and y-inputs. It will not be activated 
by different combinations, such as e.g. , because is zero. Such a selective 
response is not feasible with one connectionist neuron. 

Figure 6. A Sigma-Pi neuron with non-zero weights along the diagonal will respond only to 
selected input combinations, such as . This corresponds to 
Fig. 5, middle, where has medium value 

6.1 A Sigma-Pi SOM Learning Algorithm 

The main idea for an algorithm to learn frame of reference transformations exploits that a 
representation of an object remains constant over time in some coordinate system while it 
changes in other systems. When we move our eyes, a retinal object position will change with 
the positions of the eyes, while the head-centered, or body centered, position of the object 
remains constant. In the algorithm presented in Fig. 7 we exploit this by sampling two input 
pairs (e.g. retinal object position and position of the eyes, at two time instances), but we 
"connect" both time instances by learning with the output taken from one instance with the 
input taken from the other. We assume that neurons on the output (map) layer respond 
invariantly while the inputs are varied. This forces them to adopt, e.g. a body centered 
representation. In unsupervised learning, one has to devise a scheme how to activate those 
neurons which do not see the data (the map neurons). Some form of competition is needed 
so that not all of these "hidden" neurons behave, and learn, the same. Winner-take-all is one 
of the simplest form of enforcing this competition without the use of a teacher. The 
algorithm uses this scheme (Fig. 7, step 2(c)) based on the assumption that exactly one object 
needs to be coded. The corresponding winning unit to each data pair will have its weights 
modified so that they resemble these data more closely, as given by the difference term in 
the learning rule (Fig. 7, step 4). Other neurons will not see these data, as they cannot win 
any more, hence the competition. They will specialize on a different region in data space. 
The winning unit will also activate its neighbors by a Gaussian activation function placed 
over it (Fig. 7, step 2(d)). This causes neighbors to learn similarly, and hence organizes the 
units to form a topographic map. Our Sigma-Pi SOM shares with the classical self-
organizing map (SOM) (Kohonen, 2001) the concepts of winner-take-all, Gaussian 
activation, and a difference-based weight update. The algorithm is described in detail in 
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Weber and Wermter (2006). Source code is available at the ModelDB database: 
http://senselab.med.yale.edu/senselab/modeldb (Migliore et al., 2003). 

Figure 7. One iteration of the Sigma-Pi SOM learning algorithm 
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6.2 Results of the Transformation with Sigma-Pi Units 

We have run the algorithm with two-dimensional location vectors  and as relevant for 
example for a retinal object location and a gaze angle, since there are horizontal and vertical 
components.  then encodes a two-dimensional body-centered direction. The 
corresponding inputs in population code and are each represented by 15 x 15 units. 
Hence each of the 15 x 15 units on the output layer has 154 = 50,625 Sigma-Pi connection 
parameters. For an unsupervised learnt mapping, it cannot be determined in advance 
exactly which neurons of the output layer will react to a specific input. A successful frame of 
reference transformation, in the case of our prime example Eq. 1, is achieved, if for different 
combinations that belong to a given  always the same output unit is activated, 
hence will be constant. Fig. 8, left, displays this property for different pairs. Further, 
different output units must be activated for a different sum . Fig. 8, right, shows that 
different points on one layer, here together forming an "L"-shaped pattern, are mapped to 
different points on the output layer in a topographic fashion. Results are detailed in Weber 
and Wermter (2006). 
The output (or possibly, ) is a suitable input to a reinforcement-learnt network. This is 
despite the fact that, before learning, is unpredictable: the "L" shape of  in Fig. 8, right, 
might as well be oriented otherwise. However, after learning, the mapping is consistent. A 
reinforcement learner will learn to reach the goal region of the trained map (state space) 
based on a reward that is administered externally. 

Fig. 8: Transformations of the two-dimensional Sigma-Pi network. Samples of inputs and
given to the network are shown in the first two rows, and the corresponding network 

response a, from which is computed, in the third row. Leftmost four columns: random 
input pairs are given under the constraint that they belong to the same sum value . The 
network response a is almost identical in all four cases. Rightmost two columns: when a 
more complex "L"-shaped test activation pattern is given to one of the inputs, a similar 
activation pattern emerges on the sum area. It can be seen that the map polarity is rotated by 
180°.

6.3 An Approximate Cost Function 

A cost function for the SOM algorithm does not strictly exist, but approximate ones can be 
stated, to gain an intuition of the algorithm. In analogy to Kaski (1997) we state (cf. Fig. 7): 

(5)
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where the sum is over all units, data, and weight indices. The cost function is minimized by 
adjusting its two parameter sets in two alternating steps. The first step, winner-finding, is to 
minimize E w.r.t. the assignments (cf. Fig. 7, Step 2 (c)), assuming fixed weights: 

(6)

Minimizing the difference term and maximizing the product term can be seen as equivalent 
if the weights and data are normalized to unit length. Since the data are Gaussian 
activations of uniform height, this is approximately the case in later learning stages when 
the weights approach a mean of the data. The second step, weight-learning (Fig. 7, Step 4), is 
to minimize E w.r.t. the weights , assuming given assignments. When convergend, 

and

(7)

Hence, the weights of each unit reach the center of mass of the data assigned to it. 
Assignment uses while learning uses a pair of an "adjacent" time step, to 
create invariance. The many near-zero components of x and y keep the weights smaller than 
active data units. 

7. Discussion 

Sigma-Pi units lend themselves to the task of frame of reference transformations. 
Multiplicative attentional control can dynamically route information from a region of 
interest within the visual field to a higher area (Andersen et al, 2004). With an architecture 
involving Sigma-Pi weights activation patters can be dynamically routed, as we have shown 
in Fig. 8 b). In a model by Grimes and Rao (2005) the dynamic routing of information is 
combined with feature extraction. Since the number of hidden units to be activated depends 
on the inputs, they need an iterative procedure to obtain the hidden code. In our scenario 
only the position of a stereotyped activation hill is estimated. This allows us to use a 
simpler, SOM-like algorithm. 

7.1 Are Sigma-Pi Units Biologically Realistic? 

A real neuron is certainly more complex than a standard connectionist neuron which 
performs a weighted sum of its inputs. For example, there exists input, such as shunting 
inhibition (Borg-Graham et al., 1998; Mitchell & Silver, 2003), which has a multiplicative 
effect on the remaining input. However, such potentially multiplicative neural input often 
targets the cell soma or proximal dendrites (Kandel et al., 1991). Hence, multiplicative 
neural influence is rather about gain modulation than about individual synaptic 
modulation. A Sigma-Pi unit model proposes that for each synapse from an input neuron, 
there is a further input from a third neuron (or even a further "receptive field" from within a 
third neural layer). There is a debate about potential multiplicative mutual influences 
between synapses, happening particularly when synapses gather in clusters at the 
postsynaptic dendrites (Mel, 2006). It is a challenge to implement the transformation of our 
Sigma-Pi network with more established neuron models, or with biologically faithful 
models. 
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A basis function network (Deneve et al., 2001) relates to the Sigma-Pi network in that each 
each Sigma-Pi connection is replaced by a connectionist basis function unit - the 
intermediate layer built from these units then has connections to connectionist output units. 
A problem of this architecture is that by using a middle layer, unsupervised learning is hard 
to implement: the middle layer units would not respond invariantly when in our example, 
another view of an object is being taken. Hence, the connections to the middle layer units 
cannot be learnt by a slowness principle, because their responses change as much as the 
input activations do. An alternative neural architecture is proposed by Poirazi et al. (2003). 
They found that the complex input-output function of one hippocampal pyramidal neuron 
can be well modelled by a two-stage hierarchy of connectionist neurons. This could pave a 
way toward a basis function network in which the middle layer is interpreted as part of the 
output neurons' dendritic trees. Being parts of one neuron would allow the middle layer 
units to communicate, so that certain learning rules using slowness might be feasible. 

7.2 Learning Invariant Representations with Slowness 

Our unsupervised learnt model of Section 6 maps two fast varying inputs (retinal object 
position  and gaze direction ) into one representation (body-centered object position )
which varies slowly in comparison to the inputs. This parallels a well known problem in the 
visual system: the input changes frequently via saccades while the environment remains 
relatively constant. In order to understand the environment, the visual system needs to 
transform the "flickering" input into slowly changing neural representations - these 
encoding constant features of the environment. 
Examples include complex cells in the lower visual system that respond invariantly to small 
shifts and which can be learnt with an "activity trace" that prevents fast activity changes 
(Földiák, 1991). With a 4-layer network reading visual input and exploiting slowness of 
response, Wyss et al. (2006) let a robot move around while turning a lot, and found place 
cells emerging on the highest level. These neurons responded when the robot was at a 
specific location in the room, no matter the robot's viewing direction.
How does our network relate to invariance in the visual system? The principle is very 
similar: in vision, certain complex combinations of pixel intensities denote an object, while 
each of the pixels themselves have no meaning. In our network, certain combinations of 
inputs denote a , while or alone have no information. The set of inputs that 
lead to a given is manageable, and a one-layer Sigma-Pi network can transform all 
possible input combinations to the appropriate output. In vision, the set of inputs that 
denotes one object is rather unmanageable; an object often needs to be recognized in novel 
view, such as a person with new clothes. Therefore, the visual system is multi-level 
hierarchical and uses strategies such as de-composition of objects into different parts. 
Computations like our network does may be realized in parts of the visual system. 
Constellations of input pixel activities that are always the same can be detected by simple 
feature detectors made with connectionist neurons; there is no use for Sigma-Pi networks. It 
is different if constellations need to be detected when transformed, such as when the image 
is rotated. This requires the detector to be invariant over the transformation, while 
distinguishing from other constellations. Rotation invariant object recognition, reviewed in 
Bishop (1995), but also the routing of visual information (Van Essen et al., 1994), as we show 
in Fig. 8 b), can easily be done with second order neural networks, such as Sigma-Pi 
networks. 
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7.3 Learning Representations for Action 

We have seen above how slowness can help unsupervised learning of stable sensory 
representations. Unsupervised learning ignores the motor aspect, i.e. the fact that the 
transformed sensory representations only make sense if used for motor action. Cortical 
representations in the motor system are likely to be influenced by motor action, and not 
merely by passive observation. Learning to catch a moving object is unlikely to be guided by 
a slowness principle. Effects of action outcome that might guide learning are observed in the 
visual system. For example, neurons in V1 of rats can display reward contingent activity 
following presentation of a visual stimulus which predicts a reward (Shuler & Bear, 2006). In 
monkey V1, orientation tuning curves increased their slopes for those neurons that 
participated in a discrimination task, but not for other neurons that received comparable 
visual stimuli (Schoups et al., 2001). In the Attention-Gated Reinforcement Learning model, 
Roelfsema and Ooyen (2005) combine unsupervised learning with a global reinforcement 
signal and an "attentional" feedback signal that depends on the output units' activations. For 
1-of-n choice tasks, these biologically plausible modifications render learning as powerful as 
supervised learning. For frame of reference transformations that extend into the motor 
system, unsupervised learning algorithms may analogously be augmented by additional 
information obtained from movement. 

8. Conclusion 

The control of humanoid robots is challenging not only because vision is hard, but also 
because the complex body structure demands sophisticated sensory-motor control. Human 
and monkey data suggest that movements are coded in several coordinate frames which are 
centered at different sensors and limbs. Because these are variable against each other, 
dynamic frame of reference transformations are required, rather than fixed sensory-motor 
mappings, in order to retain a coherent representation of a position, or an object, in space. 
We have presented a solution for the unsupervised learning of such transformations for a 
dynamic case. Frame of reference transformations are at the interface between vision and 
motor control. Their understanding will advance together with an integrated view of 
sensation and action. 
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