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Abstract—A novel wake-sleep learning architecture for 
processing a robot’s facial expressions is introduced. According 
to neuroscience evidence, associative learning of emotional 
responses and facial expressions occurs in the brain in the 
amygdala. Here we propose an architecture inspired by how the 
amygdala receives information from other areas of the brain to 
discriminate it and generate innate responses. The architecture 
is composed of many individual Helmholtz machines using the 
wake-sleep learning algorithm for performing information 
transformation and recognition. The Helmholtz machine is used 
since its re-entrant connections support both supervised and 
unsupervised learning. Potentially it can explain some aspects of 
human learning of emotional concepts and experience. In this 
research, a robotic head’s facial expression dataset is used. The 
objective of this learning architecture is to demonstrate the 
neural basis for the association of recognized facial expressions 
and linguistic emotion labels. It implies the understanding of 
emotions from observation and is further used to generate facial 
expressions. In contrast with other facial expression recognition 
research, this work concentrates more on emotional information 
processing and neural concept development, rather than a 
technical recognition task. This approach has a lot of potential 
to contribute towards neurally inspired emotional experience in 
robotic systems.  

 
Figure 1.  Diagram of the thalamus, the sensory cortex, the association 
cortex, mirror neurons, insula and amygdala for emotional information 
processing in the human brain.          

I. INTRODUCTION 
ost current interface robots and interactive agents have 
no capability of understanding the complexity of the 
human interaction, or demonstrating empathy or 

emotion. However, it is anticipated that future robots should 
be able to empathise with users and generate appropriate 
expressions to communicate to the user their emotive states 
during interaction [1]. 

In recent years, many researchers have investigated how 
emotional information can be processed and the emotional 
stimulus-response phenomenon in the human brain. These 
findings have the potential to help develop computational 
systems that can be installed in robots to make human-robot 
interaction more natural and satisfying [2]. There are several 
important brain areas and mechanisms involved in emotional 
information processing, including the amygdala, the insula, 
and the mirror system [17]. An overview of the various brain 
areas involved is shown in figure 1 and in this paper we 
concentrate on the amygdala region as an important area for 
emotion recognition. The aim of this research is to investigate 

the representation of robotic facial expression information, in 
order to facilitate the design of emotive computational 
architectures.  
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The paper is structured as follows. Section II discusses the 
brain areas involved in emotion and facial expression 
information processing, and how we can recognize emotion 
from facial expressions. In section III there is a short 
introduction to the biologically-inspired neural network 
(Helmholtz machine) and its learning algorithm. Section IV 
presents the design of our architecture, whilst section V 
outlines recent experiments and results. Finally, conclusions 
and future work are summarized in section VI.  

II. NEURAL MECHANISMS UNDERLYING EMOTION 
The human brain is a complex information processing 

system and emotions interfere at multiple levels of cognitive 
information processes. Referring to the H-Cogaff cognitive 
architecture schema [3, 4], varieties of emotions are not only 
considered as alarms to trigger responses in the reactive level 
but also interfere with different level of cognitive processes.  

Such emotional information processing mechanisms can be 
found in a part of the brain called the amygdala, which is 
located within the medial temporal lobes (see figure 1). 
Although the amygdala appears to be intertwined at all stages 
of emotional cognitive processing, its role can be summarised 
as evaluating and regulating emotion valence, emotional 
learning, and modulating emotional memory and behaviours 
[5-10]. Previously, the amygdala was thought to activate for 
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negative emotions only, but there is increasing evidence 
suggesting that it activates for both positive and negative 
emotions [11]. Also, looking inside the amygdala’s internal 
structure, there are four main nuclei: Lateral nucleus (L), 
Basal nucleus (B), Accessory Basal nucleus (AB) and central 
nucleus (Ce). L receives stimuli from the sensory cortex via 
the thalamus and unimodal association cortex for recognized 
objects and concepts. They are sent to the B, which contains 
many connections to the hippocampus for emotional context 
formation. The AB connects to the frontal cortex for attention 
and emotional behaviour control, and the central nucleus 
connects to the basal ganglia and brainstem for generating 
reactive responses and regulating the behaviours via varying 
physiological arousal.  

Two sides of the amygdala are involved in different roles 
and tasks. Most neuroscience scientists state that the 
amygdala exhibits different activations for both negative and 
positive basic facial expressions, but different activation 
behaviours between the left and right sides of the amygdala 
[12]. Also, the amygdala contains greater activation in 
explicit emotion identification tasks rather than in implicit 
age identification tasks [13].   

There are three ways to recognize emotions from facial 
expressions: direct recognition from stimuli without any 
manipulation, recognition via associated knowledge, and 
recognition via facial actions simulation [14]. When raw 
facial expressions are projected to the amygdala directly via 
the thalamus, this is normally called the “low route” and is 
mainly for producing immediate responses. Alternatively, 
facial expressions can be recognized as different objects and 
be associated with different concepts via the “what” cortical 
visual pathways. The results are then sent to the amygdala for 
generating object-emotion and concept-emotion association 
responses [15].   

In addition, the spatial movement and location of facial 
motors can be detected via the “where” cortical visual 
pathway. Such detections will activate the face-related mirror 
neurons, whose processing is called motor resonance, and 
which perform the facial action simulation. In this case, the 
simulated action representations are interpreted at the insula. 
This is called neural mechanisms of empathy or motor theory 
of empathy [16-18]. When the amygdala receives such action 
representations, the relevant emotional responses will be 
generated and fed back to the insula and anterior cingulated 
cortex (ACC) for eliciting bodily representation of emotions 
(called feelings) such as disgust and pain [19, 20]. Due to the 
presence of this mechanism of empathy, humans can observe 
others and evoke the activity of corresponding motor 
neurons; simulate and retrieve the goal and meaning of 
actions; and understand the deeper and ambiguous emotional 
meaning of expressions. 

After reviewing the neural mechanisms of emotion and 
facial expressions, it is observed that emotional information 
processing in the brain involves numerous top-down and 
bottom-up connections between the cortex and amygdala. 
The emotional information processing of facial expressions 

should be not only performing recognition, but also the 
reconstruction/regeneration of expressions from high level 
concepts.                

III. HELMHOLTZ MACHINE AND WAKE-SLEEP ALGORITHM 
The reason for developing this neurocognitive architecture 

is to demonstrate how emotional information associates with 
specific emotion labels. Thus, a statistical artificial neural 
network called a Helmholtz Machine (HM) is used because it 
supports bottom-up and top-down connections that can 
potentially explain how we recognise the concepts of emotion 
and reconstruct emotional facial expressions.  

A Helmholtz machine models cortical bottom-up and 
top-down pathways in our perceptual system [21-24]. It 
operates like a statistical engine performing density 
estimation, in order to transform the sensory feature input into 
a reduced internal representation. There are two processing 
models: a recognition model and a generative model. A 
recognition model is used to estimate a probability 
distribution from the inputs and represents them in the higher 
layer; indeed, it is performing the discrimination of inputs. A 
generation model is a reverse top-down model that is able to 
reconstruct the output, which is generated by the recognition 
model. During learning, each stochastic neuron at the 
higher/hidden layer (B) is the weighted sum of the input layer 
(A). Conversely, at the input layer is the weight sum of the 
hidden layer (see figure 2a). They are defined as follows: 
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where δ is the stochastic function whose output is 1 with Pr(s) 
and 0 with 1-Pr(s);  sb is the probability state of a neuron in the 
hidden layer with index y; Rab is the recognition weight; and 
bR is the bias. 
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where sa is the probability state of a neuron at the input layer 
with index x, Gba is the generative weight and bG is the bias.   

The wake-sleep learning algorithm is primarily used in the 
stochastic Helmholtz machines and its goal is not only to 
learn an economic representation to describe the observed 
inputs, but also to accurately reconstruct the inputs. There are 
two learning phases, ‘wake’ and ‘sleep’. In the wake phase, a 
sampled input is fed into the recognition model for estimating 
an economic output (see eq.1), and then it is used to 
reconstruct the input via the generative model (see eq.2). By 
comparing with the original sampled input, the difference can 
be used to update the generative weight by the delta rule. 
They are defined as follows:  

 
b
y

aG
x

a
x

ba
yx

ba
yx sssGG )( −+= η  (3) 



)1)(( −−+= aG
x

a
x

G
x

G
x ssbb η  (4) 

 
Thus, the generative weight’s updating is driven by the 
recognition model in order to increase the chance of 
reconstructing an accurate input. In the sleep phase, a 
stochastic pattern or a supervised pattern is fed into the 
generative model and reversely performs the reconstruction. 
This phase is driven by the generative model and updates the 
recognition weight with the aim of improving the estimation. 
The equations are: 
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In addition, Oja’s decay term is added to limit the rate of 
growth of each weight: 
 

))(( 2 ab
xy

b
y

ab
xy

ab
xy RsηRR ⋅−= ε  (7) 

))(( 2 ba
yx

a
x

ba
yx

ba
yx GsηGG ⋅−= ε  (8) 

  
The wake-sleep algorithm is applied not only in the 
Helmholtz machine, but also in the restricted Boltzmann 
machine (RBM) for performing hand written character 
recognition and face recognition [25, 26]. Six layer 
hierarchical networks have been used to auto-encode images 
into 30 dimensions and good results have been obtained that 
outperform principal component analysis (PCA). In fact 
RBM is very similar to HM, although RBM has symmetrical 
connections, whereas HM does not. Therefore, in this 
research the wake-sleep algorithm was chosen to construct 
the whole architecture, both for being biologically-inspired 
while still having a reasonable training and testing 
performance for networks.  

IV. ARCHITECTURE DESIGN  

A. Neuroscience-Inspired Design  
For development purposes, firstly we assume the cortices 

are responsible for analyzing the facial expressions. The 
lateral nucleus of the amygdala is responsible for categorising 
facial expressions into different type of responses. The role of 
the central nucleus of the amygdala is to process actual 
emotional responses for regulating behaviours.  

Secondly, we assume humans have the innate capability to 
analyse facial expressions via direct recognition and facial 
motor position detection. The lateral nucleus of the amygdala 
should contain the feature-emotion association, the 
object-emotion association, and also some higher conceptual 
and contextual level association. Due to the complexity of 
development, some brain structures and their functions are 
omitted in the architecture, for example the mirror system for 
action simulation and recognition, and the hippocampus and 
basal nucleus of the amygdala for emotional memory 
formation and retrieval.      

Thirdly, depending upon the nature of the brain structure, 
we can specify whether the networks are supervised for 
acquired feature detection, where external information is 
required, or unsupervised for innate feature detection and 
categorisation. It is intended to let the architecture learn 
user’s expressions online in the future. The detailed 
configurations of the networks chosen for this work are 
shown in table 1, which will be discussed further in section V. 

Fourthly, a symbolic approach is applied [27-29] where 
different linguistic emotion labels are grounded into internal 
cognitive representations, including the perception of facial 
features, recognition of basic facial expressions, and 
simulation of facial actions. In the following sections, the 
explanation of each part is discussed. 

 
Figure 2. On the left hand is the overall architecture.  On the right hand, there are three basic Helmholtz machines showing the way of wake(W)-sleep(S) 
phases learning :  (a) is the single-layer model for demonstrating the bottom-up association and transformation of information; (b) is the model to link two 
single layer HMs side-by-side.  They share the same hidden layer representing the association where either layer can be specified to represent the target 
label; (c) also contains two HM, but they are connected together hierarchically.  The lower HM’s output is connected to upper HM’s input.  This 
connection model is commonly used in recognition tasks.  



B. Feature Extraction 
A feature layer represents the features after pre-processing, 
including the edge-colour and Gabor features. A robot facial 
expression image data set is used in our research (see section 
V for details of the data set) where each image is decomposed 
into three regions: left eyebrow, right eyebrow and lips. 
Currently, a Gabor filtering toolbox [30] is used for extracting 
8 orientations and 3 scaled Gabor features directly. Therefore, 
there are in total six subsets of features, including 4980 pixel 
features (left eye brow: 900 + right eye brow: 900 + lips: 
3180) and 119520 Gabor features (21600 + 21600 + 76320). 

C. Feature Detection  
There are six single-layer HMs for six feature subsets.  The 

role of each HM is to detect and extract hidden features from 
lower-level features. The single-layer HM can be configured 
to estimate the components from the features and form an 
economic binary representation. Six feature detection 
networks perform individually to produce a total of 114 
hidden features to represent six regions of pixel and Gabor 
features.  

D. Expression Recognition 
Expression recognition is a process that models the “what” 

stream of visual processing. After feature detection 
(dimension reduction), the features of a facial expression are 
further recognized as different expression cognitive symbols. 
The single layer HM is used as an association memory that 
memorizes the expressions in the network weights. The size 
of this HM is equal to the amount of single facial expressions 

that humans can memorize. Currently, unsupervised learning 
is applied to transfer the detected features into 64 predefined 
expression categories. Unsupervised learning is a machine 
learning approach that does not require any target outputs 
during learning and purely performs a categorisation task 
based on observing the difference between inputs and the 
number of categories specified.   

E. Facial Motor Position Detection 
This section is not the same as expression recognition, but 

is inspired by the mirror system that allows humans to 
recognize facial motor actions via motor resonance. It is 
thought that this capability is innate and may be well 
organized in the brain from birth. In our architecture, a 
one-layer HM with supervised learning is used. The 
representation of this layer is a motor map, the same as the 
one used for controlling facial actions.  In this architecture, 15 
binary units are specified, which represent 3 motor positions 
for each side of eyebrow and 9 for the lips. In terms of 
information, this HM transfers the detected features into 
motor positions.    

F. Feature-Emotion Association  
Here the lateral nucleus amygdala deals with the 

categorization of emotional stimuli into a predefined number 
of groups. This is a reactive level association process that 
associates features with emotional activation when the feature 
is directly fed into the amygdala from the thalamus (see figure 
1). The output is then interpreted as different individual 
symbolic activations. It is assumed only four types of 
activation can appear at the lateral nucleus of the amygdala 

Table 1. The configurations of the Helmholtz machines 

 



i.e. positive-high arousal, positive-low arousal, negative-high 
arousal and negative-low arousal. A two-layer HM (refer to 
figure 2c) with supervised learning is used rather than just a 
one-layer HM, since the additional hidden layer improves the 
association. 

G. Object-Emotion Association 
This is similar to the previous feature-emotion association, 

but is configured for categorizing the stimuli into different 
pre-defined object activations. It is planned to use a single 
layer HM and unsupervised learning.    

H. Emotion-Expression-Motor Map Grounding 
This is the output layer of the whole architecture that 

associates all the emotional labels with the activation of the 
amygdala, recognised facial expressions and detected motor 
positions together, to form higher level concepts. Supervised 
learning will be used to ground all internal states to linguistic 
emotion labels.         

V. EXPERIMENTS AND RESULT 
To evaluate the architecture, a robot expression image 

dataset has been produced. There are 144 robotic expression 

images, including all combinations of the motor positions of 
eyebrows and lips, with manually assigned feature emotion 
labels (see figure 3). At feature level, we have grouped them 
into four emotion categories: excitement, stress, depression 
and calm, with the meaning positive-high arousal, 
negative-high arousal, negative-low arousal and positive-low 
arousal respectively.      

The development work of the architecture is divided into 
three stages (see table 1). In the first stage, all feature 
manipulations from the brain structures that connect to the 
thalamus are included, such that the sensory cortex is 
represented by six feature detection networks and the lateral 
nucleus of amygdala is represented by feature-emotion 
association network. In the second stage, the expression 
recognition network and motor position detection network 
will be trained. The remaining networks, including 
object-emotion association and emotional expression 
grounding, will be implemented at the third stage. In this 
paper we focus on reporting the results of the first stage as 
follows. 

In order to allow the HM to learn more efficiently, three 
approaches have been implemented. Firstly, the network 
performed the learning more often in the wake phase than the 
sleep phase. Since HM is generative-based learning, to let the 
wake phase learn more we can increase the chance of 
correctly adjusting the generative weights toward the input 
pattern via recognition models. Secondly, the lower level 
network was set to learn in unsupervised mode at stage one 
and changed to supervised mode to fine-tune the lower-level 
network. Thirdly, two different learning rates - one for the 
wake phase and one for the sleep phase - are applied.  The 
wake phase is playing the role of M-step [31], so the increase 
of its learning rate can maximise the probability density (the 
likelihood) of the observed inputs. Alternatively, the sleep 
phase learning rate is playing the role of E-Step. The decrease 
in the learning rate can improve the estimation of the 
probability density of parameters, as if observing the inputs.   

To evaluate the architecture, both the estimation of factors 
from input and the reconstruction of input from those factors 

 
Figure 3. Example of robotic expressions with four assigned 
feature-level emotion labels.  

 
Figure 4. Test results of the feature detector recorded at stage one.  The first row is the pixel feature image and the second row is the Gabor feature image.  
The first column is the input, the second column is the output representing the probability distribution, and the third column is the reconstructed image and 
so on. 



are monitored. Firstly, the performance of HMs in 
categorising non-binary input patterns for feature detection is 
monitored. A good result of six feature detection networks 
has been recorded after applying the first approach to let the 
wake phase learn more. This is shown in figure 4. The factors 
of non-binary input features are estimated and represented by 
fewer binary units at the output layer. In addition, their 
reconstructions are clear. 

In figure 5, feature-emotion association network results are 
generated from one sample input. Although a two-layer HM 
was designed, the implementation used two single-layer HMs 
“emo_hdd” and “emo_net” instead. The facial feature is fed 
into the input layer (“emo_hdd.A”) and then transferred to the 
output layer (“emo_hdd.B”). The output of “emo_hdd” was 
connected to the input layer of “emo_net” (“emo_net.A”) and 
the result obtained at output layer (“emo_net.B”).   

In figure 6, the feature detection results after applying all 
three HM optimization approaches are shown. The results are 
presented region-by-region in order to clearly indicate how 
HMs discriminate input features and represent them by units.  

VI. DISCUSSION  
The main contribution of this paper is to model the 

amygdala’s processing of facial expression information and 
link this to external emotion labels, in order to develop 
emotion concepts. A simplified robotic facial expression 
dataset has been used.   

For feature detection, the results show that the input data is 
successfully represented by few unique units, which can be 
used to reconstruct the low-level input feature precisely. 
Some noise (or “non solid” units) can be found among the 
detected binary units shown in figure 4. These are the units 
that have not fully learnt or are overlapping with other 
features. However, this can be improved at a later stage by 
applying different wake-sleep learning rates and the result is 
shown in figure 6. By observing these results, we can 
primarily conclude that the HMs should able to detect and 
estimate factors from both pixel features and 
large-dimensionality Gabor features by an unsupervised 
learning approach. 

For feature-emotion association, the result shown in figure 
5 is the representation of the type of activation responses at 
the lateral nucleus of the amygdala. At a reactive level, we 
assume this association is an innate capability and performed 
rapidly; therefore, as previously discussed, four possible 
categories to the inputs were assigned. A reasonable and 
explainable result has been collected and although the 
reconstructed image is less clear than the original, the factors 
of low level features are successfully estimated. The reason is 
that we only group them into four possible emotion 
categories, so overlapping occurs and is shown at the 
reconstruction. In addition, in contrast with six feature 
detection networks, the hidden layer of the emotion network 
is trying to perform the categorisation of inputs all-in-one, 
without dividing them into regions (left and right eyebrows 
and lips).  The total combination of inputs is much larger than 

 
Figure 6. The complete feature detection results after applying all HM 
optimization approaches.   

 
Figure 5. The information flow from bottom network “emo_hdd” to 
higher network “emo_net”. This result is collected at iteration=100000. 



the feature detection network. Considering HM is a statistical 
neural network which uses a stochastic learning approach, it 
may be that it is sampling all the combinations that require the 
longest times to process, so that the learning and optimising 
of HMs can become very difficult.  

Another difficulty of the implementation is the estimation 
of the initialization parameters for the HMs. In particular, in 
this scenario the low level pixel and Gabor features are not 
binary features and the difference between data can be small, 
especially for the Gabor features. Also, non-binary inputs 
make the HM more difficult to initialise and optimise, even 
when a weight decay term is added. It may be that the 
problem can be solved by replacing the two separated 
connection weights with symmetric connection weights, 
similar to some of the latest approaches using restricted 
Boltzmann machines with wake-sleep algorithms [25, 26].  

Future work should include: the continuous 
implementation of the complete architecture; the integration 
of a basic expression behaviour controller to control the 
action of a robot head; further detailed analysis of the 
architecture, such as the performance of the retrieval of face 
images and motor position map based on higher level 
concepts (i.e. “happy smiling face” can retrieve happy 
emotion, smiling face and its motor position). 

In conclusion, the paper has summarised how the brain 
processes emotional information and the basic theory of the 
Helmholtz machine. A design and development description 
of the architecture has been provided, including the 
assumptions made and how the system has been 
biologically-inspired at the architectural level. Primary 
experimental results have demonstrated that the Helmholtz 
machines work in both supervised and unsupervised learning 
modes. Based on the bottom-up recognition results and 
top-down reconstructed results, it can explain how humans 
recognise facial expressions and generate feature level 
emotional activation. The research will be extended to 
associate those internal recognition results with linguistic 
emotional labels, in order to develop specific emotional 
experiences.    
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