In: Proc. of the 25th Int. Conference on Artificial Neural Networks (ICANN), Barcelona, Spain (September, 2016)
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-44778-0_16

Learning Multiple Timescales in
Recurrent Neural Networks

Tayfun Alpay, Stefan Heinrich, and Stefan Wermter

University of Hamburg, Department of Informatics, Knowledge Technology
Vogt-Kolln-Strale 30, D - 22527 Hamburg, Germany
{alpay,heinrich, wermter}@informatik.uni-hamburg.de
http://www.informatik.uni-hamburg.de/WTM/

Abstract. Recurrent Neural Networks (RNNs) are powerful architec-
tures for sequence learning. Recent advances on the vanishing gradient
problem have led to improved results and an increased research inter-
est. Among recent proposals are architectural innovations that allow the
emergence of multiple timescales during training. This paper explores
a number of architectures for sequence generation and prediction tasks
with long-term relationships. We compare the Simple Recurrent Network
(SRN) and Long Short-Term Memory (LSTM) with the recently pro-
posed Clockwork RNN (CWRNN), Structurally Constrained Recurrent
Network (SCRN), and Recurrent Plausibility Network (RPN) with re-
gard to their capabilities of learning multiple timescales. Our results show
that partitioning hidden layers under distinct temporal constraints en-
ables the learning of multiple timescales, which contributes to the under-
standing of the fundamental conditions that allow RNNs to self-organize
to accurate temporal abstractions.

Keywords: Recurrent Neural Networks, Sequence Learning, Multiple
Timescales, Leaky Activation, Clocked Activation

1 Introduction

Until recently RNNs were mainly of theoretical interest as their initially per-
ceived shortcomings proved too severe to be used in complex applications. One
deficiency that has been reported early on is the vanishing gradient problem [IJ.
When RNNs are trained with backpropagation, error signals over time vanish
exponentially in RNNs. This has led to multiple highly specialized architectures
such as the Long Short-Term Memory (LSTM [2]). Their success has sparked
a renewed research interest in RNNs, which has led to a number of recently
proposed RNN architectures, including those that try to improve control over
the self-organization of temporal dynamics by learning on multiple timescales.
However, as these novel approaches have not yet been rigorously compared,
the fundamental principles that allow the capturing of dynamics on different
timescales are still unknown.

In this paper, we therefore aim at contributing to the following research ques-
tion: what are key concepts that allow RNNs to build long-term memory and

http://dx.doi.org/10.1007/978-3-319-44778-0_16
http://www.informatik.uni-hamburg.de/WTM/

2 Learning Multiple Timescales in Recurrent Neural Networks

learn on multiple timescales? We approach this question by investigating the
Clockwork RNN (CWRNN [3]), which has been shown to allow emergence of
multiple timescales by restricting update frequencies to temporal constraints. A
different method with the same effect is the use of leakage and hysteresis pa-
rameters that constrain the amount of change within a system between time
steps. The concept of leakage is most popularly used in the Echo State Network
(ESN []) but has also been shown to improve the Simple Recurrent Network
(SRN [B]). A related concept can be found in the Recurrent Plausibility Net-
work (RPN [6]) which introduces a related hysteresis parameter ¢ to perform
time-averaging. It also has shortcut connections, which provide shorter error
propagation paths for the temporal context layers. Shortcuts have been shown
to allow better training in very deep networks [7]. Both shortcuts and leaky
units are used in the Structurally Constrained Recurrent Network (SCRN [g])
that additionally partitions its layer into modules, similarly to the CWRNN.

As the RPN, SCRN, and CWRNN share similar architectural concepts such
as leakage, shortcuts, and partitioning the hidden layer into modules, their in-
vestigation is of particular interest for studying the effect of these concepts on
the self-organization of the temporal dynamics. We evaluate these architectures
on sequence generation and prediction tasks, using the SRN and the LSTM as
a baseline. Even though the LSTM has no specific time scaling mechanism, it
is included in the experiments due to its reported ability to capture long-term
dependencies.

2 Recurrent Neural Networks

2.1 Recurrent Plausibility Network

The Recurrent Plausibility Network (RPN) was originally developed to learn
and represent semantic relationships while disambiguating contextual relation-
ships [9]. It is based on the state of an unfolded SRN during truncated BPTT
(see Fig. , i.e. each hidden layer h has its own set of m context layers cj
(k € {1,...,m}) which store past activations. The main difference to an unfolded
SRN is the use of temporal shortcut connections for shorter context propagation
paths, making vanishing or exploding gradients less likely (compare Fig. .
For time step ¢, the units of the hidden layer h are activated as follows:

h = f, (X(t) W, + chrtl—l) wmh> , (1)
k=1

where the vector ¢ denotes the context layers, that are activated by shifting their

contents with 057?—1 = cg,tfl). The respective context activation for units in c,,

is further constrained under the hysteresis parameter ¢ [10]:

(2)

Cr” =93 .(t-1)

0 JA=@.) hE D pp.elTYiff k=1,
Ci_q otherwise

Learning Multiple Timescales in Recurrent Neural Networks 3

(c) SCRN (d) CWRNN

Fig. 1. Comparison of investigated RNN architectures. Figure (a) shows an SRN un-
folded in time. The RPN (b) extends the SRN with its temporal shortcuts and the
hysteresis . In case of a deep RPN, each vertical layer h{) can have its own hysteresis
value @,. The SCRN (c) has an additional layer s that learns slower than in h®
due to its high leakage a = 0.95. The modules T} of the CWRNN (d) are sorted by
increasing numbers from left to right and are only updated for t mod T; = 0.

The hysteresis mechanism allows for a finer adjustment of context memory than
in the SRN. Rather than accumulating past activations in a single feedback loop,
the network is able to specifically learn the contribution between specific time
frames due to the temporal shortcuts.

2.2 Structurally Constrained Recurrent Network

The Structurally Constrained Recurrent Network (SCRN) was recently proposed
by Mikolov et al. [§]. The motivation behind the architecture is to achieve spe-
cialization of hidden layers by partitioning them into parallel “modules” that
operate independently and under distinct temporal constraints. This theoreti-
cally allows to train on multiple timescales. While the left path in the SCRN
equals a SRN with a regular hidden layer h®, the additional module s(*) has
units with different temporal characteristics (compare Fig. . It is initialized
with the recurrent identity matrix and its updates constrained by a leakage pa-
rameter o € [0,1]. The authors set this leakage to 0.95, causing the states to
change on a much slower scale than in h(*). Similarly to the RPN, this architec-

4 Learning Multiple Timescales in Recurrent Neural Networks

ture makes use of shortcut connections (W ,y,) that allow h(®) to access long-term
context which is learned in s(). The update rules of the SCRN are as follows:

st = (1 —a)W,, x) 4 a s, (3)
h®) = f,(W,y, s+ W, x® + Wy, ht=1), (4)
v = (Wi, b+ W, s©), (5)

where f;, and f, are the respective activation functions for the hidden and output
layers.

2.3 Clockwork Recurrent Neural Network

The discussed idea of partitioning the hidden layer into parallel modules with
distinct temporal properties can also be found in the Clockwork Recurrent Neu-
ral Network (CWRNN). However, the main difference is that multiple timescales
are not achieved by varying leakage but rather an external clock that determines
when a module gets updated. This means that a module k is only updated if its
clock period T}, satisfies the criterion ¢t mod T = 0. Otherwise, the module is

)

. o t—1 .
inactive in which case the previous activation h,(C gets copied over:

n

Fn <x<t> Wai+) h{~ Wlk> iff t mod T, = 0,
1=k

h,(: -1 otherwise

by = (6)

An additional constraint is that 1; > T} for [< k, i.e. the modules are ordered
by increasing numbers from left to right (compare Fig.[L(d)]). Therefore, modules
on the left are updated more frequently than those on the right. Consequently,
modules with greater periods (on the right) will self-organize slower and to long-
term dependencies while those with small periods (on the left) change more
often, focusing on short-term dependencies.

3 Experiments

All five architectures, the SRN, RPN, SCRN, CWRNN, and LSTM have been
evaluated on two tasks; sequence generation of a sinusoid wave and sequence pre-
diction of words created by embedded Reber grammar. They have been trained
with RMSProp, which divides the current gradient by a sliding average of recent
gradients [11]. Momentum was empirically set to 0.9 and the networks trained
for a maximum number of 5000 epochs using early stopping. Weights were ini-
tialized using normalized initialization, sampling from N(0, 1/y/n + m) where n
is the number of incoming and m the number of outgoing weights in the respec-
tive layer [I2]. Linear and non-linear activation (tanh) were explored. The forget
gate bias was initialized with a higher value of 2 to avoid initial forgetting [13].
All other hyperparameters were set empirically for each network and task. Each
setup was run 100 times with different random initializations.

Learning Multiple Timescales in Recurrent Neural Networks 5

3.1 Sequence Generation

In the first task, the networks have to learn how to generate a target sequence.
They receive no input while a single sequence is sequentially presented as the
target. This sequence of length 256 is a composition of three different sine waves,
normalized to [—1,1]. A single output unit y; encodes the respective sequence
value at time step t. All networks were trained to minimize the mean squared
error (MSE) with a learning rate of ¥ = 107% and 64 hidden units. For the
RPN, a context width m = 5 and m = 15 was explored with hysteresis values of
¢ € {0.1,0.2,0.5}. Two variants of the SCRN were trained: i) a constant leakage
of @ = 0.95 and ii) an adaptive leakage oy that is trained as described in [§]. For
the CWRNN, 8 equally sized modules with clock periods growing by the powers
of 2 (P ={1,2,4,8,16,32,64,128}) are compared with a more coarse setup of
4 modules with the periods P, = {1,4,16,64}.

The results for the best networks are depicted in Fig. [2l The CWRNN gener-
ates the most accurate sequences, which indicates an ability to capture the un-
derlying subfrequencies, learning multiple timescales. It was also found that the
investigated clock-timings P; (8 modules) and P, (4 modules) perform equally
well. The SRN on the other hand merely captures the most dominant subfre-
quency of the sequence while the LSTM gives a sliding average. The SCRN
always converges to the mean, being the only network which seems to be com-
pletely unable to learn this task. Similar to the SRN, the RPN is able to capture
only one subfrequency. For the tested ¢ values, only 0.1 and 0.2 lead to con-
vergence that is not located around the mean. There is also a slight difference
that can be observed between these values: increasing ¢ from 0.1 to 0.2 causes
an increasing phase shift, i.e. the prediction gets increasingly delayed over time.
This effect can be explained by the fact that the temporal context, which is
time-averaged by the hysteresis, will span a larger time window with growing
hysteresis values.

3.2 Embedded Reber Grammar

In the second task, the networks are trained to sequentially predict the next
symbol produced by Embedded Reber Grammar (ERG). The ERG is a well-
known test for RNNs, since a SRN cannot be trained with BPTT to learn the
grammar due to the presence of long-term dependencies. It is defined as follows:

S — btRte | bpRpe A — sA|x C — xBD | s
R — btACe | bpBDe B— tB|v D — pC | v

We randomly generate two different sets with respective sequence lengths of 20
and 30. Both data sets consist of 250 sequences and are further split into 60%
training, 20% test, and 20% validation sets for cross validation. Each symbol
is encoded with a feature vector of size 7 (1 unit per symbol), while softmax
activation in the output layer yields the symbol probabilities. The minimized loss
function is the Kullback-Leibler divergence [14]. For all networks, the number
of hidden units was set to 15. For the SCRN, a learning rate of v = 0.01 was

6 Learning Multiple Timescales in Recurrent Neural Networks

05} @)
=

0.0} =
—Z

-0.5} z
=

M)

H

=

=

a®)

Z,

wn

=

z

w2

- Q

=

Z

m 0151 D B
0

= 0.10} i

0.05[b

0 —
CWRNN LSTM RPN SRN SCRN

Fig. 2. Top: Sequences with the lowest MSE for the best trials. Generated sequences
(solid lines) are plotted against the target sequence (dotted, red line). Bottom: MSE
for each network. Boxes show 25% and 75% quartiles as well as the median (black
line). The shown best trials were achieved with ¢ = 0.2,m = 15 for the RPN and
P, ={1,4,16,64} for the CWRNN (P, produced nearly identical results).

Learning Multiple Timescales in Recurrent Neural Networks 7

found to be optimal, whereas v = 10~* worked best for the other architectures.
The CWRNN’s hidden layer was partitioned into 5 modules with the periods
P =1{1,2,4,8,12}. All other hyperparameters are set as in the first task.

The results for the best trials are depicted in Fig. [3] When trained with
sequences of length 20, the SCRN with a = 0.95 emerges as the best perform-
ing architecture, whereas the CWRNN seems to have the most difficulties. The
LSTM shows an average accuracy, while the RPN seems to be less prone to bad
initialization than the SRN. Especially for longer sequences, a large number of
SRNs yield considerably more prediction errors than all other networks, which
in turn share a similar overall performance.

T T + T T T
-l + (—IS]=20 —]S|=30) |
: i
.
26 i
2 : &
z .
R 5 i
iy +
< +
<§ 4 % % é i
+
3 L L L L 1
CWRNN LSTM RPN SRN SCRN

Fig. 3. Average edit distances (number of wrongly predicted symbols) for sequences
of length |S| = 20 (left, blue) and |S| = 30 (right, green). Boxes show 25% and 75%
quartiles as well as the median (black line). The best RPN trials were achieved with
p =0.2.

4 Discussion

In this paper, we have explored various design concepts that allow emergence
of multiple timescales and long-term memory in RNNs. Leaky and clocked ac-
tivations have been investigated together with partitioning hidden layers into
modules and using shortcut connections by comparing a number of architectures
on the tasks of sequence generation and learning embedded Reber grammar.
Our results show that parallel hidden layers, which learn under different
temporal constraints can lead to an emergence of multiple timescales in RNNs.
Furthermore, shared weights in the form of shortcut connections (such as in the
SCRN and CWRNN) allow units which self-organize to short-term context, to
take long-term dependencies into account from specialized units that operating
on a larger timescale. While the SCRN achieves this by means of leakage, the

8 Learning Multiple Timescales in Recurrent Neural Networks

CWRNN utilizes clocked module activations. For the sequence generation task,
the CWRNN was the only architecture to learn the decomposition of the trained
sinusoid wave into all its subfrequencies. All other networks converged to the
mean or a single subfrequency. This suggests that the CWRNN is able to store
the entire sequence in the memory of the clocked modules, although it has half
as much parameters as the SRN [3]. For the second task, the complete opposite
can be observed; the SCRN is able to outperform all other networks for sequence
lengths of 20 while the CWRNN has difficulties.

Our findings suggest that the SCRN and RPN seem to work better for dis-
crete, symbolic long-term decisions while the CWRNN is better at decomposing
real-valued signals. Partitioning hidden layers with distinct temporal constraints
has shown to be a viable method to capture different timescales. Future research
should therefore concentrate on further exploring time scaling mechanisms on
more challenging tasks such as sequence classification or language modeling.

References

1. Bengio, Y., Simard, P., Frasconi, P.: Learning Long-Term Dependencies with Gra-
dient Descent is Difficult. In: IEEE Trans. Neural Networks. 5(2), pp. 157-166
(1994)

2. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Computation.
9(8), pp. 1735-1780 (1997)

3. Koutnik, J., Greff, K., Gomez, F., Schmidhuber, J.: A Clockwork RNN. In: Proc.
ICML-2014, pp. 1863-1871 (2014)

4. Jaeger, H., LukoSevicius, M., Popovici, D., Siewert, U.: Optimization and Applica-
tions of Echo State Networks with Leaky-Integrator Neurons. In: Neural Networks.
20(3), pp. 335-352 (2007).

5. Bengio, Y., Boulanger-Lewandowski, N., Pascanu, R.: Advances in Optimizing Re-
current Networks. In: Proc. ICASSP-2013, pp. 8624-8628 (2013)

6. Wermter, S., Panchev, C., Arevian, G.: Hybrid Neural Plausibility Networks for
News Agents. In: Proc. AAAI-1999, pp. 93-98 (1999)

7. Pascanu, R., Gulcehre, C., Cho, K., Bengio, Y.: How to Construct Deep Recurrent
Neural Networks. ArXiv preprint arXiv:1312.6026v5 (2014)

8. Mikolov, T., Joulin, A., Chopra, S., Mathieu, M., Ranzato, M.: Learning Longer
Memory in Recurrent Neural Networks. ArXiv preprint arXiv:1412.7753v2 (2015)

9. Wermter, S.: Hybrid Connectionist Natural Language Processing. Chapman and
Hall, Thompson International, London, UK (1995)

10. Arevian G., Panchev, C.: Robust Text Classification Using a Hysteresis-Driven
Extended SRN. In: Proc. ICANN-2007, pp. 425-434, Porto, Portugal (2007)

11. Graves, A.: Generating Sequences with Recurrent Neural Networks. Arxiv preprint
arXiv:1308.0850 (2013)

12. Glorot, X., Bengio, Y.: Understanding the Difficulty of Training Deep Feedforward
Neural Networks. In: Proc. AISTATS-2010, pp. 249-256 (2010)

13. Jozefowicz, R., Zaremba, W., Sutskever, I.: An Empirical Exploration of Recurrent
Network Architectures. In: Proc. ICML-2015, pp. 2342-2350 (2015)

14. Kullback, S.: Information Theory and Statistics. New York: Wiley (1959)

	Lecture Notes in Computer Science
	Introduction
	Recurrent Neural Networks
	Recurrent Plausibility Network
	Structurally Constrained Recurrent Network
	Clockwork Recurrent Neural Network

	Experiments
	Sequence Generation
	Embedded Reber Grammar

	Discussion

