
 
 

 

Abstract—This paper describes a model for visual homing. It 
uses Sarsa(λ) as its learning algorithm, combined with the 
Jeffery Divergence Measure (JDM) as a way of terminating the 
task and augmenting the reward signal. The visual features are 
taken to be the histograms difference of the current view and 
the stored views of the goal location, taken for all RGB 
channels. A radial basis function layer acts on those histograms 
to provide input for the linear function approximator. An on-
policy on-line Sarsa(λ) method was used to train three linear 
neural networks one for each action to approximate the action-
value function with the aid of eligibility traces. The resultant 
networks are trained to perform visual robot homing, where 
they achieved good results in finding a goal location. This work 
demonstrates that visual homing based on reinforcement 
learning and radial basis function has a high potential for 
learning local navigation tasks.  

I. INTRODUCTION 
A skill which plays an integral role in achieving robot 
autonomy is the ability to learn to operate in a priori 
unknown environments[1]. Visual homing is the act of 
finding a goal location by comparing the image currently 
viewed with stored ‘snapshot’ images (normally taken while 
animal or robot is heading off its home location). Visual 
navigation is the act of navigating form one location to the 
other in the environment, as efficiently as possible. In this 
paper we present a model for visual homing, which can also 
be used in local navigation, using reinforcement learning 
(RL from now on) and an online snapshot comparison 
technique. This snapshot comparison facilitates online 
learning and execution in a priori unknown environments to 
reach a goal location1.  

Robotics borrows several concepts from animal homing 
and navigation strategies described in the biological 
literature [2, 3]. While both visual homing and visual 
navigation are related, they have been kept fairly apart due 
to the fact that visual homing is more inspired by the biology 
and due to the fact that visual navigation is more general 
than visual homing. Nevertheless, navigation can be 
accomplished more directly by using local homing strategies 
to reach some location, without directly building a map or 

 
1 Note: goal location and home location will be used interchangeably in 

this paper. 

using a model of environment dynamics. The limitation is 
that the learned strategies to navigate to home is bound to 
that particular location. Therfore, if the robot needs to 
navigate to a different location, it should be trained to do so. 
We argue that our model can also be used for general 
navigation tasks due to the fact that it can operate in any 
environment and requires no additional effort except 
showing the robot, online or offline, its goal location, then 
letting it trains. 

Algorithms based on the snapshot model [3] propose 
various strategies for finding features within images and 
establishing correspondence between them in order to 
determine a home direction. Block matching, for example, 
takes a block of pixels from one image and searches for the 
best matching block in another image within a fixed search 
radius [4]. The degree of match between blocks is usually 
judged by the Sum of Squared Differences (SSD) or some 
other local correlation measure[5]. In our model we will take 
a more effective approach by comparing bins of histograms 
through a Radial Bases Function layer, and using images 
only taken around the home, nothing more. 

Reinforcement Learning has been used previously in 
robotics navigation and control problems. Several of the 
models that used it are inspired by biological findings, e.g. 
[6]. Although successful, some of those models lack the 
generality and/or practicality, and some are restricted to their 
environment. The model proposed by [7] for example 
depends heavily on object recognition of a landmark in the 
environment to achieve the task. We have addressed this 
issue in our model by avoiding object recognition and using 
a whole image measure technique instead, to measure the 
dissimilarity of current and goal views to identify whether 
the robot reached the goal location (with the desired 
orientation). This was possible with no prior knowledge or 
constrains regarding those images. By adding the above 
advantage to the learning robustness and generality of RL, 
coupled with visual states and rewards, the model achieved a 
high level of robustness, generality, and applicability. 

While environment-dynamics or map-building may be 
necessary for more complex or interactive forms of 
navigation or localization, visual homing based on model-
free learning can offer an adaptive form of local homing. 
Although the immediate execution of model-based 
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navigation system can be successful [8, 9], RL techniques 
have got the advantages of model-free systems i.e. there is 
no knowledge needed prior to operating the robot. It learns 
the best policy for the environment dynamics. While the idea 
of using snapshots to do robot localization is not new [10], 
visual homing based on reinforcement learning and radial 
basis input layer and whole image measure is a novel 
contribution of this paper. 

We begin by presenting an overview of our reinforcement 
learning context and Markov Decision Processes (MDP) 
framework followed by the Temporal Difference (TD) 
learning algorithm for continuous states space. This is 
followed by a detailed description of our model, 
demonstrating generality and simplicity of execution. Then 
we present empirical results of a robot reaching a goal 
location visually in a simulation environment.  

II. BACKGROUND OF REINFORCEMENT LEARNING 
Reinforcement learning concerns the problem of learning  

to predict the sum of rewards an agent is receiving while 
interacting with its environment in order to optimally  
execute a task [11]. Instead of being given examples of the 
desired behavior, the learning agent must find out - using its 
environment feedback and using gradual explorative actions 
- how to act best to execute a task. Usually this feedback is a 
minimal signal of reward or punishment induced in some 
way in the environment. This signal is called the 
reinforcement signal. 

In any environment there exists a set of states that 
represent the situations that the agent can face (or 
recognize). Those states define the state space denoted by S, 
which can be finite or infinite and continuous. The actions 
are those simple activities the agent is able to do in a certain 
state. The set of those actions define the actions space A. 
Those actions can also be finite or infinite. The environment 
normally reacts or responds to any action taken by the agent 
by returning a signal indicating or reinforcing how good or 
bad this action was for the task. It is called the reward signal 
or the reinforcement signal. The dynamics of an 
environment are the set of probability distributions that 
distinguish its internal properties. Those are mainly the state 
transition function and the reward function. 

The state transition function is a probability distribution 
defined on the state space that specifies the probability of 
moving form state s at time t to another state s' at time t+1 
after applying action a: 

},Pr{ 1 aassssP ttt
a
ss ==′== +′  

The reward function is defined as the expected reward 
returned by the environment for each state after applying a 
certain action: 
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where tr is the actual reward returned by the environment 
and fully observed by the agent. 

As with most reinforcement work, we will restrain 
ourselves to the Markovian environments. A Markov 

decision process (MDP) is defined by a 
tuple ),,,,( γa

ss
a
ss RPAS ′′ , where  1] [0,∈γ  is a discount rate 

parameter, and where the Markov property is satisfied [9, 
11]. A trajectory of experience is a sequence 

,...r,a,s,r,a,s 322211  where the agent in 1s  takes action 1a  
then receives reward 2r  and transitioning to 2s  before 
taking 2a , etc.  

A policy π specifies (probabilistically or deterministically) 
the action that needs to be taken for each different state.  
 ∑ =→×
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where ),( asπ is the probability of selecting action a when 
an agent is in state s. A deterministic policy is a mapping 
between states and actions AS →:π . The ultimate goal of 
reinforcement learning methods (algorithms) is to learn an 
optimum policy that, when followed, maximizes the 
accumulated rewards expected to be gained by the agent 
during interaction with its environment. This is normally 
reached through estimating the expected sum in some form 
since a model of the environment is normally not available 
and undesired to be a requirement. Even in methods that 
assume a model of the environment dynamics to be known, 
such as Dynamic Programming methods, the expectation 
still needs to be estimated due to the bootstrapping 
characteristic of such a method. By bootstrapping we mean 
building on an own initial estimation to reach a better 
estimation closer to the real value [11]. 

 The discounted sum of rewards at time step t is called the 
return tR where: 
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Expected accumulated rewards for a certain policy π can 
be expressed in two forms: the value function )(sV π  and the 
action-value function ),( asQ π . A value function for a policy 
is defined as:   ℜ→SsV :)(π . 

πV specifies the expected return (sum of rewards tr ) from 
the starting state s and onwards. Obviously each policy has a 
different value function, hence the upper superscript.  
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The central idea of RL is to try to learn an estimate of the 
value function of the adopted policy depending on the 
interaction between the agent and its environment. In other 
words, to predict the value function of the agent's MDP 
policy. An essential property of the value function can be 
deduced from the intrinsic recursion it posses: 
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The action-value function is defined as 
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For clarity, we will present below the main results for the 
value function, then we will shift to the action-value 
function when presenting our model. 

III. TOWARDS OUR MODEL 
Our work uses techniques developed for the problem of 

online on-policy evaluation, where an approximate action-
value function is maintained and improved after each time 
step of following the policy. In particular we are interested 
in a linear Q-function approximator that uses Temporal 
Difference learning (TD) [12] since TD learning can be 
guaranteed to converge with any linear function 
approximator and suitable step size [13]. For the continuous 
case and non-linear function approximation, convergence is 
not guaranteed [14] although some models have been 
presented with good results [15]  

In this work we focus on presenting a model that learns an 
approximation of a policy’s action-value function from 
sample trajectories of experience following that policy. A 
method for solving this problem is a core component of our 
visual robot homing model. In particular, maintaining an 
online estimate of the Q-function can be combined with 
generalized policy improvement (GPI) to learn a controller 
[11].  

For a particular value function V let the TD error at time t 
be defined as: 

)()()( 1 sVsVrV tt −′+= + γδ θ
 (5) 

ttt predictionpredictionV −= +1)( θδ  
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, that is, the mean TD error for the 
policy’s true value function must be zero. We are interested 
in approximating πV using a linear function approximator. In 
particular, suppose we have a function which gives a feature 
representation of the state space nS ℜ→:φ . We are 
interested in an approximated value function of the form 

nTsV ℜ∈= θθφθ ;)( are the parameters of the value 
function.  

Because the policy’s true value function may not be in our 
space of linear functions, we want to find a set of parameters 
that approximates the true function. One possible approach 
is to use the observed TD error on sample trajectories of 
experience to guide the approximation.  

The standard one-step TD method for value function 
approximation is TD(0). The basic idea of TD(0) is to adjust 
the predicted value of a state to reduce the TD error. Given 
some new experience tuple ),,,( 11 ++ tttt sras , the update with 
linear function approximation is: 

)(1 ttttt u θαθθ += +
 (6) 
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θV  is the estimated value with respect to tθ  and tα  is the 
learning rate. The vector )( ttu θ  is like a gradient estimate 

that specifies how to change the predicted value of ts  to 
reduce the observed TD error. We will call )( ttu θ  the TD 
update at time t. After updating the parameter vector, the 
experience tuple is removed form memory.  

IV. THE PROPOSED VISUAL HOMING SARSA MODEL 
In this section we describe the proposed model. In the 

simplest perspective, any reinforcement learning model, (or 
any MDP model in general), consists of elements and 
experience gained about those elements. The environment 
dynamics encoded in the tuple ),,,,( γa

ss
a
ssPAS ′′ ℜ  describes 

the basic elements of the model, while the interaction 
between the robot and the environment constitutes the 
gained experience. This experience is normally encoded in 
the learning parameters using some learning method that 
mainly learns a value function. For control, reaching an 
optimal policy *π  can be done through policy improvement. 
We first begin by describing the main elements, then we 
describe the learning rules and algorithm, and conclude this 
section with the overall model structure. 

A. Basic Elements of the System, the State Space: 
Since we are considering visual homing, it is natural to 

choose the vision as the main medium to distinguish 
between different situations. Hence, we assume it is the 
image at each time step that represents the current state, and 
the state space S is the set of all the images that can be 
possibly taken for any location (with specific orientation) in 
the environment. This complex state space has two 
problems. First, each state is of high dimensionality, i.e. 
each state is represented by a large number of pixel 
components. Second, this state space is huge and a policy 
cannot be learned directly for each state. Instead, a feature 
representation of the states is used to reduce the high 
dimensionality of the images state space and to gain the 
advantages of coding [16].  

This feature representation of state space is assumed to 
reserve the distinctiveness of states, hence it can reduce the 
high-dimensionality problem but we are still faced by the 
intractability problem. Therefore, a generalization technique 
is needed in order to accommodate the intractability of state 
space. More precisely, generalization is needed in order to 
approximate the value for a state that has never been visited 
before, through previous visits to a similar states. A natural 
way to do so is to use a function approximation technique 
such as a neural network. 

We would like to encode in those features implicitly how 
different the current image view is from those of the goal. 
This visual clue should guide the process of finding the goal 
location. The problem is that this approach does not give a 
direct distance indication. We will not assume that the goal 
location is always in the robot's field of view, but by 
comparing the current view with the goal view we combine 



 
 

the properties of distinctiveness, distance and orientation in 
one representation. 

B. Defining the goal location: 
Since the home location can be approached from different 

directions, the way it is represented should accommodate 
this fact. Therefore, a home (or a goal) location is defined by 
m snapshots called the stored views. The few snapshots 
(normally 3≥m ) of the home location are taken at the very 
start, each from a fixed distance but from a different angle. 
The distance should be compatible with the scale of the 
environment and the characteristics of the home location. 
This allows for the highest distinctiveness of the location 
without loosing info or involving unneeded information. 
These snapshots are the only requirement of the system to 
learn to reach its home location starting from any position in 
the environment (including those from which it cannot see 
the home from, i.e. the robot should be able to reach a 
hidden goal location). 

C. The Features Vectors: 
We take a histogram of each channel of the current view 

and compare it with those of the stored views through a 
radial basis function (RBF) layer. This gives us the feature 
space nS ℜ→Φ :  representation (8) which is used with the 
Sarsa(λ) algorithm, as we shall see later. 
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The index t is for the time step, j stands for the jth stored 
view, and c is the index of the channel where we used the 
RGB representation of images. So ),( jcv is the image of 
channel c of the jth stored view, ( )),( jcvhi

 is the bin i of the 
image ),( jcv , and ( ))(csh ti

 is bin i of the channel c of the 
current (t) view. Of course the number of bins has an effect 
on the performance of this measure and hence on the model, 
and will be studied in the experimental section. 

D. The Action Space: 
The set of actions is A = [Left_Forward, Right_Forward, 

Go Forward], where the two differential wheel speeds were 
set to a fixed values so that we have a countable set of 
actions. 

E. Dissimilarity Measure and The Termination 
Condition: 
We need a way to determine how close the current 

position is to the goal location, this is done through 
measuring how dissimilar is the current view to each stored 
view of the goal location. One can use any of the 
dissimilarity measures discussed extensively in the 
information retrieval field [10, 17]. In particular we are 
interested in the Jeffery Divergence Measure, given by (9). 
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Where H and K are two images to be compared, hi and ki 
are the number of elements belong to bin i of the histograms 

of H and K, respectively. Fig. 1 (a) shows a simple view of 
robot's camera, part (b) shows the changes that took place in 
JDM measurements when turning away from this location. 

 
JDM has been successfully used with omni-directional 

camera to perform robot localization [10]. We used a normal 
camera, however, to be able to distinguish the robot’s 
orientation which is crucial to our navigational task. This is 
to avoid the disadvantage of orientation-insensitivity of 
omni-directional camera which is desirable for localization 
but undesirable for navigation.  

We will denote ),( jcJDM t
 as being the Jeffery 

Divergence Measure between the current view and the 
stored view j according to the channel c, and we denote 

)( jJDM t to be the average dissimilarity between the current 
view and the stored view j  on all of the channels:  

CjcJDMjJDM
c

tt ∑= ),()(  (10) 

We set our termination state to be the current view for 
which one of its ),( jcJDM t

with the m stored views is less 
than a certain thresholdψ , i.e. the view that matches ‘well’ 
with one of the goal views. 

 ⇒<ψ)),((min
,

jcJDMIf tjc
 Terminate Episode. 

The way to set this environment-scale-specific threshold is 
discussed in the experimental section. 

F. The Reward Function: 
The reward function a

ss ′ℜ consists of three parts: 
-The main part is the cost which is set to -1 for each step 
taken by the robot without reaching the home location 
(reaching a termination state). 
The reward signal can be augmented by another two signal 
to insure higher performance although the model works 
regardless of their involvement. Those are: 

-Approaching the goal reward: is the maximum reduction 
in dissimilarity between the current step and the previous 
step. If this difference is decreasing it means that the robot is 
actually moving in the right direction towards the home 
location. While if it is increasing it means the opposite. We 
call this signal the differential dissimilarity signal and it is 
defined as:  

Fig. 1.  Example of the JDM behaviour relative to the robot 
rotational motion 
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- The Position signal is the inverse of the current 
dissimilarity.      

tJDM
1  

Thus, as the current location differs less, from the home 
location, this reward will increase. 

t
t JDM

JDMtr 1cos +∆+= (12) 

Of course the previous two reward component will only be 
considered if the dissimilarities of both steps falls under a 
certain threshold ψ ′ to ensure that the robot is approaching 
the home location. This threshold is environment- scale-
specific, and is introduced merely to enhance the 
performance. 
The overall structure of the model is shown in Fig. 2. 

 
G. The Eligibility Trace: 
An eligibility trace constitutes a mechanism for temporal 

credit assignment. It marks the memory parameters 
associated with the action as eligible for undergoing 
learning changes [11]. Depending on our application, the 
eligibility trace for action a is the discounted sum of the 
feature vectors for the images that the robot has seen so 
far, after applying this action. The eligibility trace for other 
actions which has not been taken while in the current state 
is simply its previous trace but discounted, i.e. those 
actions are now less responsible for the credit: 
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where λ is the discount rate for the eligibility traces eG   

H. The Learning Method: 
The remaining is the learning algorithm. Our algorithm is 

an on-policy bootstrapping Sarsa(λ) [11] with linear 
approximation of the Q action-value function. Sarsa(λ) is an 

algorithm that uses TD(λ) for control. It learns on-line 
through interaction with a simulation software that feeds it 
with the robot visual sensors. The algorithm coded as a 
controller returns the chosen action to be taken by the robot, 
and updates its policy through updating its set of parameters 
used to approximate the action-value function Q. Three 
linear networks are used to approximate the action-value 
function for the three actions.  
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1)( == θθθ ……
G
θ  
The current image was passed through an RBF layer 

which gives the feature vector ),,,,()( 1 nits φφφ ……
G

=φ . 
The robot was left to run through several episodes. After 
each episode the learning rate was decreased, and the policy 
was improved further through GPI. The overall algorithm is 
that of the Sarsa(λ) control algorithm [11] and is 
summarized in Fig. 3. 

 
The learning rate was the same used by Boyan [18]: 
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I. The policy used to Generate Actions: 
A combination of ε-greedy policy and Gibbs soft-max [11] 
policy is used to pick an action and to strike the balance 
between exploration and exploitation. Using ε-greedy 
probability allows exploration to be increased as needed by 
initially setting ε to high value then decreasing it through 
episodes. Gibbs soft-max probability,  
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helped in increasing the chances of picking the action with 
the highest value when the differences between the values of 
it and the remaining actions is large, i.e. it helped in 
increasing the chances of picking the action with the highest 
Q-value when the robot is sure that it is the right one. 
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J. The Neural Network Layers:  
From a neural network point of view, when considering 

the RBF layer together with the competitive layer, one can 
realize that this architecture is similar to a Probabilistic 
Neural Network (PNN) that calculates the probability of 
picking up a certain action conditional to the given goal. We 
will call the neural network used in our model the RBF-Q-D 
Network (and algorithm) because we used the RBF layer for 
feature extraction and then a linear layer with Sarsa(λ) 
algorithm and the dissimilarity measure. Fig. 3 shows a 
simplification of our model with its layers.  

K. The Linear Networks and Features Dimensions : 
The parameters have the same dimension as the feature 

space which is mBCn ××= ; where 3=C is the number of 
channels, B is the number of bins per image and m is the 
number of stored views for the goal location. Since we use 
an RGB images with values in the range of [0 , 255] for each 
pixel, the dimension of the feature space is given by: 
 m

b
n ××≈ 256C  (18) 

where b is the bin’s size. Different bin sizes give different 
dimensions, which in turn give a different number of 
approximation parametersθ . The equality is not complete 
due to the fact that the precise number of bins is going to be  

1)256(B +=
b

round . 

Note that 
iσ  of the features has been chosen through 

continuous update of the sum of the features vector collected 
in all the time steps so far.  
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This allowed for maintaining better incremental estimation 
of each feature variance and hence better performance. After 
enough exploration of the environment this value is almost 
stable and changes to it are minimized. It has been observed 
that the variance of this internal parameter has dropped after 
episode 10 to a negligible value, which means results are 
reliable for episode>10 and that the neural networks are 

learning the value function for almost the same states that 
are going to be encountered in the future. 

L. Important enhancements and Limitations: 
One problem of ‘unnecessary wandering’ remains. 

Mainly it is caused by consequent conflicting positive and 
negative rewards given by the environment due to 
approaching the goal and wandering around it without 
reaching it. Simply a sever punishment was applied for the 
particular case when the robot goes from  a positive 
rewarding to a negative punishments in two successive steps. 

V. EXPERIMENTAL RESULTS 
The model was applied using a simulated Khepera [19] 

robot in Webots™ [20] simulation software. The Khepera  is 
a miniature real robot, 70 mm diameter and 30 mm height, 
and is provided with 8 infra-red sensors for reactive 
behaviour, as well as a colour camera extension. 

A 1.15x1 m2 simulated environment has been used as a 
test bed for our model. The task is to learn to navigate from 
any location in the environment to a home location (without 
using any specific object or landmark). For training, the 
robot always starts from the same location, where it cannot 
see the target location, and the end state is the target 
location.  

 
Fig. 4 shows the environment used. A cone, ball and TV 

are included to add more texture to the goal location, i.e. to 
enrich it and make it different from the other environment 
locations. We reemphasize that no object recognition 
technique was used, only the JDM. The controller written as 
a combination of C++ code and  Matlab Engine code.  

The robot starts by taking (m= 3) snapshots for the goal 
location.  It then goes through a specific number (500) of 
episodes. The robot starts with a random policy, and finishes 
an episode when it reaches the desired location. 

A. The Practical Settings of the Model Parameters: 
For our application we have chosen the feature space 

parameters to be b=3, m=3 hence 

Fig. 4.  Snapshots of the realistic simulated environment. 

Target locations Khepera robot in its starting 
location 



 
 

7743)1)3/256((3 =×+×= roundn . λ was set to the value 
of 0.8 depending on the studies [11, 21] that referred to the 
range of  [0.7 0.8] as the peak of the performance of the 
TD(λ)-learning.  The discount constant was set to 1=γ , i.e. 
there is no discount through time. ψψ ′, are purely empirical 
and were set to 1.7 and 2 respectively.  

B. Setting the Exploitation vs. Exploration: 
Since action space is finite, and to avoid fluctuation and 

overshooting in the robot behaviour,  low wheel speeds were 
adopted for these actions. This in turn required setting the 
exploration to a relatively high rate (almost 50%) during the 
early episodes. It was then dropped gradually through 
episodes, in order to make sure that most of the potential 
paths are sufficiently visited. Setting exploration high also 
helps in decreasing the number of episodes needed before 
reaching an acceptable performance. This explains the 
exponential appearance of the different learning curves 
discussed below. 

The model performance has been studied for a small 
number of stored views (m=3) to show the robustness of the 
model. One can enhance accuracy by increasing the 
dimension space but would have to trade-off speed of 
convergence and execution. The most natural way to 
increase the state space dimension is by increasing the 
number of histogram's bins considered. However,  to 
concentrate on the pure effect of changing m and eliminate 
the increase in state dimension due to the increase in m (18), 
one can set m=b then change both m and b together. This 
could fix the dimension of the feature space and 
consequently the size of the approximator, and show the 
actual effect of changing the number of views m.  

C. Studying the Model Performance: 
Fig. 5, shows the effect of learning averaged over 8 trials, 

each with 500 episodes. All of the trials successfully 
converged. Divergence occurred only when setting the 
learning rate to a high value, or when exploration was 
quickly decreased. The reason that we needed a low learning 
rate is that we use a Gibbs probability distribution for the 
exploration/exploitation balance. This exponentially formed 
probability can go quickly to infinity if care is not taken 
when assigning its exponents. The fact that we have a 
relatively large state space dimension was the major factor in 
this situation. 

Part (a) shows the most important aspect of any 
reinforcement learning model; the return values of each 
episode, converging optimally. After all, the main purpose of 
the RL-based model is to optimally increase the sum of the 
received rewards. The return values (mostly negative) have 
increased naturally through episodes due to the improvement 
taking place from episode to episode. This is done via 
improving the adopted policy implicitly; by moving to better 
estimates and decreasing exploration from episode to the 
other. The accuracy of the action-value function estimates is 
gradually/iteratively increasing using the learning parameter 
θ
G

. 

Fig. 5 (b) shows the decrease that took place in the 
number of steps needed to achieve the task. This normal 
decrease is in accordance with part (a) and because of the 
cost part of the reward function. In fact, we decreased the 
difference between ψ and ψ ′ , so that the other two parts of 
the reward formula have minimal effect on the model 
convergence. Fig. 5 (c) depicts the changes in the learning 
parameters themselves, i stands for the component index of 
the learning vector.  

Most important is that the three parts have an exponential-
like shape showing the high speed of convergence this 
model has reached. This is highly desirable in reinforcement 
learning model due to its dominant convergence slowness 
problem [11]. In fact, one major contribution of this work is 
the high performance reached with little experience using a 
complex visual input. 

   

 
Fig. 6, depicts performance and internal parameters 

illustrations. Fig. 6, (a) shows the learning rate decrease 
through the episodes which was used throughout the trials. 
Part (b) shows the decrease enforced on the exploration rate 
ε while part (c) shows the overall percentage of explorative 
action and exploitative actions. Routes taken by the robot in 
three episodes (early, middle, and final) for one of the trials 
are shown in parts (d)-(f).  

VI. DISCUSSION AND CONCLUSION 
We have tackled the policy improvement for Sarsa(λ) 

systems combined with JDM and RBF. This is novel to 
models introduced in the literature due to the way we 
applied reinforcement learning using neuro-dynamic 
programming methods like Sarsa(λ). Below we state  some 
of the advantages of this model: 
  

a 

Fig. 5.  Learning Curves averaged over 8 trials. 
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1) Simplicity of learning: the robot can learn to perform its 
visual navigation task in a very simple way without a 
long process of map building. 

2) Limited storage of information is required in the form of 
m stored views. 

3) No pre or manual processing is required. No a priori 
knowledge about the environment is needed i.e. no 
landmarks are needed in those views.  

4) An important advantage of our model over MDP 
explicit model-based approaches is that abduction of 
robot is solved directly i.e. the robot can find its way 
and recover after it has been displaced from its current 
position and put in a totally different position. 

To raise the differentiability of the views, however, they 
should be rich with colours etc. (i.e. good amount of 
information). 

Through the learning robustness and generality of RL 
robots, coupled with visual states and rewards, the system 
achieved a high level of robustness, generality, and 
applicability. This combination tentatively proved to work 
very well for our navigation problem.  

Future work includes carrying out more extensive 
experiments over our model by trying different 
configurations using (18), both in terms of more views to be 
considered as well as different bins sizes and different 
environments. Future work can also include using off-policy 
instead of the on-policy method to accommodate for two 
behaviours layers used by the agent. 
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Fig. 6.  Learning performance and a sample route for a sample trial. 


