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Developing crossmodal expression
recognition based on a deep neural
model

Pablo Barros and Stefan Wermter

Abstract
A robot capable of understanding emotion expressions can increase its own capability of solving problems by using emo-
tion expressions as part of its own decision-making, in a similar way to humans. Evidence shows that the perception of
human interaction starts with an innate perception mechanism, where the interaction between different entities is per-
ceived and categorized into two very clear directions: positive or negative. While the person is developing during child-
hood, the perception evolves and is shaped based on the observation of human interaction, creating the capability to
learn different categories of expressions. In the context of human–robot interaction, we propose a model that simulates
the innate perception of audio–visual emotion expressions with deep neural networks, that learns new expressions by
categorizing them into emotional clusters with a self-organizing layer. The proposed model is evaluated with three differ-
ent corpora: The Surrey Audio–Visual Expressed Emotion (SAVEE) database, the visual Bi-modal Face and Body bench-
mark (FABO) database, and the multimodal corpus of the Emotion Recognition in the Wild (EmotiW) challenge. We use
these corpora to evaluate the performance of the model to recognize emotional expressions, and compare it to state-
of-the-art research.

Keywords
Crossmodal learning, emotion expression recognition, convolution neural network, self-organizing maps

1 Introduction

The communication task is one of the most important
tasks within the area of Human–Robot Interaction
(HRI). The most necessary skills of human–human
communication are the capability to perceive, under-
stand and respond to social interactions, usually deter-
mined through affective expressions, as discussed by
Foroni and Semin (2009). As discussed by Cabanac
(2002), there is no consensus in the literature to define
emotional expressions. However, Ekman and Friesen
(1971) developed a study that shows that emotion
expressions have a universal understanding, indepen-
dent of gender, age and cultural background. They
established the six universal emotions: disgust, fear,
happiness, surprise, sadness and anger. Although they
show that these emotions are commonly inferred from
expressions by most people, the concept of spontaneous
expressions increases the complexity of the expression
representation. Humans usually express themselves dif-
ferently, sometimes even combining one or more char-
acteristics of the so-called universal emotions. Several
researchers have built their own categories of complex
emotional states, with concepts such as confusion,

surprise, and concentration as exhibited by Afzal and
Robinson (2009). To define spontaneous emotions, the
observation of several characteristics, and among them,
facial expressions, movement and auditory signals, has
been shown to be necessary, as demonstrated by Kret,
Roelofs, Stekelenburg, and de Gelder (2013). They per-
form a psychological analysis on the observation of the
whole body for emotional expressions. They show that
face expression alone may contain misleading informa-
tion, especially when applied to interaction and social
scenarios.

The observation of different modalities, such as
body posture, motion, and speech intonation, improved
the determination of the emotional state of the subjects.
This was demonstrated in the computational system of
Castellano, Kessous, and Caridakis (2008), where they
process facial expression, body posture, and speech,
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extracting a series of features from each modality and
combining them into one feature vector. Although they
show that when different modalities are processed
together they present a better recognition accuracy, the
individual extraction of each modality does not model
the correlation between them, which could be found
when processing the modalities together as one stream.
The same principle was also found for visual-only mod-
alities, in the works of Gunes and Piccardi (2009) and
Chen, Tian, Liu, and Metaxas (2013) and audio-only
modalities, in the works of Ringeval, Amiriparian,
Eyben, Scherer, and Schuller (2014), Jin, Li, Chen, and
Wu (2015) and Liu, Chen, Li, and Zhang (2015).
However, all these works deal with a set of restricted
expression categorizations, which means that if a new
emotion expression is presented to these systems, they
must be re-trained and a new evaluation and validation
of the whole system need to be done.

Dealing with a set of restricted emotions is a serious
constraint to HRI systems. Humans have the capability
to learn emotion expressions and adapt their internal
representation to a newly perceived emotion. This is
explained by Hamlin (2013) as a developmental learn-
ing process. Her work shows that human babies per-
ceive interactions into two very clear directions: positive
and negative. When the baby is growing, this percep-
tion is shaped based on the observation of human inter-
action. Eventually, concepts such as the five universal
emotions are formed. After observing individual actions
toward others, humans can learn how to categorize
complex emotions and also concepts such as trust and
empathy. The same process was also described by
Harter and Buddin (1987), Lewis (2012) and Pons,
Harris, and de Rosnay (2004).

The most successful way to represent data is the one
done by the human brain, as explained by Adolphs
(2002). He discusses how the human brain recognizes
emotional expressions from visual and auditory stimuli,
correlating information from different areas. The brain
correlates past experiences, movements and face expres-
sions with perceived sounds and voices. The brain is
also capable of integrating this multimodal information
and generates a unique representation of the visual and
auditory stimuli. The simulation of this process in com-
puter systems can be achieved by neural models, partic-
ularly ones that are able to create a hierarchy of feature
representations such as Convolutional Neural
Networks (CNNs), introduced by Lecun, Bottou,
Bengio, and Haffner (1998) and used for different visual
tasks, as demonstrated by the works of Lawrence,
Giles, Tsoi, and Back (1997), Karnowski, Arel, and
Rose (2010) and Khalil-Hani and Sung (2014), and
auditory tasks in the works of Sainath et al. (2015), Li,
Chan, and Chun (2010) and Schluter and Bock (2014).

This paper proposes an automatic emotion recogni-
tion system that is inspired by the learning aspects of
human emotion expression perception. The first step is

to create a perception representation for different mod-
alities that preserves the information of each individual
modality, but also models the correlations within them.
From there, a computational model for developmental
emotional perception gives the system the capability to
adapt its own perception mechanisms to different peo-
ple and expressions.

In this paper, we propose the use of a Crosschannel
Convolutional Neural Network (CCCNN) by Barros,
Weber, and Wermter (2015b) to integrate auditory and
visual stimuli into one representation. This network
represents the information in separated channels and
applies a crosschannel to integrate different input mod-
alities without losing the unique representation from
each stimulus. The second step is accomplished by the
application of a self-organizing layer on top of the
CCCNN in order to establish separation boundaries to
the perceived expressions.

To evaluate our model, two different sets of experi-
ments are performed. The first one relates to the emo-
tion expression representation and the second one to
the emotion expression learning. In the first set of
experiments, we train and evaluate our CCCNN for
multimodal emotion expression recognition. In the sec-
ond step, we use our self-organizing layer to learn new
expressions. We use a total of three different corpora:
The Bi-modal Face and Body benchmark database
(FABO) for visual emotion expression, the Surrey
Audio–Visual Expressed Emotion (SAVEE) database
for auditory expressions, and the Emotion-
Recognition-In-the-Wild-Challenge (EmotiW) for mul-
timodal expressions.

This paper is organized as follows: The next section
shows the proposed model for emotion expression rep-
resentation, describing how it deals with the two stimuli
modalities. Section 2 extends our model and adapts
it to the developmental expression learning strategy.
Section 3 describes our experimental methodology,
shows our results and compares them with state-of-the-
art solutions. Discussion of the results, the role of each
modality, the learning strategy, and a discussion about
human emotion representations in the proposed model
are given in Section 4. Conclusions and future works
are presented in the last section.

2 Emotion expression representation

Our model deals with multimodal stimuli, and takes
into consideration visual, primary face expressions and
body movements, and auditory information. It is
implemented as a CCCNN and it extracts hierarchical
features from the two modalities. The complex repre-
sentation varies depending on the presented stimuli,
and each hierarchical layer of the network learns a dif-
ferent level of abstraction. That means that the deeper
layers will have a full representation of the input while
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the first layers will have a local representation of some
regions or parts of the input stimuli.

2.1 Convolutional neural network

A CNN is composed of several layers of convolution
and pooling operations stacked together. These two
operations simulate the responses of simple and com-
plex cell layers discovered in visual area V1 by Hubel
and Wiesel (1959). In a CNN, the abstraction of the
simple cells is represented by the use of convolution
operations, which use local filters to compute high-level
features from the input stimulus. The pooling opera-
tion abstracts the complex cells by increasing the spa-
tial invariance of the stimulus by pooling simple cell
units of the same receptive field in previous layers.

Every layer of a CNN applies different filters, which
increases the capability of the simple cells to extract
features. Each filter is trained to extract a different rep-
resentation of the same receptive field, which generates
different outputs, or feature maps, for each layer. The
complex cells, pool units of receptive fields in each fea-
ture map. These feature maps are passed to another
layer of the network, and because of the complex cells’
pooling mechanism, each layer applies a filter in a
receptive field, which contains the representation of a
larger region of the initial stimulus. This means that the
first layer will output feature maps that contain repre-
sentations of one region of the initial stimulus, and
deeper layers will represent larger regions. At the end,
the output feature map will contain the representation
of the whole stimulus.

Each set of filters in the simple cell layers acts in a
receptive field in the input stimulus. The activation of
each unit ux, y

n, c at (x,y) position of the nth feature map in
the cth layer is given by

ux, y
n, c = max bnc + S, 0ð Þ ð1Þ

where max ( � , 0) represents the rectified linear func-
tion, which was shown to be more suitable for training
deep neural architectures, as discussed by Glorot,
Bordes, and Bengio (2011). bnc is the bias for the nth
feature map of the cth layer and S is defined as

S =
XM

m= 1

XH

h= 1

XW

w= 1

whw
(c�1)mu

(x+ h)(y+w)
(c�1)m ð2Þ

where m indexes over the set of filters M in the current
layer, c, which is connected to the input stimulus on the
previous layer (c� 1). The weight of the connection
between the unit ux, y

n, c and the receptive field with height
H and width W of the previous layer c� 1 is whw

(c�1)m.
A complex cell is connected to a receptive field in

the previous simple cell, reducing the dimension of the
feature maps. Each complex cell outputs the maximum
activation of the receptive field u(x, y) and is defined as

aj = max
n 3 n

un, c(x, y)ð Þ ð3Þ

where un, c is the output of the simple cell. In this func-
tion, a complex cell computes the maximum activation
among the receptive field (x, y). The maximum opera-
tion down-samples the feature map, maintaining the
simple cell structure.

2.2 Cubic receptive fields

In a CNN, each filter is applied to a single instance of
the stimulus and extracts features of a determined
region. We can see an emotion expression as a series of
single instances of stimuli stacked together. As emotion
expressions usually do not contain a strong context
dependency, because of the short time in which each
emotion is expressed, we use the concept of filtering
similar patterns in a stack of stimuli. To do so, we
adapt the CNN to apply similar filters on the same
region of different images. This concept is obtained by
the application of the cubic receptive fields, described
by Ji, Xu, Yang, and Yu (2013). In a cubic receptive
field, the value of each unit ux, y, z

n, c at the nth filter map
in the cth layer is defined as

ux, y, z
n, c = max (bnc + S3, 0) ð4Þ

where max ( � , 0) represents the rectified linear func-
tion, bcn is the bias for the nth filter map of the cth
layer, and S3 is defined as

S3 =
X

m

XH

h= 1

XW

w= 1

XR

r = 1

whwr
(c�1)mu

(x+ h)(y+w)(z+ r)
(m�1) ð5Þ

where m indexes over the set of feature maps in the
(c� 1) layer connected to the current layer c. The
weight of the connection between the unit u(x, y, z)n, c and a
receptive field connected to the previous layer (c� 1)
and the filter map m is whwr

(c�1)m. H and W are the height
and width of the receptive field and z indexes each sti-
mulus; R is the number of stimuli stacked together rep-
resenting the new dimension of the receptive field.

2.3 Shunting inhibition

To learn general features, several layers of simple and
complex cells are necessary, which leads to a large
number of parameters to be trained. This, put together
with the usual necessity of a huge amount of data so
that the filters learn general representations, is a big
problem shared among deep neural architectures. To
reduce the necessity of a deeper network, we introduce
the use of shunting inhibitory fields, described by
Fregnac, Monier, Chavane, Baudot, and Graham
(2003), which improves the efficiency of the filters in
learning complex patterns.
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Shunting inhibitory neurons are neural-physiological
plausible mechanisms that are present in several visual
and cognitive functions, as shown by Grossberg (1992).
When applied to complex cells, shunting neurons can
result in filters that are more robust to geometric dis-
tortions, meaning that the filters learn more high-level
features. Each shunting neuron Sxy

nc at the position (x,y)
of the nth receptive field in the cth layer is activated as

Sxy
nc =

uxy
nc

anc + I
xy
nc

ð6Þ

where uxy
nc is the activation of the common unit in the

same position and Ixy
nc is the activation of the inhibitory

neuron. The weights of each inhibitory neuron are
trained with backpropagation. A passive decay term,
anc, is a defined parameter and it is the same for the
whole shunting inhibitory field.

The idea behind the shunting neurons is that they
will specify the filters of a layer. This creates a problem
when applied to filters that extract low-level features,
such as edges and contours. When applied to such fil-
ters, the shunting neurons specify these filters, causing
a loss on the generalization aspects of the low-level fea-
tures. However, when applied to deeper layers, the
shunting neurons can enhance the capability of the fil-
ters to extract strong high-level representations, which
could only be achieved by the use of a deeper network.

2.4 Crosschannel learning

To be able to deal with multimodal data, our network
uses the concept of the CCCNN by Barros, Jirak,
Weber, and Wermter (2015a). In the CCCNN architec-
ture, several channels, each one of them composed of
an independent sequence of convolution and pooling
layers, are fully connected at the end to a crosschannel
layer, which is composed of convolution and pooling
layers, and trained as one single architecture. Our
architecture is composed of two main streams: a Visual
and an Auditory stream.

Our model applies topological convolution, and thus
the size of the receptive field has an important impact
in the learning process. The receptive fields in our cross-
channel need to be large enough to be able to capture
the whole concept of the stimulus, and not only part of
it. With a small receptive field, our crosslearning will
not be able to capture the high-level features.

We apply our crosschannel learning in two streams.
Goodale and Milner (1992) describe how the visual cor-
tex is separated into two streams, and how they are
integrated in the V4 area. In their model, the ventral
and dorsal streams extract different information from
the input data, but are used as input to the V4 area.
Hickok (2012) describes a similar process occurring in
the auditory pathway, where different information is
processed by the ventral and dorsal stream, and

integrated in the V4 area. Although we are not model-
ing exactly the same pathway and information as the
ones present in the brain, the architecture of our model
was developed in a way that resembles the brain’s orga-
nizational structure. Also, we specify our model to deal
with emotion expressions, and not general visual and
auditory recognition.

2.5 Visual representation

Inspired by the primate visual cortex model described
by Essen and Gallant (1994), our Visual stream has
two channels. The first channel is responsible for learn-
ing and extracting information about face expressions,
which comprises the contour, shape and texture of a
face, and mimics the encoding of information in the
ventral area of primate visual cortex. The second chan-
nel codes information about the orientation, direction
and speed of changes within the torso of a person in a
sequence of images, similar to the information coded
by the dorsal area.

To feed our Visual stream, we must first find the
faces on the images. To do so, we use the Viola–Jones
face-detection algorithm, proposed in the work of Viola
and Jones (2004), which uses an Adaboost-based detec-
tion. After finding the face, we create a bounding box
to describe the torso movement. We extract face and
torso from a sequence of frames corresponding to 1 s
and feed them to the network.

To define the input of the Movement channel, we
use a motion representation. Feeding this stream with
this representation, and not the whole image, allows us
to specialize the channel into learning motion descrip-
tors. This way, we can train the network with a smaller
amount of data, and use a shallow network to obtain
high-level descriptors. Figure 1 displays a common
input of our Visual stream, containing examples of the
Face and Movement channels.

The Face channel is composed of two convolution
and pooling layers. The first convolution layer imple-
ments 5 filters with cubic receptive fields, each one with
a dimension of 53 53 3. The second layer implements
5 filter maps, also with a dimension of 53 5, and a
shunting inhibitory field. Both layers implement max-
pooling operators with a receptive field of 23 2.

The Movement channel implements three convolu-
tion and pooling layers. The first convolution layer
implements 5 filters with cubic receptive fields, each one
with a dimension of 53 53 3. The second and third
channels implement 5 filters, each one with a dimension
of 53 5 and all channels implement max-pooling with a
receptive field of 23 2. We feed this channel with 1 s of
expressions, meaning that we feed the network with 30
frames. We compute the motion representation of every
10 frames, meaning that we feed the Movement channel
with 3 motion representations. All the images are re-
sized to 1283 96 pixels.
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We apply a crosschannel to the Visual stream. This
crosschannel receives as input the Face and Movement
channels, and it is composed of one convolution chan-
nel with 10 filters, each one with a dimension of 33 3,
and one max-pooling with a receptive field of 23 2. We
have to ensure that the input of the crosschannel has
the same dimension, to do so we re-size the output rep-
resentation of the Movement channel to 93 9, the same
as the Face channel. Figure 2 illustrates the Visual
stream of the network.

2.6 Auditory representation

Hickok (2012) states that the dorsal and ventral path-
ways in the brain process different auditory informa-
tion. While the ventral stream deals with speech
information, the dorsal one maps auditory sensory rep-
resentation. In earlier stages of the dorsal stream, the
auditory information is decomposed into a series of
representations, which are not connected to phonetic
representations. We use this concept to separate the
perception of auditory information in our network into

two channels. One deals mostly with speech signals,
and the other with general sounds including music.

Evidence in the work of Sainath et al. (2015) shows
that the use of Mel Frequency Cepstral Coefficients
(MFCC) is suited for speech representation, but does
not provide much information when describing music.
MFCCs are described as the coefficients derived from
cepstral representation of an audio sequence, which
converts the power spectrum of an audio clip into the
mel scale frequency. The mel scale has been shown to
be closer to human auditory system’s response than the
linear frequency.

When trying to describe general music information,
spectral representations, such as power spectrograms,
showed good results, as described in the work of
George and Shamir (2015). Power spectrograms are cal-
culated in smaller sequences of audio clips, by applying
a discrete Fourier transform in each clip. This operation
describes the distribution of frequency components on
each clip.

To use the auditory representation in CNNs, the
MFCCs and power spectrograms are represented as

Figure 1. Example of input for the Visual stream. We feed the network with 1 s of expressions, which are processed into 3
movement frames and 9 facial expressions.

Figure 2. The Visual stream of our network is composed of two channels: the Face and the Movement channels. The Face channel
is implemented by two layers, each one with convolution and pooling, and applies inhibitory fields in the second layer, while the
Movement channel is implemented by three layers, with pooling and convolution. Both channels implement cubic receptive fields in
the first layer. The final output of each channel is fed to a crosschannel which implements convolution and pooling and produces a
final visual representation.
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images. But there is a fundamental difference when
dealing with these representations. Usually, the input of
CNNs is processed by a filter matrix, which is applied
in both, height and width axes. The filter is trained to
capture local information of the region where it is
applied. When this concept is applied to auditory repre-
sentation, the idea of learning from a 2D region can
generate a problem. In auditory input, each axis repre-
sents different information, where usually the x-axis
represents time and the y-axis the spectral representa-
tion. For the power spectrogram representations, the
use of 2D filters was shown to be ideal, because each fil-
ter captures the spectral representation in a certain
region of the audio clip, as discussed by Hau and Chen
(2011).

On the MFCC representation, the use of 2D filters
does not work. To Extract the MFCCs, a cosine trans-
formation is applied and this projects each value of the
y-axis into the mel frequency space, which may not
maintain locality. Because of the topological nature of
2D filters, the network will try to learn patterns in adja-
cent regions, which are not represented adjacently in
the mel frequency domain. Abdel-Hamid et al. (2014)
propose the use of 1D filters to solve this problem. The
convolution process is the same, but the network
applies 1D filters on each value of the y-axis of the
image. That means that the filters will learn how to cor-
relate the representation per axis and not within neigh-
bors. Pooling is also applied in 1D, always keeping the
same topological structure.

We build our auditory stream based on the speech
and music representation. We use two channels, which
are connected to a crosschannel. We use audio clips
with 1 s as input, and each clip is re-sampled to 16,000
Hz. We compute the power spectrum and the MFCC
of the audio clip and feed them to two channels. The
power spectrogram is the input of the Music channel,
and it is computed over a window of 25 ms with a slide
of 10 ms. The frequency resolution is 2048. This gener-
ates a spectrogram with 1024 bins, each one with 136

descriptors. We re-size the spectrogram by a factor of
8, resulting in an input size of 1283 7. The MFCC is
used as input for the Speech channel, and it is calcu-
lated over the same window and slide as the power
spectrogram. We change the frequency resolution to
1024, which generated a representation with 35 bins
each one with 26 descriptors.

The Music channel is composed of two layers, the
first one with 10 filters, and each one with a dimension
of 53 5. The second layer has 20 filters, with a dimen-
sion of 33 3. Both layers implement pooling, with a
receptive field of 23 2. The Speech channel is com-
posed of three layers, each one with 1D filters. The first
has 5 filters, with a dimension of 13 3, the second one
has 10 filters with a dimension of 13 3 and the third
one 20 filters with a dimension of 13 2. All three layers
apply pooling with a receptive field of 13 2.

The crosschannel applied to our Auditory stream
has one layer, with 30 filters, each one with a dimension
of 23 2, without the application of pooling. To be able
to use the crosschannel, both channels must output
data with the same dimensions and our results showed
that re-sizing the Music channel output produced better
performance. This can be explained by the fact that the
Speech channel depends strongly on the non-locality of
the features. Figure 3 illustrates our Auditory stream.

2.7 Crossmodal representation

To deal with crossmodal learning, we integrate both
streams into one Multichannel Convolutional Neural
Network architecture. We connect each crosschannel
with a fully connected hidden layer, with 500 units,
which is then connected to a softmax layer. This way,
each modality, Visual and Auditory, has its own high-
level representation preserved. Figure 4 illustrates our
final architecture.

Erhan et al. (2010) show evidence that the use of
supervised pre-training steps improves the capability of
the filters to tune faster in a specific domain. We follow

Figure 3. The Auditory stream of our network implements two channels: the Music channel and the Speech channel, which
implements filters with one dimension. We feed the network with 1s audio clips, and calculate a power spectrogram as input for the
Music channel and MFCCs as input for the Speech channel. The output of both channels is used as input for the auditory
crosschannel.
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this strategy and pre-train each channel of our network
to learn specific representation from specific data. After
the filters of each channel are trained, we then train our
fully connected hidden layer and the softmax layer to
classify the input. This strategy allows us to decrease
the amount of time needed to train our network and
increase the generalization property of our filters.

2.8 Inner representation visualization

CNNs were successfully used in several domains.
However, most of the works with CNNs do not explain
why the model was so successful. As CNNs are neural
networks that learn representation of the input data,
the knowledge about what the network learns can help
us to understand why these models perform so well in
different tasks. The usual method to evaluate the
learned representations of neural networks is the obser-
vation of the weights matrices, which is not suited for
CNNs. Every filter in the convolution layers learns to
detect certain patterns in the regions of the input stimu-
lus, and because of the pooling operations, the deeper
layers learn patterns that represent a far larger region
of the input. That means that the observation of the fil-
ters does not give us a reliable way to evaluate the
knowledge of the network.

Zeiler and Fergus (2014) proposed the deconvolu-
tional process, which helps to visualize the knowledge
of a CNN. In their method, they backpropagate the
activation of each neuron to an input, which helps to
visualize to which part of the input the neurons of the
network are activated for. This way, we can determine
regions of neurons that activated for similar patterns,
for example, neurons that activate for the mouth and
others for the eyes.

In a CNN, each filter tends to learn similar patterns,
which indicates that those neurons in the same filter will
be activated to similar input structures. Also, each neu-
ron can be activated for very specific patterns, which
are not high-level enough for subjective analysis. To

improve the quality of our analysis, we apply the con-
cept of creating visualizations for all neurons in one fil-
ter by averaging the activation of each neuron in that
filter. That allows us to cluster the knowledge of the
network in filters, meaning that we can identify if the
network has specialized filters, and not specialized neu-
rons. Also, visualizing filters on all layers help us to
understand how the network builds the representation,
and help us to demonstrate the hierarchical capabilities
of CNNs.

The visualizations are a very powerful tool that help
us to have an important insight into the knowledge
learned by the network. With them, we can validate the
parameters of our model, understand what the model
learns, and illustrate the advantages of using concepts
such as the inhibitory fields and the crosschannels. We
also use the visualizations to illustrate which are the
most important features, in the network’s perspective,
for emotion expression, and how they are combined in
different modalities. For the auditory channels, the
visualizations do not give us an easily understandable
indication of what the network learns, different from
the visual channels. In the visual channels, we can see
which regions of the images the network activates most,
but for the auditory channels the input is masked by the
transformation of the audio into MFCCs and power
spectrograms.

3 Emotion expression learning

To classify emotion expressions is a difficult task: First
the observation of various different modalities is neces-
sary. Second, the concept of emotion itself is not pre-
cise, and the idea of classifying what another person is
expressing based on fuzzy concepts, makes the analysis
of such models difficult. Russell (2003) classifies emo-
tion representation into two different model classes:
categorical models and dimensional models.

The categorical model separates emotions as discrete
concepts, such as the ones proposed by Ekman and

Figure 4. Final crossmodal architecture, which extracts features from visual and auditory input and classifies them in emotion
expressions. We connect the outputs of each stream to a fully connected hidden layer and then to a softmax layer, which will give us
a classification probability.
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Friesen (1971): disgust, fear, happiness, surprise, sad-
ness and anger. Based on that model, the combination
of basic emotions can be expressed as a set of secondary
emotions and the idea of tertiary and even ternary emo-
tions was discussed by Sloman (2001). The categorical
model became very popular among automatic emotion-
recognition systems, because it is easier to train a model
where a set of categories is established.

In the dimensional model, the emotion expressions
are represented in a two-dimensional space, usually
arousal and valence. This dimensional space represents
emotions based on their intensity and nature, where a
high valence is usually related to positive emotions and
a low valence to negative emotions. High arousal is
usually related to expressions with high intensity, such
as excitement, and low arousal as calm and relaxed
expressions. This model has a richer representation of
the expressions, without relying on pre-defined cate-
gories. Russell (2003) claims that the use of the dimen-
sional model can represent a core affect representation,
which models a perpetual affective state that is updated
by different stimuli.

A well-known method of describing and recognizing
expressions is the Face Action Coding System (FACS),
which was developed by Friesen and Ekman (1978),
and represents human facial muscle movements as a
coding scheme. This method became very popular for
emotion recognition systems, as shown in the review
work of Cowie et al. (2001). One of the problems with
methods that use the FACS is the amount of time nec-
essary for extracting and recognizing the expressions,
as debated by Sariyanidi, Gunes, and Cavallaro (2015),
and the difficulty of representing spontaneous expres-
sions, as discussed by Zeng, Pantic, Roisman, and
Huang (2009).

To simulate a developmental-like emotional percep-
tion mechanism, we focus on the dimensional model-
based representation. We train our CCCNN to learn
strong and reliable emotion expression representations
in different modalities and then replace the fully con-
nected hidden and softmax layers of our network with

a layer that implements Self-Organizing Maps (SOMs),
introduced by Kohonen (1990). The SOMs are neural
models where the neurons are trained in an unsuper-
vised way to create a topological grid that represents
the input stimulus. In a SOM, each neuron is trained to
be a prototype of the input stimulus, meaning that after
training, each neuron will have a strong emotional rep-
resentation and neurons that are neighbors are related
to similar expressions.

In our architecture, we usually implement a SOM
with 40 neurons in each dimension. Empirically this
was shown to be enough to represent up to 11 emotions
for the Visual stream and up to 7 emotions using cross-
modal representation. Figure 5 illustrates the updated
version of our model.

3.1 Perception representation

After training, a SOM will create a grid of neurons,
each one with the same dimensionality as the input sti-
mulus. Analyzing a SOM is not an easy task, as stated
by Vesanto (1999). The neurons of a SOM organize a
projection of a high-dimensional data space into a set
of neurons spread in a grid. That means that the knowl-
edge of a SOM is represented by its topology. One way
to interpret the neurons in a SOM is to use the U-
Matrix, described by Ultsch (2003). The U-Matrix cre-
ates a visual representation of the distances between the
neurons. Basically, you calculate the distance between
adjacent neurons. The U-Matrix gives us a very impor-
tant representation of the structural behavior of the
SOM, in which we can identify different clusters of neu-
rons. The U-Matrix of a SOM is defined as

U�Matrix=
X

Mm= 1

Xk

i= 1

d(w� wm) ð7Þ

where M indexes the neighbor neurons, and w is the set
of weights of each neuron. The distance calculation is
given by d(x, y), and is usually the Euclidean distance.

Figure 5. Crossmodal architecture used as input for the SOM. This architecture extracts multimodal features from audio–visual
inputs and clusters the representation in different regions, which then represent emotion expressions.
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After training, our SOM has neurons that represent
emotion expressions, and we can visualize them by cal-
culating the U-Matrix. Our SOM is trained completely
unsupervised, which means that we do not identify the
expressions we are showing to the network with any
class and the U-Matrix shows the distribution of the
neurons, or emotion expressions, over a grid. We use
this grid to identify regions of neurons that have similar
representation, and find certain patterns of the neuron
distribution. Figure 6 illustrates an example of a U-
Matrix calculated from a SOM with 40 neurons in each
dimension and trained with three different expressions:
happy, sad and neutral. It is possible to see the neu-
rons, marked as the dots, and different regions based
on the distances between the neurons.

The neurons that are strongly related to a presented
input, will activate most: for instance, a certain neuron
that activates for a happy expression will have a lower
activation when a sad expression is presented. This
way, by visualizing several activation maps, we can
have an emotion representation that is very close to a
dimensional perception, but learned in an unsupervised
way. Figure 7 illustrates different activation maps. It is
possible to see that the activation pattern changes when
different happy, angry or neutral expressions are pre-
sented to the network.

The visualization of the knowledge learned by the
SOM is not easy, similar to the human perception of
emotions, as discussed by Hamlin (2013). She mentions
that emotion expressions are learned by humans in a
continuous process of perceiving new expressions and
adapting them to previous knowledge. This process
happens through the childhood by assimilating similar

emotions with known concepts, such as happiness, pain
or solitude. That means that each person has their own
emotion-perception mechanism, based on different fea-
tures and different perceived emotions. Our model is
inspired in this process, and first we use very strong fea-
ture representation, learned by the CCNN, to describe
expressions. Later on, the learned expressions are clus-
tered in similar concepts by our SOM, simulating the
learning of new expressions. Our SOM also represents
a unique perception representation, which could be
related to a person’s own perception.

3.2 Expression categorization

Using the regions of the U-Matrix we can create a cate-
gorical view of the network’s representation. This helps
us to use our model in emotion-recognition tasks. The
advantage of using our model is that we can create dif-
ferent categorical models without re-training the net-
work. If we want to analyze simple separations as
positive and negative emotions, we can easily identify
which regions of the network fire for these categories.
If we want to increase the number of categories, we just
have to increase the number of clusters. So, instead of
finding regions that fire only for negative or positive,
we can find regions that fire for happy, sad, surprised
and disgusted.

To find these clusters, we use the U-Matrix to create
a topological representation of the neurons and the K-
means algorithm by MacQueen (1967) to cluster them.
The K-means algorithm partitions a set of observations
in N clusters, based on the distance from each observa-
tion to each other. The goal of the K-means is to mini-
mize the within-cluster sum of squares, which could be
defined as

K = argmin
Xk

i= 1

X

xESi

(c� mi)j jj j ð8Þ

where m is the mean of each observation.

Figure 6. U-Matrix of a SOM with 40 neurons in each
dimension and trained with happy, sad and neutral expressions. It
is possible to see the neurons, represented by dots, in different
regions, which represent the distances among the neurons.

Figure 7. Examples of activation maps when three different
expressions for each class are presented. It is possible to see
that each class has an activation pattern different from the other
classes.
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The limitation of our model is directly related to the
SOM architecture limitation: we have to define the
number of neurons before training them, which restricts
the number of expressions that can be categorized.
However, with an arbitrary number of neurons, we can
create different categories of expressions without re-
training the network. The number of neurons depends
directly on the amount and variety of expressions that
were used to train the network, and the number of emo-
tions to be categorized. Each prototype neuron learns
an approximated representation of a set of expressions,
so if the expressions used to train the SOM are not
enough and the variety is too large, the network will
need more neurons to represent emotional concepts.

Using the expression categorization, we can use our
network to recognize different emotion categories. If, at
first, we want to recognize only positive and negative
emotions, we just have to define two clusters. Then, if
we need to identify between a happy and an excited
expression, we can apply the K-means algorithm only
on the region of the network that has a bigger probabil-
ity to activate for these concepts. In the same way, if we
want to identify different kinds of happy expressions, we
can create clusters only on this specific region. Figure 8
illustrates the application of K-means to the network
illustrated in Figure 6. In this example, the network is
clustered for three classes: happy, sad and neutral.

4 Experimental methodology

To evaluate our model, we perform three sets of experi-
ments. In the first set we evaluate some aspects of the

architecture: the impact of the input length and the use
of the inhibitory fields. The second set of experiments
evaluates the capability of the CCCNN to learn specific
and crossmodal representations, and use them to clas-
sify emotion expressions. In the last set of experiments
we evaluate our emotion-learning architecture, with the
use of the SOM.

For all experiments, 30 experimental routines were
performed and the mean of the accuracy was collected
for each expression individually, which helps us to
understand our model better.

4.1 Datasets

For our experiments we use four corpora. The first one
is the FABO database, presented by Gunes and
Piccardi (2006). This corpus is composed of recordings
of the upper torso of different subjects while perform-
ing emotion expressions. This corpus contains a total
of 11 expressions performed by 23 subjects of different
nationalities. Each expression is performed in a sponta-
neous way, where no indication was given of how the
subject must perform the expression. A total of 281
videos were recorded, each one having 2 to 4 of the fol-
lowing expressions: anger, anxiety, boredom, disgust,
fear, happiness, surprise, puzzlement, sadness and
uncertainty. Each expression starts with a neutral
phase, and continues until the apex phase, where the
expression is in its peak. We use the neutral phase for
each expression to create a 12th neutral class in our
experiments. Figure 9 illustrates images present in a
sequence of an angry expression in the FABO corpus.

The second corpus is the SAVEE database, created
by Haq and Jackson (2010). This corpus contains
speech recordings from four male native English speak-
ers. Each speaker reads sentences which are clustered
into seven different classes: anger, disgust, fear, happi-
ness, neutral, sadness and surprise. Each speaker
recorded 120 utterances, with 30 neutral and 15 for
each of the other emotions. All the texts are extracted
from the TIMIT dataset and are phonetically balanced.
Each recording contains the audio and face of the parti-
cipant, with facial markers. The markers are present to
be used for systems that need them, and unfortunately
we cannot remove them from the image. Figure 10 illus-
trates faces of a subject while performing an angry
expression in the SAVEE corpus.

The third corpus is the EmotiW database, published
by Dhall, Goecke, Lucey, and Gedeon (2012). This cor-
pus contains video clips extracted from random movies
and separated in seven classes: anger, disgust, fear, hap-
piness, neutral, sadness and surprise. A total of 1000
videos with different lengths are available, separated
into training and validation sets. The test set is avail-
able, but without any labels, and includes 700 extra
videos. Therefore, we only evaluate our model on the
validation set. This challenge is recognized as one of the

Figure 8. K-Means algorithm applied to the SOM illustrated at
Figure 6. We cluster the neurons in three expressions: happy,
sad and neutral. We use the K-means clusters to classify
expressions.
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most difficult tasks for emotion recognition, because
the movie scenes contain very cluttered environments,
occluded faces, speech, music, sound effects, more than
one speaker and even animals. Figure 11 illustrates
some frames of an angry expression in the EmotiW
corpus.

One extra corpus is used to train the Music stream of
the auditory information. The GTZAN corpus by
Tzanetakis and Cook (2002) is not directly related to
emotion recognition, but to music genre classification.
The task of music genre classification is similar to music
emotion classification by Kim, Valitutti, and Calvo
(2010), because the idea is to cluster audio segments
that are closely related based on auditory features.
Music genres can also be used for emotion classifica-
tion, since, for example, blues and soul music are more
related to sadness or lonely feelings, and pop music
more to happiness, see Kim et al. (2010). This database
contains 1000 songs, each one 30 s with a sampling rate
of 22050 Hz at 16 bit, divided into 10 musical genres:
blues, classical, country, disco, hip hop, jazz, metal,
pop, reggae and rock.

All the experiments were performed by using four-
fold cross validation, except for the EmotiW. This cor-
pus has a pre-defined separation for the testing and
validation sets, and we do not use the test set in most
of the experiments due to the lack of labels.

4.2 Architecture experiments

According to Ekman (2007), an expression occurs
between 300 ms and 2 s. To evaluate an optimal
approximation of sequence length, we evaluated our
Face channel with four different input lengths: 40 ms,
300 ms, 600 ms and 1 s. For this experiment we use the
FABO corpus, and as the sequences in this corpus were
recorded with a frame rate of 30 f/s, that means that we
evaluate the use of 1, 9, 18 and 36 frames as input. We
also evaluated the input length for the Movement chan-
nel. First, we evaluate the use of 2 frames to compose a
movement representation, then 5 frames, 10 frames and
lastly 15 frames. This leads to feeding the network with
15, 6, 3 and 2 movement images, respectively.

Figure 9. Examples of images with an a angry expression in the FABO corpus.

Figure 10. Faces with an angry expression in the SAVEE corpus.

Figure 11. Example of an angry sequence in the EmotiW corpus.
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We then evaluate the use of the inhibitory fields on
the Visual stream, by applying them in different layers.
We show how the inhibitory fields affect each represen-
tation of each layer and why we only use them on our
Face channel.

For the auditory representation, we follow indica-
tions in the work of Abdel-Hamid et al. (2014) for the
Speech channel and George and Shamir (2015) for the
Music channel. Separating the same 1 s of representa-
tion and using the window and sliding values indicated
in this work produced the best results, so we kept them.
Also, the use of inhibitory fields on the auditory chan-
nel did not produce any improvement in the results,
causing exactly the opposite: an overfitting of the filters
made the network lose the focus completely during
training.

4.3 FABO Experiments

Using the FABO corpus we evaluate the Visual stream
of the network. In this set of experiments, we evaluate
the use of the Face and Movement channels individu-
ally, and then both of them at the same time.

With this experiments we show in detail the impact
that each modality has in different expressions. As the
FABO corpus deals with secondary expressions, it is
possible to see how our visual representation behaves
for very different expressions, such as happiness and
sadness, or very similar ones, such as boredom and
puzzlement.

4.4 SAVEE Experiments

The SAVEE corpus was used to evaluate the Auditory
stream of the network. As this corpus also has visual
information, with the recording of the faces of the sub-
jects, we also evaluate the Face channel and the cross-
modal representation obtained with the use of the
auditory channels and the Face channel.

The audio data of the SAVEE corpus contains only
speech and no music. This way, we evaluate the use of
only the Speech channel but also the use of the Music
channel, pre-trained with the GTZAN corpus, inte-
grated with the Speech channel. This way, we can show
how the model behaves with specific training, but also,
how the integrated model, which has speech- and
music-specific representation, behaves when only one
type of input is present.

4.5 EmotiW Experiments

The EmotiW corpus contains the most complex emo-
tion expressions in our experiments. The video clips
contain different subjects (sometimes at the same time),
music, speech, different illumination in the same scene
and various face positions. This makes the emotion
classification in this dataset very difficult.

We evaluate the use of our channels trained with this
dataset; first each channel individually and then the
integration of visual-only streams and auditory-only
streams. Finally, we evaluate the audio–visual represen-
tation. Each of these experiments is performed with two
different training strategies: one with, and one without
the pre-training of the filters. We use the FABO corpus
to pre-train the filters of the Visual stream and the
SAVEE and GTZAN corpus to pre-train the Auditory
stream.

The auditory information of this corpus is not sepa-
rated, and thus we feed our Auditory stream with the
same input data. The idea here is that the Auditory
stream will represent mostly the speech information in
one channel, and the music/background sound in the
other.

All of the results are compared and we show for the
six basic emotions, plus a neutral category, how each of
the modalities behaves, and the advantage of using the
pre-training strategy.

4.6 Expression learning experiments

For the expression learning experiments, we use the
trained filters of the CCCNN to extract high-level
expression representations and train a SOM with them.
After training, the SOM is used in classification tasks,
by using K-means to cluster the neurons in a number of
specified classes. We compare the use of the SOM with
the CCCNN performance for classifying crossmodal
data with the EmotiW corpus. These experiments show
the capability of the SOM to generalize expressions.

We also measure the capability of the SOM to learn
new expressions. For that, we train a SOM with a lim-
ited set of expressions, with sad and happy emotions
being performed. Then, we systematically present new
expressions to the SOM, such as anger, disgust and sur-
prise, and we show the mean of the activation maps for
each expression. This way we show the capability of the
SOM to learn different expressions. For these experi-
ments we use the FABO corpus, because it contains a
controllable environment, which is not present on the
EmotiW dataset.

In the last round of experiments, we show the use of
the SOM for analyzing the behavior of expressions. We
perform experiments with the SAVEE corpus only, which
contains data from four different subjects. We train one
SOM for each subject and compare the differences of the
expressions based on the clusters of each SOM.

5 Results

5.1 Architecture experiments

The results obtained when training the Face channel
with different sequence lengths showed that the use of
nine frames produced the best results, as exhibited in
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Table 1. As the FABO corpus was recorded with 30 f/s,
the use of 9 frames means that the sequence has an
approximate length of 300 ms. A sequence with this
length is congruent with the description of face expres-
sions. The use of longer expressions, with 1 s, produced
the weakest results.

The Movement channel receives as input a sequence
of motion representations of 1 s of the expression. This
means that each representation of this sequence is com-
posed of several frames. The results, exhibited in
Table 1, show that the use of 3 movement representa-
tions obtained the best performance, meaning that each
movement representation is composed of 10 frames
and each motion representation captures 300 ms. Our
results show that using a minimum number of frames
to capture the movement, 2 frames per motion repre-
sentation and 15 frames as the channel’s input, pro-
duces the worst result.

In the second round of experiments, we evaluate the
use of inhibitory neurons in our visual channels. We
evaluate the use of the inhibitory fields on each of the
layers, and in combination on all layers of each chan-
nel. Table 2 exhibits the results. The application of the
inhibitory fields on the Movement channel did not pro-
duce better results, due to the fact that the movement
representation is already a specified stimulus, and the
filters alone were capable of coping with the complexity
of the representation. It is possible to see that when

applied to the last layer of the Face channel, the inhibi-
tory fields produced better results, confirming that the
strong extra-specification on the last layer is beneficial
for face expression recognition.

5.2 FABO Experiments

The combined results of the FABO experiments are
exhibited in Table 3. It is possible to see that overall,
the mean accuracy of the integrated representation is
the highest. Also, it is possible to see how some expres-
sions behave with different modalities. For example,
anxiety and puzzlement expressions had a performance
similar to the Face and Movement channels alone, but
increased when the integrated representation was used.
Also, there was a great increase in the performance for
disgust and negative surprise, showing that for these
expressions the integrated representation provided
more information than each modality individually.

Comparing our model with state-of-the-art
approaches using the FABO corpus shows that our net-
work performed similar, and in the Face representation
better. Table 4 exhibits this comparison. The works of
Chen et al. (2013) and Gunes and Piccardi (2009)

Table 1. Reported accuracy, as percentages, for different
lengths of the input sequence, in frames, for the Face channel,
and in movement representations for the Movement channel
trained with the FABO corpus.

Face channel

Sequence length 1 9 18 36
Accuracy(%) 64.8 80.6 73.6 49.4

Movement channel

Motion representations 15 6 3 2
Accuracy(%) 48.3 67.9 74.8 66.2

Table 2. Reported accuracy, as percentages, for the use of
inhibitory neurons in different layers of the Face and Movement
channels trained with the FABO corpus.

Face channel

Layers None L1 L2 All
Accuracy(%) 80.6 59.9 87.3 64.4

Movement channel

Layers None L1 L2 L3 All
Accuracy(%) 74.8 41.3 47.8 48.8 45.8

Note: The italic text indicate the highest values.

Table 3. Reported accuracy, as percentages, for the Visual
stream channels trained with the FABO corpus. The results are
for the Face channel (F), Movement channel (M) and the
integrated Face and Movement channel (FM), representing the
Visual stream (V).

Class F M FM

Anger 74.5 66.3 95.9
Anxiety 78.6 80.5 91.2
Uncertainty 82.3 75.8 86.4
Boredom 93.4 76.3 92.3
Disgust 78.3 65.9 93.2
Fear 96.3 80.0 94.7
Happiness 93.7 60.3 98.8
Negative surprise 67.2 32.4 99.6
Positive surprise 85.7 65.7 89.6
Puzzlement 85.4 84.8 88.7
Sadness 89.6 80.1 99.8
Mean 87.3 74.8 93.65

Table 4. Comparison of the accuracy, as a percentage, of our
model with state-of-the-art approaches reported with the
FABO corpus for representations of face, movement, and both
integrated.

Approach Face Movement Both

Barros et al. (2015a) 72.7 57.8 91.3
Chen et al. (2013) 66.5 66.7 75.0
Gunes & Picccardi (2009) 32.49 76.0 82.5
CCCNN 87.3 74.8 93.65
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extract several landmark features from the face, and
diverse movement descriptors for the body movement.
They create a huge feature descriptor for each modal-
ity, and use techniques such as SVM and Random
Forest, respectively, for classification. It is possible to
see that the fusion of both modalities improved their
results, but the performance is still lower than ours. In
previous work, we used a Multichannel Convolution
Neural Network (MCCNN), published as Barros et al.
(2015a), to extract facial and movement features. This
network produces a joint representation, but our cur-
rent CCCNN improved this representation with the use
of separated channels per modality and the application
of inhibitory fields. It is possible to see a substantial
improvement on the movement representation, mostly
because we use a different movement representation in
the CCCNN.

5.3 SAVEE Experiments

The results with the SAVEE experiments are exhibited
in Table 5. It is possible to see that the auditory infor-
mation obtained the lowest accuracy, and among them
the pre-trained representation was the one with the
lowest general accuracy. This occurs because the data
in the SAVEE corpus does not contain music, only
speech, which reflects directly on the performance
obtained by the network. Still, it is possible to see that
the auditory channel composed of the Speech and
Music does not substantially decrease the performance
of the network, but makes it more robust to deal with
speech and music data.

We also see that the face representation obtained a
similar performance to the auditory one, but when com-
bined, the performance tends to increase. This is due to
the fact that when both, face and auditory information,
are present, the network can distinguish better between
the expressions. This is demonstrated by the perfor-
mance of the model for anger, sadness and surprise,

which have a similar performance in individual chan-
nels and a higher one in the integrated representation.

Our approach showed to be competitive when evalu-
ated with the SAVEE corpus. When compared to state-
of-the-art approaches, our representations showed a
result comparable with the work of Banda and
Robinson (2011). They use a decision-based fusion
framework to infer emotion from audio–visual inputs.
They process each modality differently, using linear
binary patterns to represent the face expressions and a
series of audio features to represent speech. After that,
an in-pairs SVM strategy is used to train the represen-
tations. Our network has a similar performance for face
representation, but a higher accuracy for audio. We
improved by more than 10% the accuracy of the speech
representation. For the multimodal integration, our
network has been shown to be competitive, and per-
formed similarly, but with a much less costly feature
representation process. The authors of the SAVEE
dataset, Haq, Jackson, and Edge (2009), also did a
study to examine the human performance for the same
task. Using the same protocol, a 4-fold cross valida-
tion, they evaluated the performance of 10 subjects on
the recognition of emotions on the audio and video
data. The results showed that most approaches
exceeded human performance on this dataset. This
happens for most of the compared methods, and the
probable cause is that the methods create a very spe-
cific representation of the expressions (only the six
basic emotions plus neutral), while humans have a
larger amount of learned representations, which can
help when determining unknown and spontaneous
expressions, but could hinder recognition in restricted
scenarios. Table 6 exhibits the state-of-art results and
human performance on the SAVEE dataset.

5.4 EmotiW Experiments

The EmotiW corpus proved to be a very difficult chal-
lenge. Table 7 illustrates all the results on the corpus. It
is possible to see that the visual representations, repre-
sented by the columns F, M and V, reached better
results than the auditory representations, presented in
columns S, Mu and A.

The visual representations presented a very interest-
ing distribution of accuracies. It is possible to see that
when the expressions were represented by the

Table 5. Reported accuracy, as percentages, for the Auditory
and Visual stream channels trained with the SAVEE corpus. The
results are for the Face channel (F), Speech channel (S), Speech
and pre-trained Music channel, representing the Auditory stream
(A) and the integrated audio–visual streams, with the Face,
Speech and Music channels (AV).

Class F S A AV

Anger 95.4 95.0 92.6 100
Disgust 95.6 100 88.0 100
Fear 89.7 88.0 85.5 100
Happiness 100 81.1 86.1 95.0
Neutral 100 100 91.3 100
Sadness 90.0 93.5 87.4 96.5
Surprise 86.7 86.5 80.5 96.7
Mean 93.9 92.0 87.3 98.3

Table 6. Performance of state-of-the-art approaches on the
SAVEE dataset.

Methodology Face Audio Both

Banda& Robinson (2011) 95.0 79.0 98.0
Haq et al. (2009) 95.4 56.3 97.5
CCCNN 93.9 92.0 98.31
Human performance 88.0 66.5 91.8
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movement, column M, happy and sad expressions per-
formed better than the others, showing that for happy
and sad expressions the movements were more reliable
than the face expression itself. When integrated, the
visual representation improved the performance of
most expressions, in particular, surprised, angry and
happy expressions, which indicates that these expres-
sions are better recognized when movement and face
expressions are taken in consideration.

The auditory representation indicates that most of
the expressions are not well recognized with auditory
information only, exceptions are angry and happy emo-
tions. This can be related to the nature of the dataset,
because usually in movies happy and angry are
expressed with similar song tracks or intonations. The
integrated representation for the Auditory stream per-
formed better than the individual ones in all the
expressions.

Finally, the multimodal representation was the one
with the best performance. We see an improvement in
sad and angry expressions, but also in fear and sur-
prised ones. This is due to the fact that the combination
of different soundtracks, facial expressions and move-
ment for these expressions represents them better than
a single modality. In general, it is possible to see that
surprised, disgusted and sad expressions were the ones
with the lowest performance in all modalities.

Table 8 exhibits the results on the EmotiW dataset.
On this dataset, the performance of our model
dropped, but as Table 8 shows, this is also a much
harder task. Due to the variability of the data, neither
of the modalities provides an overall high accuracy.
Our model results are competitive with the state-of-
the-art approaches, and performed better than the
baseline values for the competition. The works of Liu
et al. (2014) and Kahou et al. (2013) extract more than
100 auditory features each, and use several CNNs to
extract facial features. They feed a vector composed of

the output of the CNNs and the auditory features into
several classifiers such as SVM or multilayer percep-
trons to classify them. Our model results show that we
can actually obtain similar generalization capability
using a simple and direct pre-training strategy without
the necessity of relying on several different feature
representations.

5.5 Emotion categorization

For these experiments, we trained our SOM with the
emotion representation obtained by the CCCNN of the
previous experiment. We then cluster the neurons of
the SOM in 7 regions with a K-means algorithm, so
each region represents one class of the EmotiW corpus.
Figure 12 illustrates the clustered regions from 0 to 6,
respectively: anger, disgust, fear, happiness, neutral,
sadness and surprise. It is possible to see that the neu-
tral expressions, represented by class number 5, have as
neighbor almost all the other expressions. Also, angry

Table 7. Reported accuracy, as percentages, for the Auditory
and Visual stream channels trained with the validation set of the
EmotiW corpus. The results are for the Face channel (F),
Movement channel (M), Face and Movement channel together,
representing the Visual stream (V), Speech channel (S), Music
channel (Mu), Speech and Music channel together, representing
the Auditory stream (A) and visual–auditory integration (AV).

Class F M V S Mu A AV

Anger 70.2 50.8 77.8 56.4 50.7 70.1 80.3
Disgust 18.2 9.4 18.7 12.4 2.6 15.2 23.4
Fear 21.4 16.8 20.2 7.8 6.5 7.2 30.8
Happiness 67.2 75.6 77.8 59.1 65.4 72.0 81.2
Neutral 67.2 57.7 70.9 10.8 15.6 25.4 68.7
Sadness 22.4 21.2 23.2 8.3 9.8 16.2 24.5
Surprise 5.4 10.0 12.1 0.0 2.1 4.1 14.0
Mean 38.8 34.5 42.9 22.1 21.8 30.0 46.1

Figure 12. K-Means algorithm applied to the SOM trained
with the EmotiW multimodal representation. Six emotions were
clustered: surprise, sadness, anger, happiness, fear, neutral and
disgust.

Table 8. Performance of state-of-the-art approaches on the
EmotiW dataset. All the results calculate the mean accuracy on
the validation split of the dataset.

Methodology Video Audio Both

Liu et al. (2014) 45.28 30.73 48.53
Kahou et al. (2013) 38.1 29.3 41.1
Dhall et al. (2014) 33.15 26.10 28.19
CCCNN 42.9 30.0 46.1
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expressions, class number 1, are between happy, class
number 4, and sad expressions, class number 6. And
lastly, it is possible to see that fear expressions, class
number 3, are closely related to surprise expressions,
class number 7. In this case, some of the fear expres-
sions are between happy and surprise.

Using the clusters we calculated the accuracy of the
SOM in the validation set of the EmotiW corpus.
Table 9 exhibits the results. It is possible to see that
with the SOM clustering, expressions such as disgust
and sadness show an increase of almost 7% in perfor-
mance. As we see in the cluster, sad and disgusted
expressions are neighboring regions, and the applica-
tion of the SOM created a better separation border,
which would explain the performance increase. In gen-
eral we have an improvement of more than 3% in the
accuracy when using the SOM.

5.6 Learning new emotions

In our next experiment, we trained the SOM with
happy and sad expressions from the FABO corpus. We
then proceed by feeding to the network angry, dis-
gusted and surprised expressions, and generate the

mean of the activation maps for each set of expressions.
Figure 13 illustrates the activations for each new set of
expressions plotted on top of the clustered SOM. In
this experiment, the network never saw angry, dis-
gusted or surprised expressions and we can see how the
neurons activate when these expressions are presented.

Angry expressions activated a mixed region of neu-
rons, between the sad and happy regions. Two neurons
had a higher activation, in both regions. This is congru-
ent with the regions found when analyzing the EmotiW
SOM, where angry expressions were represented
between happy and sad. Disgusted expressions were
mostly activated by neurons on the sad region, which is
also congruent with the cluster of the EmotiW SOM.
And finally, the surprised expressions were mostly acti-
vated in the happy regions, with some activation in the
angry region.

We then proceeded to re-train the network with the
new expression. We used the network trained with sad
and happy expressions, and created four new networks,
three of them trained with the addition of one new
expression, and the fourth one with all five expressions.
Figure 14 illustrates the clusters of each network. We
can see that the disposition of the new clusters is similar
to the activation maps of the network trained with only
two expressions. This demonstrates how each emotion
expression can be related to others, and our network is
able to use this relation to learn new expressions.

5.7 Expression behavior

In the final experiments with the SOM, we trained one
SOM with expressions, represented by Face and Speech
channels, from each one of the four subjects on the
SAVEE corpus, which are identified as DC, JE, JK and
Kl. We trained each SOM using a four-fold cross vali-
dation strategy, only with the data of each individual
subject. We then calculated the accuracy for each sub-
ject, which is exhibited in Table 10.

Table 9. Reported accuracy, as percentages, for the
multimodal representation in the validation set of the EmotiW
corpus. The results are for the CCCNN and the SOM.

Class CCCNN SOM

Anger 80.3 85.3
Disgust 23.4 30.3
Fear 30.8 32.1
Happiness 81.2 82.3
Neutral 68.7 67.3
Sadness 24.5 31.7
Surprise 14.0 17.6
Mean 46.1 49.5

Figure 13. Activations plotted on top of a clustered SOM. The SOM was trained with sad and angry expressions and each
activation shows the mean activation map when feeding the network with angry, disgusted and surprised expressions.
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We separated the regions of each SOM into seven
classes, and produced cluster images for each subject,
which are illustrated in Figure 15. Analyzing each clus-
ter, we can see that the same expressions have different
regions for each subject. Analyzing these images, it is
possible to obtain some information about how each
subject expresses itself. For each subject, the same

number of samples is recorded for each emotion cate-
gory, so there is no bias to one expression in each
subject.

Except for the network of subject JE, all others clus-
tered surprised expressions in a neighbor region to
happy expressions. On other hand, all of them clustered
surprise in a neighbor region to fear expressions. That
indicates that JE surprised expressions are less happy
than the others. Also, the disgust expression is different
for each subject. Although all of them have disgusted
expressions as a neighbor of sad expressions, the other
neighbors change. It is possible to see that for DC, dis-
gusted expressions are closely related to angry ones, for
JE with fear, JK with happy and KL with surprised
expressions. Looking for the region that each expres-
sion takes part in, it is possible to see that JK’s network
clustered happy expressions with a larger region than
the others, which could be an indication that the happy
expressions in JK are more different within each other
than the others. The same happens with JK’s disgusted
expressions. On the other hand, his neutral expressions
have a smaller region than the others, indicating that

Figure 14. We train a network with two kinds of expressions: happy and sad. Systematically we add one different expression and
re-train the network. At the end, we train a network with the five expressions together.

Figure 15. Trained networks with expressions of each subject of the SAVEE corpus. It is possible to visualize how differently each
subject expresses by analyzing the network clusters.

Table 10. Reported accuracy, as percentages, for the Auditory
and Visual stream channels trained with a SOM and the SAVEE
corpus per subject.

Class DC JE JK KL

Anger 100.0 94.3 100.0 92.0
Disgust 100.0 100.0 100.0 90.9
Fear 100.0 100.0 96.7 100.
Happiness 99.4 99.1 100. 97.7
Neutral 98.3 100.0 100.0 96.7
Sadness 96.7 97.8 100.0 97.8
Surprise 100.0 100.0 97.9 98.2
Mean 99.1 98.7 99.2 98.3
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most of his neutral expressions are very similar to one
another.

6 Discussion

In this section we discuss three concepts. First we ana-
lyze the CCCNN architecture, and how the introduc-
tion of inhibitory fields and the crosschannel contribute
to the expression representation. Second, we discuss
how the model represents multimodal stimuli, how the
expression is decomposed inside the model, and what
each layer represents. Lastly, we discuss the role of the
SOM in learning similar expressions, and we associate
this mechanism to a concept of emotional neurons.

6.1 Inhibitory fields and crosschannels

The application of inhibitory fields has been shown to
increase the performance of the network only when
they were implemented in the last layer of the face
channel. That was caused by the overfitting that the
inhibitory fields produced in the layer’s filters. When
the inhibitory fields were applied to the first layer, the
filters learned more complex patterns, which did not
help in the feature generalization. That phenomenon is
easily visible when we visualize the features that the
network learned using the deconvolution process illu-
strated in Figure 16, which shows the visualizations of
the internal knowledge of one filter in different layers
of the network.

When no inhibitory filter was implemented, it is pos-
sible to see that in the first layer the network learned
some edge detectors, which could filter mostly the
background and hair of the person. In the second layer,
the network constructed a higher level of abstraction,
mostly the shape of the face, and some regions such as

eyes, mouth and nose are roughly highlighted. When
we implemented the inhibitory fields in the first layer
only, we found that more information was filtered. The
filters detected more precise regions, filtering much
more information that is relevant to represent the facial
expression. This caused a problem in the second layer,
which then tried to learn very specified concepts, and
constructed a very limited representation. When the
inhibitory fields were applied in the last layer, we found
a very clear distinction in the representation. The shape
of the face is very clear, but regions such as eyes,
nose and mouth are better represented when no inhibi-
tory fields are applied. Finally, when we applied the
inhibitory fields in both layers, the final representation
does not contain any reliable information with some
very rough representation of the eyes and nose.

The crosschannels also have an impact on the qual-
ity of the extracted filters. Our crosschannels integrate
two channels into one representation, which was shown
to be more efficient and robust, but also reduced the
dimensionality of the data. The application of the
crosschannels created a new representation of the input
stimulus, which is different from the individual repre-
sentation. Figure 17 illustrates the visualizations of the
last layer of the individual channels and the crosschan-
nel. We can see that the crosschannel features are dif-
ferent from the individual representation, and they
changed to capture an important feature: hands over
the face. Furthermore, we see that the facial features
changed drastically to incorporate the movement of the
hands, which are now also highlighted in the movement
channel.

6.2 Expression representation

The application of the visualizations also helps us to
understand how the network represents an expression.

Figure 16. Implementing inhibitory fields in different layers of the network produces different features. Each visualization
corresponds to one filter on a determined layer. It is possible to see how the inhibitory fields affect the feature extraction
capabilities of each layer.
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It is possible to see how the expressions are decomposed
inside the network, and gain an insight into the role of
each layer of the network in building the expression
representation. By visualizing the same region of neu-
rons for several images, it is possible to identify for
which regions those neurons activate most. This way,
we can analyze which parts of the input stimulus acti-
vate each filter of the network. Figure 18 illustrates this
concept, where it is possible to see what each filter codes
for in each layer. To generate these visualizations, we
created an average per filter in the Face channel for all
the images in the FABO corpus.

The filters learn to represent different things, which
are complementary for the emotion expression. In the
first layer, mostly background and hair information are
filtered. Filter 5 highlights the region of the mouth out
of the image, while filter 2 keeps the eye information.
The most interesting representations occur in the sec-
ond layer, where filters 1 and 2 represent mostly the
face shape and positions of eyes, nose and mouth.
Filters 3 and 4 represent the eyes, nose and mouth

shapes, where filter 3 activates mostly for the cheeks
and closed mouths and filter 4 for opened mouths.
Different from the others, filter 5 specialized mostly in
eyebrows.

Our network filters react to very specific patterns on
the input images, which are related to human facial
expressions. We can see how these patterns are strong
when we send to the network, images that resemble
human expressions, illustrated in Figure 19. The network
highlighted regions that were closely related to human
features. In the image with the dog, the position of the
eyes and mouth were detected, and in the Don Quixote
painting, the shape of the face was highlighted. In all
images, it is possible to see that the filters of the network
highlighted regions of interest that have a similar contrast
to some facial features, such as face, eyes, and mouth
shapes. On the other hand, the network is strongly
domain-restricted. It will always try to find human facial
features in the images, even when they are not present.
This can cause problems, especially in the EmotiW cor-
pus, illustrated in the last column of Figure 19.

Figure 17. Applying the crosschannel on the individual representations brings results on different features. Note that the face
representation after the application of the crosschannel changed to include the hand movement.

Figure 18. Mean visualization from all images in the FABO corpus per filter in all the layers of the Face channel. It is possible to use
specialized filters, which help us to understand how the expression representation is created.
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6.3 Affective neural networks

Some regions of the CCCNN code for specific features,
such as face shape, eyes, mouth among others.
However, once these features are related to an emotion
expression, it is the responsibility of the fully connected
hidden, and softmax layers to classify these features
into emotions. These layers do not store any informa-
tion about the expressions themselves, only about the
separation space. Replacing these neurons by a SOM
gives the model a powerful tool to represent emotion
expressions. Besides creating a more flexible separation
region, the SOM allows the model itself to store infor-
mation about the expressions.

Each neuron in the SOM represents a prototype of
an expression, which is tuned to be similar to the data
used to train the model. This means that each neuron
alone codes for an expression, and neighbor neurons
code similar expressions. In this way, we can simulate
the spatial separation that the hidden and the softmax
layers produce by clustering the neurons in different
regions, giving the SOM the capability to classify
expressions. This means that a real expression has to be
represented by one prototype expression in order to be
classified, which improved the performance of classifi-
cation tasks.

The prototype expressions also help our model to
code the concept of the expression itself. While the fil-
ters on the CCCNN code for specific features from the
input stimulus, each group of neurons in the SOM code
for similar expressions, giving our model a complete
representation of the emotional expression, from the
input stimulus to the expression representation itself.
This idea differs from most of the work in the area,
which learns how to represent features or how to create
a separation space to classify these features into known
expressions.

We can actually use the visualizations to gain an
insight into what expressions the model learns. When
visualizing an input, we backpropagate the responses
that the input produced in our filters, however, by using
the prototype neuron representation instead of the
image representation, we can visualize which expression
this neuron learned. By doing that for several images
and several neurons, we can actually identify how these
expressions change through the network, which helps
us to understand the clusters of the SOM and the net-
work representation itself.

Taking as an example the network trained for each
subject of the SAVEE corpus, we can visualize the
expressions learned by each neuron. Figure 20 illus-
trates some neurons of two subjects that are in the
same region and correspond to angry expressions. It is
possible to see that both networks have different repre-
sentations for angry expressions, depending where the
neurons are. In DC, it is possible to see that an expres-
sion closer to the fear region, produces a different
mouth shape to the one closer to the surprise region.
And for JE it is possible to see that all three representa-
tions have different eye and mouth shapes.

7 Conclusion and future work

We propose a novel architecture for emotion expres-
sion representation and learning. Our model imple-
ments CCCNNs to learn specific features of audio–
visual stimuli. The network implements several chan-
nels, each one learns different features from each mod-
ality and applies a crossconvolution learning scheme to
generate auditory and visual representations of emo-
tion expressions.

On top of the CCCNN filters, we implement a SOM
layer, which is responsible for learning how to separate

Figure 19. Visualization of the facial representation for different images. We see that the network tries to find human facial
features, such as mouths, eyes and face shapes in the images.
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the representations into expressions. The SOM creates
a series of prototype neurons, each one of them coding
an expression representation. This means that neigh-
boring neurons have a similar expression representa-
tion, and when we cluster these neurons in regions, we
can obtain emotion expression categories.

To evaluate our model, we use three different cor-
pora: the FABO database with visual expressions, the
SAVEE database with audio–visual expressions, and
the EmotiW database, which contains audio–visual
clips extracted from different movies. Each corpus con-
tains different expression information, and we use them
to fine-tune the training of our CCCNN and to evalu-
ate each individual modality. Our network was shown
to be competitive, and in the case of the FABO corpus,
better when compared to state-of-the-art approaches.

We also introduce mechanisms that allow us to
understand and identify the knowledge of the network.
By using the deconvolution process to visualize the
internal representation of the CCCNN filters and the
K-mean cluster algorithm to identify regions in the
SOM, we showed that our model has a very wide emo-
tion expression representation. We can use our model
to classify emotions in categories, or in a dimensional
space. Also, our model is suited for learning new
expressions and we demonstrate its capability to help
to understand emotion behaviors.

One of the limitations of our model is the SOM
itself, which is limited by the number of neurons in its
grid, which means that at some point the number of
neurons will not be enough to represent new expres-
sions and some of the old expressions will be forgotten.
To overcome this limitation we will introduce the use
of Growing-When-Required networks in our SOM
layer, which will make our network able to expand and
contract if necessary. Also, we will extend the visualiza-
tion mechanisms to the sound channels in a way that

we can create a mechanism to hear what the network
learned. Finally, we intend to further develop the net-
work in HRI scenarios, where it will be used for giving
the robot a deeper understanding of the emotional
behavior of humans.

Acknowledgements

The authors would like to thank Katja Koesters for her con-
structive comments and insightful suggestions that improved
the quality of this manuscript.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this

article: This work was partially supported by CAPES
Brazilian Federal Agency for the Support and Evaluation of
Graduate Education (p.n.5951–13–5), the German Research
Foundation DFG under project CML (TRR 169), and the
Hamburg Landesforschungsförderungsprojekt CROSS.

References

Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L.,

Penn, G., & Yu, D. (2014). Convolutional neural networks

for speech recognition. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 22, 1533–1545.
Adolphs, R. (2002). Neural systems for recognizing emotion.

Current Opinion in Neurobiology, 12, 169–177.
Afzal, S., & Robinson, P. (2009). Natural affect data—Col-

lection & annotation in a learning context. In 3rd interna-

tional conference on affective computing and intelligent

interaction (pp. 1–7). Piscataway, NJ: IEEE Press. Available

at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=

5349537 (accessed 19 August 2016).
Banda, N., & Robinson, P. (2011). Noise analysis in audio-

visual emotion recognition. In 13th international conference

on multimodal interaction (ICMI ‘11) (pp. 1–4). New York:

ACM Press. Available at: http://citeseerx.ist.psu.edu/

Figure 20. Visualization of the neural emotional representation for two subjects of the SAVEE corpus. It is possible to see how
neurons that are closer to different regions of the network, store different expressions.

Barros and Wermter 393

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5349537
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5349537
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.228.6522


viewdoc/summary?doi=10.1.1.228.6522 (accessed 19

August 2016).
Barros, P., Jirak, D., Weber, C., & Wermter, S. (2015a). Mul-

timodal emotional state recognition using sequence-

dependent deep hierarchical features. Neural Networks, 72,

140–151.
Barros, P., Weber, C., & Wermter, S. (2015b). Emotional

expression recognition with a cross-channel convolutional

neural network for human-robot interaction. In 15th

IEEE-RAS international conference on humanoid robots

(pp. 646–651). Piscataway, NJ: IEEE Press. Available at:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7363

421 (accessed 19 August 2016).
Cabanac, M. (2002). What is emotion? Behavioural Processes,

60, 69–83.
Castellano, G., Kessous, L., & Caridakis, G. (2008). Emotion

recognition through multiple modalities: Face, body ges-

ture, speech. In C. Peter & R. Beale (Eds.), Affect and emo-

tion in human-computer interaction (pp. 92–103). Berlin,

Germany: Springer.
Chen, S., Tian, Y., Liu, Q., & Metaxas, D. N. (2013). Recog-

nizing expressions from face and body gesture by temporal

normalized motion and appearance features. Image and

Vision Computing, 31, 175–185.
Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G.,

Kollias, S., Fellenz, W., & Taylor, J. G. (2001). Emotion

recognition in human-computer interaction. IEEE Signal

Processing Magazine, 18, 32–80.
Dhall, A., Goecke, R., Joshi, J., Sikka, K., & Gedeon, T.

(2014). Emotion recognition in the wild challenge 2014:

Baseline, data and protocol. 16th international conference

on multimodal interaction (ICMI ‘14) (pp. 461–466). New

York: ACM Press. Available at: http://dl.acm.org/cita

tion.cfm?id=2666275 (accessed 19 August 2016).

Dhall, A., Goecke, R., Lucey, S., & Gedeon, T. (2012). Col-

lecting large, richly annotated facial-expression databases

from movies. IEEE MultiMedia, 19, 34–41.
Ekman, P. (2007). Emotions revealed: Recognizing faces and

feelings to improve communication and emotional life.

Macmillan. Available at: http://psycnet.apa.org/psycinfo/

2003-88051-000 (accessed 19 August 2016).
Ekman, P., & Friesen, W. V. (1971). Constants across cultures

in the face and emotion. Journal of Personality and Social

Psychology, 17, 124–129.
Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vin-

cent, P., & Bengio, S. (2010). Why does unsupervised pre-

training help deep learning? Journal of Machine Learning

Research, 11, 625–660.
Essen, D. C. V., & Gallant, J. L. (1994). Neural mechanisms

of form and motion processing in the primate visual sys-

tem. Neuron, 13, 1–10.
Foroni, F., & Semin, G. R. (2009). Language that puts you in

touch with your bodily feelings: The multimodal respon-

siveness of affective expressions. Psychological Science, 20,

974–980.
Fregnac, Y., Monier, C., Chavane, F., Baudot, P., & Graham,

L. (2003). Shunting inhibition, a silent step in visual corti-

cal computation. Journal of Physiology, 97(4), 441–451.
Friesen, E., & Ekman, P. (1978). Facial action coding system:

A technique for the measurement of facial movement. Palo

Alto, CA: Consulting Psychologists Press.

George, J., & Shamir, L. (2015). Unsupervised analysis of
similarities between musicians and musical genres

using spectrograms. Artificial Intelligence Research, 4,
61–71.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rec-

tifier neural networks. In 14th international conference on

artificial intelligence and statistics (AISTATS-11) (Vol. 15,
pp. 315–323). Available at: http://www.jmlr.org/proceed-

ings/papers/v15/glorot11a.html (accessed 19 August 2016).
Goodale, M. A., &Milner, A. D. (1992). Separate visual path-

ways for perception and action. Trends in Neurosciences,

15, 20–25.
Grossberg, S. (1992). Neural networks and natural intelligence.

Cambridge, MA: MIT Press.
Gunes, H., & Piccardi, M. (2006). A bimodal face and body

gesture database for automatic analysis of human nonver-
bal affective behavior. In 18th international conference on

pattern recognition (ICPR) (Vol. 1, pp. 1148–1153). Avail-

able at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnum
ber=1699093 (accessed 19 August 2016).

Gunes, H., & Piccardi, M. (2009). Automatic temporal seg-

ment detection and affect recognition from face and body
display. IEEE Transactions on Systems, Man, and Cyber-

netics, Part B: Cybernetics, 39, 64–84.
Hamlin, J. K. (2013). Moral judgment and action in preverbal

infants and toddlers evidence for an innate moral core.
Current Directions in Psychological Science, 22, 186–193.

Haq, S., & Jackson, P. (2010). Multimodal emotion recogni-

tion. In W. Wang (Ed.),Machine audition: Principles, algo-

rithms and systems (pp. 398–423). Hershey, PA: IGI
Global.

Haq, S., Jackson, P. J., & Edge, J. (2009). Speaker-dependent

audio-visual emotion recognition. In 2009 international

conference on audio-visual speech processing (AVSP) (pp.

53–58). Available at: https://scholar.google.de/scholar?
cluster=5579645476741846741&hl=de&as_sdt=0,5 (acc-
essed 19 August 2016).

Harter, S., & Buddin, B. J. (1987). Children’s understanding

of the simultaneity of two emotions: A five-stage develop-
mental acquisition sequence. Developmental Psychology,

23, 388–399.
Hau, D., & Chen, K. (2011). Exploring hierarchical speech

representations with a deep convolutional neural network.
In 11th UK workshop on computational intelligence

(UKCI‘11) (p. 37). Available at: https://scholar.google.de/
scholar?cluster=18130383993448916657&hl=de&as_sdt

=0,5 (accessed 19 August 2016).
Hickok, G. (2012). The cortical organization of speech pro-

cessing: Feedback control and predictive coding the con-

text of a dual-stream model. Journal of Communication

Disorders, 45, 393–402.
Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of sin-

gle neurons in the cat’s striate cortex. Journal of Physiol-

ogy, 148, 574–591.
Ji, S., Xu, W., Yang, M., & Yu, K. (2013). 3D Convolutional

neural networks for human action recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence,
35, 221–231.

Jin, Q., Li, C., Chen, S., & Wu, H. (2015). Speech emotion
recognition with acoustic and lexical features. In 2015

IEEE international conference on acoustics, speech and sig-

nal processing (ICASSP) (pp. 4749–4753). Piscataway,

394 Adaptive Behavior 24(5)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.228.6522
http://dl.acm.org/citation.cfm?id=2666275
http://dl.acm.org/citation.cfm?id=2666275
http://psycnet.apa.org/psycinfo/2003-88051-000
http://psycnet.apa.org/psycinfo/2003-88051-000
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1699093
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1699093
https://scholar.google.de/scholar?cluster=5579645476741846741&hl=de&as_sdt=0,5
https://scholar.google.de/scholar?cluster=5579645476741846741&hl=de&as_sdt=0,5
https://scholar.google.de/scholar?cluster=18130383993448916657&hl=de&as_sdt=0,5
https://scholar.google.de/scholar?cluster=18130383993448916657&hl=de&as_sdt=0,5
https://scholar.google.de/scholar?cluster=18130383993448916657&hl=de&as_sdt=0,5
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7363421
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7363421


NJ: IEEE Press. Available at: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=7178872 (accessed 19 August
2016).

Kahou, S. E., Pal, C., Bouthillier, X., Froumenty, P.,
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