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Real-time Gesture Recognition Using a Humanoid Robot with a Deep
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Pablo Barros, German I. Parisi, Doreen Jirak and Stefan Wermter

Abstract— Dynamic gesture recognition is one of the most
interesting and challenging areas of Human-Robot-Interaction
(HRI). Problems like image segmentation, temporal and spatial
feature extraction and real-time recognition are the most promi-
nent issues to name in this context. This work proposes a deep
neural model to recognize dynamic gestures with minimal image
preprocessing and real-time recognition in an experimental set
up using a humanoid robot. We conduct two experiments with
command gestures in an offline fashion and for demonstration
in a Human-Robot-Interaction (HRI) scenario with the robot
giving audio feedback for the user. Our results show that the
proposed model achieves high classification rates of the gestures
executed by different subjects, who perform them with varying
speed. We demonstrate that our system performs in real-time.

I. INTRODUCTION

There is a trend in the robotic community towards in-
tegration of robots into assistive systems in everyday life
situations and different areas, e.g. in medical surgery or
helping systems for elderly people [1].

In the context of humanoid robots, the demand for in-
tuitive communication interfaces for natural Human-Robot-
Interaction (HRI) is increasing. The most significant aspects
for HRI comprise the correct understanding and processing
of the user input, robustness concerning varying environmen-
tal situations and realtime recognition performance.

In the area of gesture recognition several different ap-
proaches have been established using different input de-
vices and learning algorithms. Among them, development
of neurally inspired algorithms is of special interest as they
offer a model for brain-like stimuli processing, which allows
adaption to a changing environment, is robust against noise
and provides instantaneous reactions. Before performing ges-
tures ourselves, we first perceive them as visual stimuli over
time,which motivates us using neural computational models,
in particular Convolutional Neural Networks (CNN).

CNN has been introduced as a computational approach
which mirrors the hierarchical stages for visual processing
in the visual cortex. An incoming visual percept is pro-
cessed in a simple cell layer extracting edge features. The
outcome of this extraction is then passed to complex cells
in the next layer, where these features are pooled together.
These computations alternate between the cell types until
the neurons show high coding specificity and are invariant to
scale, rotation and noise. This approach has been successfully
applied to object recognition where only single images
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were used for classification. A prominent example is the
cipher classification introduced in [2]. A similar approach
called HMAX [3] performs template matching and pooling
operations from Gabor filtering at different scales and with
different orientations. It showed very good recognition rates
on benchmark object databases, which underlines the crucial
impact of implementing a cascading visual system to obtain
invariant and insensitive features.

Deep learning architectures are also prominently applied
in different areas of HRI. For autonomous robotic behaviour
the work presented in [4] demonstrated higher recognition
rates using a max-pooling CNN (MPCNN) compared to
other learning methods like SVM. The idea was to provide
a swarm of mobile robots with reliable vision information
derived from counting gestures which are performed using
a coloured glove. Although the authors could show superior
performance of their architecture in terms of 96% recognition
rate and real-time processing they did not model the temporal
dimension.

To bridge the gap, a more recent approach for action
recognition [5] extends CNN with 3D kernels capturing mo-
tion information along the frames of an action performance
stream. Instead of using single images for convolution,
the whole computation is performed on a frame cube of
predefined size, i.e. frames to consider in the video. The
feature maps are created using different kernels to increase
the diversity of features. Moreover, the author described
extraction of high-level motion information by defining aux-
iliary features presented to the architecture as bag-of-words
and added to the output layer. The system was evaluated with
an airport surveillance database that contains three action
types and showed superior results compared to other models
like spatial pyramidal matching features. Also for the KTH
benchmark DB for action recognition, e.g. boxing and hand
clapping, the results were competitive to [6] and superior to
an unsupervised probabilistic learning approach on extracted
time-space points of interest [7].

As our work focuses on dynamic gestures, we also have to
deal with different timescales and long-range dependencies
to capture the gestures’ semantics. The different demands
on a gesture recognition system combined in a model are
described in [8], based on data captured with a Kinect
depth sensor. The stream is separated into depth information
employed as input to a four-layer CNN for each hand and
into a skeleton part for the whole body motion. The first
stage is referred to as dynamic pose and catches only local
information. The output of the different computational steps
is then aggregated and serves as input to a Recurrent Neural



Network. They evaluated their system on the ChaLearn 2013
data set for fused audio and vision recognition and could
compete well with other methods, resulting in rank 6 of 20
final presentations.

Although the presented work showed promising results,
we point out some critical issues: standard methods for
gesture recognition is to use specifically coloured objects
like a red ball to be tracked or as in [4] to use gloves.
This, however, introduces an additional preprocessing step of
reduce the input to a particular colour or learning a specific
colour distribution. We also recognized that in literature only
a few papers deal with CNN in the domain of dynamic
gestures. As mentioned above, this is due to the fact that
CNN were introduced rather for single image processing and
classification. The extension of this approach as in [5] for
action recognition motivates us to this more neurobiological
approach for commanding gestures comprising motions.

Therefore, we extend the idea of CNNs in two ways:
first, we enhance the computational capacity of the model
by introducing 3D kernels suitable for noise-affected images
as is the case when captured in a stream in ambient living
situations and sensor limitations. Second, we extend CNN
to the temporal domain by adding the capability to generate
and learn motion representations. In our paper, we focus on
gestural communication with the Nimbro robot platform.

Therefore, we defined 5 command gestures: ’Circle’,
’Point Left’, ’Point Right’, ’Stop’ and ’Turn Around’, and
’Stand Still’ as our reference standing position. In our
scenario, we also embed a simple speech response toprovide
user feedback.

The paper structure is as follows: In the first section,
we introduce our deep neural architecture and processing
stages in the network. We then explain our experimental
methodology in section 2 and present our results derived
from the experiments in the following section. Finally, we
provide the reader with a discussion part and some future
work suggestions.

II. DEEP TEMPORAL AND SPATIAL FEATURE
EXTRACTION LEARNING FRAMEWORK

In order to extract the temporal and spatial features of a
gesture sequence, we use a deep neural network architecture.
This architecture is able to create a representation of motion
and uses a series of deep layers to identify and extract the
features that represent the changes during the gesture exe-
cution as this underlies subject variability. The architecture
is divided into two steps: Motion representation and motion
feature extraction. Both steps work together and are part of
the proposed architecture, illustrated in Figure 1.

A. Motion representation

The first layer of the architecture is responsible to create
the motion representation. This layer receives N gray scale
frames, without the application of any preprocessing step,
and creates a representation based on the difference of each
pair of frames. The layer works in a sequential way, receiving
the frames one after the other. After receiving a pair of

Fig. 1: Proposed deep neural architecture used to recognize
dynamic gestures. The first layer receives a number of
frames and generates a motion representation. An MCCNN
implementation is used to learn and extract the features
from the motion representation and use them to classify the
gesture.

frames, this layer computes an absolute difference and sums
up the resulting frame to a stack of frames. This operation
is represented by M :

M =

N∑
i=1

|(Fi−1 − Fi)|Ws, (1)

where N is the number of frames, Fi represents the
current frame and Ws is the weighted shadow. The absolute
difference of each pair of frames removes irrelevant parts of
the gesture execution, being able to extract the background
or any other detail in the image that is not part of the
gesture motion. By summing up the results it is possible to
create a shape representation of the motion, imprinting it in a
motion representation image. The weighted shadow is used to
create different gray scale shadows in the final representation
according to the time that each frame is presented. The
weighted shadow is defined as Ws = i/t, where t is the
memory size. The memory size defines how many frames
will be important in the gesture execution. For example,
a ”Stop” gesture will be faster than a ”Turn Around”
gesture, meaning that it will have a smaller memory size.
An adjustment of the memory size based on each gesture
execution makes the motion representation robust against
gestures with varying amounts of frames. The utilization
of weighted shadows to create the motion representation



Fig. 2: Illustration of the output of each pair of convolution
and max-pooling operations. This example uses a two layers
MCCNN. Using a motion representation as input, the MC-
CNN applies a Sobel operator in both directions, horizontal
(X) and vertical (Y). At the end a representation containing
3 feature sets, each one with 3x3 pixels is generated.

is responsible for creating a time feature imprinted in the
final motion image. This representation contains the shape
of the motion and, with the help of the weighted shadows,
the information of when each single posture happened.

B. Spatial and time features fusion

The second step is responsible for identifying and ex-
tracting relevant features in the motion representation. To
achieve this, the previous layer is attached to a Multi Channel
Convolutional Neural Network (MCCNN) [9]. The MCCNN
receives an image containing the motion representation and
applies a series of convolutional and max-pooling operations
that, at the end, will generate a feature vector. In the proposed
model an MCCNN with three channels is implemented.
Each channel receives a different version of the motion
image. The first one receives the original motion image. The
second and third receive the resulting image after applying
a Sobel operator in both directions, horizontal(Sx) and
vertical(Sy).The Sobel operators encode our prior knowledge
on features, and our experiments showed a improve in
the model performance. The idea behind the multichannel
implementation is to use the different information provided
by each channel input in different ways. As each channel
has its own filter maps and weights, it is possible to learn
which features are more important for the final feature set
in each channel. The Sobel operator uses two different 3x3
kernel filters, defined as:

Sx =

−1 0 +1
−2 0 +2
−1 0 +1

 , Sy =

+1 +2 +1
0 0 0
−1 −2 −1

 . (2)

The utilization of the Sobel filters helps in the discrimi-
nation of the motion shape in the image. When applied in
both directions these filters can detail the shape aspects of
the motion. The channel that receives the original image
is responsible to extract the time structure created by the
weighted shadows.

To create a feature set invariant to position and scale, a
cubic kernel implementation is used. In the CNN imple-
mentation the convolution layers are applied as 2D filter
maps, each one with independent weights, to be robust
against noise and small changes in the pixels intensities
[2]. The cubic kernel allows the application of a 3D filter
in a stack of images. Each filter map has 3D kernels, still
with independent weights, that are applied to a sequence
of images of the same motion representation. In the cubic
implementation, the value of each unit(x,y,z) at the nth filter
map in the cth layer is defined as:

vxyznc = tanh(bcn+∑
m

Hi−1∑
h=0

Wi−1∑
w=0

Ri−1∑
r=0

whwr
i(c−1)mv

(x+h)(y+w)(z+r)
(m−1) )

(3)

where tanh is the hyperbolic tangent function, bcn is the
bias for the nth filter map of the cth layer, m indexes over the
set of feature maps in the (c-1) layer connected to the current
layer c. In the equation, whwr

ijm is the weight of the connection
between the unit (h,w,r) within a region, or kernel, connected
to the previous layer (c − 1). Hi and Wi are the height
and width of the kernel and z indexes the image in the
image stack, Ri is the amount of pictures stacked together
representing the new dimension of the kernel.

To produce invariant features using the cubic kernel, the
image stack is created with different examples of the same
class. This way, the cubic kernel receives a stack of different
motion images, performed with the user in different positions
and distance to the camera.

In the MCCNN implementation each convolutional layer is
followed directly by a max-pooling layer. Each max-pooling
layer compresses the data from the convolutional layer in
smaller images. Each filter map is divided into regions,
and each region is used as input for a unit in the max-
pooling layer. This operation enhances invariance to scale
and distortion of the input [10].

To train the model, the MCCNN is attached to a hidden
layer and then connected to a logistic regression classifier.
The result of the classifier is used to calculate the error
for the weights update using the backpropagation algorithm.
This means that all the filters in the channels are updated
individually, but the final error is calculated as a whole.
Using this strategy, the filters in each channel can be trained
to have different roles in the feature extraction but must be
synchronized with the final feature representation.

After the training, the channel receiving the original image
will be mostly responsible for identifying the different pixel
intensities in the image, being able to differentiate between
the weighted shadows imprinted in the motion representation



Fig. 3: Illustration of the five commands and standing position in the recorded dataset. Following each sequence it is an
example of the motion image generated by the proposed model.

image. The two channels with the Sobel filters will be
strongly trained to extract the motion shape patterns, with
highlighted edges in both directions, horizontal and vertical.
After the filters are trained, the hidden layer and logistic
regression can be detached of the model and the filters can
be used to extract features for other classifiers. Figure 2
illustrates the whole process of feature extraction after the
model is trained. In the example, the model has 2 layers,
each one composed of a pair of a convolutional and a max-
pooling layer. At the end, three feature sets, each one with
3x3 pixels, are used to represent the full gesture.

III. EXPERIMENTS

We set up two experiments to evaluate our model. One,
aimed to evaluate the recognition rate, training time and
recognition time for the proposed model, was called the
offline experiment. The other one applied the trained filters
in a real-time recognition scenario with a humanoid robot
called the Nimbro experiment.

For the offline experiment, a data set containing six
classes was recorded. The classes represent five gesture
commands and a standing position with no gesture execution.
The commands are as follows: ’Circle’, ’Point Left’, ’Point
Right’, ’Stop’, and ’Turn’. The data set contains 60 examples
for each gesture, executed by one subject. Each frame has
a resolution of 640x480 pixels and each gesture sequence
has varying amounts of frames. In sum, 360 videos were
recorded, and illustrations of the gestures are shown in Figure
3.

The learning was executed with the dataset separated
into 60% of the gestures for training and 40% for testing.
The frames were resized to 100x100 pixels and all the
frames were used to compose the motion representation.
The MCCNN was implemented with a depth of two layers
and connected to the hidden layer and logistic regression
classifier for training the filters. We performed experiments
with different parameter values, following the indications of
[11], and the best performing parameters are shown in Table
I.

The experiment was performed 30 times and the mean and
standard deviation of the F-Score, recognition and training

TABLE I: Parameters of the MCCNN for training session.

Parameters Layer 1 Layer 2
Filters 20 50
Kernel size 5x5x5 4x4
Sub sampling size 5x5 5x5
Neurons hidden layer 500
Learning rate 0.01

times were collected and are shown in the next section.
In each execution, the data for either training or testing is
randomly chosen. We implemented the system using Python
and Theano1, running on a machine with an Intel Core I5
processor and 8GB of RAM memory.

For the second experiment we applied our framework to
an HRI scenario with the Nimbro humanoid robot. In this
scenario, the robot is positioned in a room so that it captures
the performing subject frontal to the RGB camera. The robot
gives voice feedback for each recognized gesture in real-
time. The Nimbro is 95cm tall and has a weight of 6.6kg
including the battery [12]. It uses a Zotac Zbox Nano XS
PC, running a Linux Ubuntu distribution. This PC has a 1.65
GHz Dual-Core AMD E-50 processor and has 2GB of RAM.
It contains a Logitech C905 USB camera with customized
wide-angle lens, that produces images with a resolution of
640x480 pixels.

The model was deployed in the robot, after training the fil-
ters using the recorded dataset, and used for real-time recog-
nition. To provide continuous classification, every frame was
collected and sent to the MCCNN. The experiments with
the robot were conducted with 3 different subjects, each one
executing 10 times each gesture in a random order. None
of the subjects executed the gestures in the recorded dataset.
The mean of the F-Score is shown in the next session. Figure
4 illustrates the scenario for this experiment.

IV. GESTURE RECOGNITION SYSTEM INTERFACE

To be able to give spoken feedback, a communication
system was developed and deployed in the robot. The system

1http://deeplearning.net/software/theano/



Fig. 4: Scenario for the second experiment, using the Nimbro
robot. The Robot is positioned in front of the human and
recognizes the gestures continuously. After each recognition,
the Nimbro gives a spoken feedback with the recognized
gesture.
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Fig. 5: Diagram of system interface over ROS network with
Publisher-Subscriber nodes.

is composed of two main modules: one module for recogniz-
ing the learned gestures from visual input and the other for
speaking the recognized gestures with Nimbro. To interface
the different modules and devices of our architecture we use
the Robot Operating System (ROS).

For our interface implementation, we rely on a syn-
chronous RPC-style communication over a ROS network
implemented with publisher-subscriber nodes. The publisher
node will continually broadcast a message. We broadcast a
message over the network using a message-adapted class.
The subscriber node receives the messages on a given topic
via a master node, which keeps a registry of who is pub-
lishing and who subscribing. This architecture represents a
robust interface to connect different applications, e.g. written
in different programming languages, over a common network
of communication.

A diagram of our system interface over the ROS network
is illustrated in Figure 5. The gesture recognition module
receives input, i.e. raw RGB images, from the Nimbro
camera over the ROS network. Results of the recognition,
i.e. gesture labels, are published for the speech module.

V. RESULTS

The offline experiment used the recorded dataset to train
the model and to perform a classification of the gestures. The
results showed that the mean F-Score for all the gestures was

Fig. 6: F-Score obtained in both experiments. Nimbro ex-
periment presented lower results, but still demonstrate the
capability of the model in recognizing dynamic gestures in
real-time using the humanoid robot.

96.85%. In Figure 6 we show that Point Left and Standing
produced a lower F-Score compared to the others, due to the
fact that the motion images generated from both are very
similar. Even with the visual similarity, the model was still
able to identify and classify them with an elevated F-Score.

One of the problems of a deep neural architecture is the
necessary time to train the model. One of the advantages of
the MCCNN is to be able to use smaller images and still be
able to classify the presented patterns. In our experiments,
each training routine, with 100 epochs, took 165.60 minutes
to complete, with a standard deviation of 0.027 after 30
executions. The recognition time was 0.039 seconds, with a
standard deviation of 0.0022. With such a smaller recognition
time, it is possible to use the proposed model in a real-time
classification scenario.

In the Nimbro experiment, the model was trained using the
recorded dataset, in the same way as for the first experiment.
After the training, it was deployed in the Nimbro and used
to classify the input obtained by its camera. Three different
persons executed the gestures, none of them present in the
previously recorded dataset. The F-Scores for this experiment
are also shown in Figure 6.

Figure 7 shows the confusion matrix obtained for the
Nimbro experiment. In the confusion matrix we see that
most of the misclassification are related to the ”Stand”
position. This happens because most of the gestures contain
the ”Stand” position in the beginning and ending of their
execution. If the gesture is executed too fast or too slow, the
”Stand” position will still be captured and will be highlighted
by the motion representation layer.

When using the live classification with Nimbro the results
are lower compared to the offline experiment, but still have
a significant F-score value when applied to a real-world
scenario. The experiment shows that the model was able
to recognize gestures with different persons, that were not
present in the training set, and in real-time.



Fig. 7: Confusion matrix obtained by Nimbro experiment,
using the Nimbro‘s camera to recognize the gestures in a
real-time recognition scenario.

VI. CONCLUSION AND FUTURE WORK

We presented a neural framework extended from CNNs for
the recognition of commanding gestures in a HRI-scenario.
To test our approach we set up two experiments and extended
the recognition with audio feedback for the user. Opposed
to [4] our framework needs no additional input devices nor
specific colour definitions, which is beneficial for a natural
user interface. Our work shows that the proposed model is
suited to be used in a real-world scenario. After the training,
the recognition time is small and the spatial-temporal features
are extracted and learned. Although we conducted rather
initial experiments, we could show promising results for
gesture classification. We detected very good accuracy for the
’circle’, ’point right’, ‘stop‘ and the ’turn’ gesture, but lower
accuracy for ’point left’ and ’stand’, our baseline gesture.
This is due to the fact, that our system relies on motion
information and has only minor focus for hand shape. The
’point left’ gesture executed with the same hand as the ’point
right’ carries more motion information as the arm crosses the
body. For the ’point right’ on the contrary the arm is raised
up almost equal to the ’stop gesture’. The only difference is
the orientation of the hand. So, we suggest to also provide
a shape- and orientation representation for such low-motion
gestures as can be found in the dichotomized streams in the
visual cortex. Another interesting point worth mentioning
is that in our live experiments with the Nimbro we could
show that our command vocabulary is recognized in real-
time indifferent to a specific user, which puts emphasis on
the generalization capabilities of the MCCNN. In line with
that our approach also allows us to cope with intra- and inter-
subject variability in gesture performance, as our subjects
performed each gesture several times and had no information
about the execution speed. No time warping mechanisms
or similar are necessary as is standard in variable-length
sequence processing, thus avoids additional preprocessing.
Therefore, we would like to use our extended gesture

database with gestures performed with one- and two hands
from multiple subjects. Until now, our setting is restricted to
one-hand gestures and simplified illumination conditions. As
the model generates the motion features using raw images,
light conditions may affect the final results and our system
is limited to one moving person in the scene. Thus, we are
working on a flexible mechanism for changes in lighting and
additionally extend the system for multi-person scenarios.
In line with the neural architecture proposed so far we are
going to look into unsupervised methods for substituting
the labelling of training data. This will further increase the
autonomous nature of learning, and thus robotic behaviour.
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