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Emotional Expression Recognition with a Cross-Channel Convolutional
Neural Network for Human-Robot Interaction

Pablo Barros, Cornelius Weber and Stefan Wermter

Abstract— The study of emotions has attracted considerable
attention in several areas, from artificial intelligence and
psychology to neuroscience. The use of emotions in decision-
making processes is an example of how multi-disciplinary they
are. To be able to communicate better with humans, robots
should use appropriate communicational gestures, considering
the emotions of their human conversation partners. In this
paper we propose a deep neural network model which is able
to recognize spontaneous emotional expressions and to classify
them as positive or negative. We evaluate our model in two
experiments, one using benchmark datasets, and the other using
an HRI scenario with a humanoid robotic head, which itself
gives emotional feedback.

I. INTRODUCTION

Emotion recognition has become one of the major topics
in human-robot interaction in recent years. A robot with
the capability of recognizing human emotions can behave
and adapt to different communication situations [1], or take
into account the emotions to induce a specific behavior in
the robot as a special subsystem [2]. Besides communi-
cation, humans collect, analyze and distinguish emotional
expressions of other humans as part of the decision making
process [3]. A robot which could mimic this judgmental
capability could be able to enhance its interactions skills,
realize complex tasks and even create a certain discernment
about the information it is receiving. Imagine that a robot can
evaluate the quality of the information it is receiving from
a person, and use this evaluation to make a decision [4], or
is able to adapt its behavior based on emotion expressed by
humans [5].

Positive and negative emotions have an important impact
in human development. The broaden-and-build theory, pro-
posed by Fredrickson et al. [6], states that positive emotions
enhance the personal relation between a thought and a
reaction, which tunes their personal, physical, intellectual,
social and psychological skills. A similar development is the
expression of negative emotions, which influences our self-
awareness of the environment and situations [7]. A robot
which is to recognize these expressions has a strong ability,
from acting as a human avatar, a tool to solve tasks or even a
human partner. When imitating human learning and showing
emotional feedback, a robot can achieve an improved level
of interaction skills being able to collaborate with a human
in a social environment as a teammate [8].
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The recognition of human emotions by robots is not a
simple task. In a non-verbal communication, two or more
modalities, such as facial expression and body posture, are
complementary [9] and when presented together, both modal-
ities are recognized differently than when they are shown
individually. The observation of these modalities provides
better accuracy in emotion perception [10], and is the focus
of promising work in automatic emotion recognition systems
[11]. In this work, Chen et al. are able to recognize emotions
from different persons, but to do so they use several pre-
processing, feature extraction and fusion techniques, which
leads to high computational costs and makes the problem
limited to each of the techniques’ limitations. This usually
makes the process unsuitable to be used in a real human-
robot interaction scenario.

Most of the work on automatic emotional recognition does
not distinguish between positive and negative emotions. Most
of the research in this area is based on verbal communication,
like the work of Pavaloi et al. [12], which extracts emotions
from spoken vowels, and Tahon et al. [13], which uses a
robot to detect emotions from human voices. Some other
research introduces similar methods, but they are applied to
basic emotion recognition, such as anger, happiness, sadness
and several other emotions [14]. They evaluate their system
using a controlled environment, and are able to identify the
intensity of each emotion in an acted dataset, where each
emotion is performed the same way by different subjects.
The work of Ballihi et al. [15] detects positive/negative
emotion expressions from RGB-D data. They use a method
to classify the intensity of each expression using multimodal
information, from the upper-body motion and face expres-
sion. Their method extracts different features from the face
expression, and uses the depth information from the upper-
body motion to create a velocity vector. These features are
fed to a classifier based on random forest techniques. In their
method, several feature extraction techniques are used, each
one of them coding one aspect of the data: action units from
the eyebrows and mouth and the distance of the person from
the camera, to extract the upper-body motion. At the end,
all these features are collected individually. Their model is
also extremely dependent on the position of the person on
the image, illumination, and image pre-processing to detect
eyes and face regions.

To solve restrictions as illumination, pre-processing con-
straints, and position of the person, which are present in
the mentioned models, our method implements a multimodal
emotion recognition system based on spatial-temporal hi-
erarchical features. Our neural architecture, named Cross-



Channel Convolutional Neural Network (CCCNN), extends
the power of Convolutional Neural Networks (CNN) [16]
to multimodal data extraction and is able to learn and
extract general and specific features of emotions based on
face expression and body motion. The first layers of our
network extract low-level features, such as edges and motion
directions. These features are passed to deeper layers, which
build a cross-modal representation of the data based on cross-
convolution channels. This characteristic allows our network
to learn the most influential features of each modality, instead
of using specific feature extractors pre-built into the system.

We evaluate our model in two experiments. The first one
evaluates the network on benchmark datasets. We use two
categories of datasets: one with acted emotions, and one
with spontaneous emotions. In the second experiment, the
network is deployed on a humanoid robot head and applied
in a human-robot interaction (HRI) scenario, where the robot
has to classify the emotions expressed by a subject. The
features that the network learns, the behavior of the model
when different data is presented, and the robustness of the
model when applied in a human-robot interaction scenario
are evaluated and discussed.

The paper is structured as follows: The next section
introduces our neural model and describes how temporal and
spatial features are learned and extracted. The methodology
for our experiments, the results and discussion are given in
Section III. Finally, the conclusion and future work are given
in Section IV.

II. PROPOSED MODEL

Our neural network is based on Convolutional Neural
Networks (CNN) to extract and learn hierarchical features. A
CNN simulates the simple and complex cells present in the
visual cortex of the brain [17], [18] by applying two opera-
tions: convolution and pooling. The simple cells, represented
by the convolution operations, convolve the image using local
filters to compute high-order features. These features are
learned, and are able to extract different features depending
on where they are applied. The complex cells generate scale
invariance by pooling simple cell activations into a new
smaller image grid. The activation of each simple cell vxync at
the position (x,y) of the nth receptive field in the cth layer
is given by

vxync = max

(
bnc +

∑
m

H∑
h=1

W∑
w=1

whw
(c−1)mv

(x+h)(y+w)
(c−1)m , 0

)
,

(1)
where max(·, 0) implements the rectified linear function,
which was shown to be more suitable than other functions
for training deep neural architectures [19], bnc is the bias
for the nth feature map of the cth layer,and m indexes over
the set of feature maps in the c − 1 layer connected to the
current layer c. In equation (1), whw

(c−1)m is the weight of
the connection between each unit within a receptive field,
defined by (h,w), connected to the previous layer, c−1, and

to the filter map m. H and W are the height and width of
the receptive field.

In the complex cell layer, a receptive field of the previous
simple cell layer is connected to a unit in the current layer,
which reduces the dimensionality of the feature maps. For
each complex cell layer, only the maximum value of non-
overlapping patches of the input feature map are passed to the
next layer. This enhances invariance to scale and distortions
of the input, as described in [20].

A. Temporal features

To be able to extract temporal features, based on the
image change through time, we apply a cubic receptive
field [21] to a sequence of images. The cubic receptive field
applies complex cells to the same region of a stream of
visual stimuli. This process extracts the changes within the
sequence, coding the temporal features in a series of different
representations. In a cubic convolution, the value of each
simple cell (x,y,z) at the nth receptive field in the cth layer
is defined as:

vxyznc =max(bnc+∑
m

H∑
h=1

W∑
w=1

R∑
r=1

whwr
(c−1)mv

(x+h)(y+w)(z+r)
(m−1) , 0),

(2)

where max(·, 0) represents the rectified linear function,
bcn is the bias for the nth filter map of the cth layer, and m
indexes the set of feature maps in the (c-1) layer connected
to the current layer c. In equation (2), whwr

(c−1)m is the weight
of the connection between the unit (h,w,r) within a receptive
field connected to the previous layer (c−1) and the filter map
m. H and W are the height and width of the receptive field, z
indexes each image in the image stack, and R is the number
of consecutive image frames stacked together representing
the time dimension of the receptive field.

B. Inhibitory receptive fields

A problem shared among deep neural network architec-
tures is the large amount of computational power used for
training. Usually several layers of simple and complex cells
are necessary to learn general feature representations, which
increases the number of parameters to be updated during
training. To reduce the number of layers in the network, we
introduce the use of shunting inhibitory fields [22] in deeper
layers. Shunting inhibitory neurons are neuro-physiological
plausible mechanisms that are present for several visual
and cognitive functions [23]. When applied in complex cell
structures on a CNN [24], shunting neurons can derive filters
that are more robust to geometric distortions. Each shunting
neuron Sxy

nc at the position (x,y) of the nth receptive field in
the cth layer is activated as:

Sxy
nc =

vxync
anc + V xy

nc
(3)

where vxync is the activation of the unit in the position of the
receptive field and V xy

nc is the activation of the inhibitory
neuron. Note that each inhibitory neuron has its own set of



weights, which are also trained with backpropagation. The
passive decay term is defined as anc, is a defined parameter
and is the same for all shunting neurons in the model.

The shunting neurons have more complex decision boun-
daries and thus specify the filter tuning. When applied to
the first simple layers, we found that these neurons create
very specific edge-detectors which will not be able to extract
general features, but when applied to deeper layers they
create a stronger filter for shapes. We understand strong
filters as filters that are robust enough to extract information
from images with different backgrounds, different subjects
and different camera positions.

C. Cross-Channel Convolutional Neural Network (CCCNN)

To be able to deal with multimodal data, our network
uses the concept of the Multichannel Convolutional Neural
Networks (MCCNN) [25]. In the MCCNN architecture,
several channels, each one of them composed by a different
CNN, are connected at the end to a hidden layer, and trained
as one single architecture. Inspired by the primate visual
cortex model described by Van Essen et al. [26], our network
has two channels. The first channel is responsible for learning
and extracting information based on the contour, shape and
texture of a face, which mimics the encoding of information
in the V1 area of the primate visual cortex. The second
channel codes information about the orientation, direction
and speed of changes within the faces of a sequence, similar
as the information coded by the V2 area. Figure 1 illustrates
the final Cross Channel Convolutional Neural Network (CC-
CNN) topology, using different channels.

The first channel implements a common convolutional
neural network with two layers. The first layer is composed
of 10 receptive fields, each of them connected with a max-
pooling layer. Each receptive field has a size of 5x5, and
the pooling layer reduces the dimensionality of the data by
a factor of 2. The second layer contains 20 receptive fields,
each of them with a size of 7x7, and connected to a pooling
layer that reduces the data dimensionality by a factor of
2. The second layer implements inhibitory receptive fields,
which have the same topology. We feed this channel with
images of the face, one at a time. To extract the face of the
images, we use an Adaboost-based face detector [27], works
in real-time and is robust to illumination and translation.

The second channel is composed of one layer with a cubic
receptive field implementation. This layer is able to extract
spatial-temporal features from a sequence of images. It has
10 cubic receptive fields, and each one has a size of 5x5x4,
which means that we feed this channel with 4 images per
time step.

A similar approach was evaluated for large-scale video
classification, when different channels received the same
image, but in different resolutions [28]. In this work, each
channel received the same image, being able to use the
multichannel architecture to extract different representation
from the same input. We differ by introducing the concept
of multi-channel learning. Our cross-channel encodes similar
information as the V4 area discussed in the Van Essen et al.

[26] model. This channel receives as input the features com-
ing from channel 1 and channel 2 and processes them with a
layer of simple and complex cells. The filters learned by the
cross-channel are able to code the most important features
for emotion recognition: face expression shapes through time
correlated with body motion. Different than manually fusing
motion information with face expression, this layer is able to
learn how to derive specific patterns for emotion recognition.
Our cross-channel has 10 receptive fields, each one with the
size of 5x5. Each of them is connected with a max-pooling
layer which reduces the dimensionality by a factor of 2.

Because our model applies topological convolution in the
images, the choice of the size of the receptive field has an
important impact in the learning process. The receptive fields
in our cross-channel should be large enough to be able to
capture the whole concept of the image, and not only part of
it. With a small receptive field, our cross learning will not
be able to capture the concept of the face and the motion,
and only correlate some regions of the face image with the
same regions in the sequence images. In our experiments,
each output neuron of the first channel is related to an area
of 32x32 pixels from the original image and in the second
channel to 15x15. This means, that each receptive field of our
cross-channel is applied to a region of 36x36 pixels from the
face image, and 19x19 from the sequence image, reaching
more than half of the image per receptive field.

D. Emotion expression classification

To classify the features extracted by our convolutional
network-based layers, our cross-channel is connected to a
fully connected hidden layer. The hidden layer has 250 units,
with a rectified linear activation function. The hidden layer
is connected to an output layer which implements a softmax
classifier. The softmax function is a generalization of the
logistic function which represents the probability that the
input images belong to a certain class.

Based on experimental results, we found that using a
sequence of 4 frames as input produced optimal results. Each
image has a size of 64x48 pixels. The first channel receives
only one image, with the face of the subject extracted from
the second frame of the sequence, and the second channel
receives the whole sequence. This way, the face processed by
the first channel is part of the sequence seen by the second
channel. The parameters were chosen based on the best
experimental results. To be able to classify the probability
of each emotion expression, our network categorizes each
sequence into 3 outputs: Positive, Negative and Neutral.

To improve the filter tuning, we applied some regulariza-
tion techniques during training such as applying a dropout
technique [29], which shuts down random units during
training and makes the learning process more robust in
our hidden layer. We also apply L1 regularization and use
a momentum term during the training, which helped to
decrease training error.



Fig. 1. Illustration of the proposed cross-channel convolutional neural network, with examples of filters after training the network. S represents the simple
cells, C represents the complex cells. The first channel receives as input a face and its second layer implements a shunting inhibition receptive field,
represented as S2i. Channel 2 receives a sequence and implements a cubic receptive field. The cross-channel receives the information from both channels,
and is the input to a fully connected hidden layer, which is connected to the final softmax classifier layer.

III. EXPERIMENTS

A. Methodology

To evaluate our model we propose two experimental
setups: benchmark trials and a HRI scenario.

1) Benchmark trials: The benchmark trials are to evaluate
the filters of the network by training them with two different
datasets, one with acted emotional expressions, and the other
showing spontaneous emotions. The results are collected
and the behavior of the network is evaluated. The first
dataset we used was the Cohn-Kanade dataset [30]. This
corpus contains 7 expressions of emotions, performed by 123
different subjects. They are labeled as Angry, Contemptuous,
Disgusted, Feared, Happy, Sad and Surprised. Each example
of emotion contains a sequence with 10 to 60 frames, and
starts in the onset (neutral face) and continues until the peak
of the facial expression (the offset). Figure 2 (a) shows
examples of frames of a sequence in the Cohn-Kanade
dataset.

The second dataset is the 3D corpus of spontaneous com-
plex mental states (CAM3D) [31]. The corpus is composed
of 108 video/audio recordings from 7 subjects and in diffe-
rent indoor environments. Each video exhibits the upper body
of one subject while the emotion expression is performed.
Each subject demonstrates the emotions in a natural and
spontaneous way, without following any previously shown
pose. The corpus contains a total of 12 emotional states,
which were labeled using crowd-sourcing: Agreeing, Bored,
Disagreeing, Disgusted, Excited, Happy, Interested, Neutral,
Sad, Surprised, Thinking and Unsure. Figure 2 (b) shows
an example of a sequence in the CAM3D dataset.

To give our model the capability to identify the emotion
expression as negative or positive, we separated both datasets
using the emotion annotation and representation language
(EARL) [32], which classifies 48 emotions into negative and
positive expressions. Table I shows how each emotion in
each dataset was classified. Besides positive and negative,
we created a neutral category which indicates if the person
is exhibiting no emotion at all. This category gives the

Fig. 2. Examples of sequences: (a) Cohn-Kanade (b) CAM3D datasets.

model the capability to identify if the person is exhibiting
an emotion or not. For the Cohn-Kanade dataset we use the
four first frames of each emotion, and label them as neutral.
For the CAM3D dataset, we use the already given neutral
label.

To evaluate the robustness of the features learned by our
network, we executed four experiments. In the first two
experiments, the network was trained and tested with each
of the datasets separated into 60% of the data for training,
and 40% for testing. The second set of experiments used
one of the datasets to train the network and the other to test
it. In this case, all the data from one dataset was used for
training, and all the data of the other dataset for testing. We
ran each experiment 30 times and collected accuracy and
standard deviation.

2) HRI Scenario: To evaluate our model in a real HRI
scenario, we trained the network with both benchmark
datasets and deployed it in a humanoid robotic head. We
used the head of an iCub robot [33], which has a common

TABLE I
SEPARATION OF THE EMOTIONS IN THE COHN-KANADE AND CAM3D

DATASETS BASED ON EARL[32].

Dataset Positive Negative
Cohn-Kanade[30] Happy and Surprised Angered, Disgusted,

Contemptuous, Feared
and Sad

CAM3D [31] Agreeing, Excited, Bored, Disagreeing,
Happy, Interested, Disgusted, Sad

Surprised and Thinking and Unsure



Fig. 3. Our HRI experiment scenario. A person was in front of the
iCub head and performed an emotional expression. The robot identified
the emotion that was displayed and gave a proper feedback: a smile, an
angry or a neutral face. The green square indicates the face image, used as
input for the first channel of the CCCNN, and the blue square indicates the
sequence region, used as input for the second channel.

RGB camera. A subject was in front of the robot and
presented one emotional state (positive, negative or neutral).
The robot recognized the emotional state and gave feedback
by changing its mouth and eyebrow LEDs, indicating a smile
for positive, an angry face for negative, or a neutral face,
when there was no emotion expressed.

In this experiment, we used 5 different subjects. Each
subject performed 10 different emotional expressions in front
of the robot. The subject was instructed to perform a different
emotion per time (positive, negative or neutral), but had no
indication of how it had to perform it. This way, every
expression was spontaneous and not structured. Figure 3
shows an illustration of the scenario.

B. Results

We collected the mean accuracy for all experiments of
the benchmark trials. When using the CAM3D dataset, we
repeated the same experiments present in [15]. In their
fusion of motion and face expression, they obtained a mean
accuracy of 71.3%, while our model was able to achieve
86.2%. When training and testing the model with the Cohn-
Kanade dataset, the mean accuracy was 92.5%.

Training the model with the Cohn-Kanade dataset and
testing with the CAM3D showed the lowest accuracy rate, a
total of 70.5%. The other way, using the CAM3D dataset for
training and the Cohn-Kanade for testing, we obtain a mean
accuracy of 79.5%. Table II shows our results.

When applied to the HRI scenario, we collect the mean
accuracy of all 5 subjects, each one performing 10 emotional
expressions. Table III shows the mean accuracy and the stan-
dard deviation for all the subjects. A total mean accuracy of
74.2 % was obtained. A computer with an Intel XEON CPU
processor with 2.4Ghz was used to recognize the images

TABLE II
ACCURACY AND STANDARD DEVIATION FOR THE BENCHMARK TRIAL

EXPERIMENTS.

Test Train Cohn-Kanade CAM3D
Cohn-Kanade 92.5% (+/- 2.5) 70.5% (+/- 3.3)

CAM3D 79.5% (+/- 3.1) 86.29% (+/- 1.8)

from the iCub and took 0.42ms in average to recognize each
expression.

IV. ANALYSIS AND CONCLUSIONS

The use of emotional expression recognition improves how
robots can communicate and react to humans in several sce-
narios. Especially the recognition of positive/negative emo-
tions can be applied to decision-making tasks. For example,
it is possible to identify when a human is giving emotional
information. Giving a robot this ability can improve how
intelligent agents analyze information. But to do so, a strong
emotion recognition system should be implemented. This
paper proposes a system that can recognize spontaneous
emotions from different subjects and can be used in human-
robot interaction scenarios.

Our model is based on a Convolutional Neural Network
(CNN) which uses its capability to learn which are the most
influential features for emotion expression recognition. Our
model can deal with two processes at the same time: extract
features from the contour, shape and face characteristics
and gather information about the motion of a subject. We
introduce the use of shunting inhibitory receptive fields to
increase the capacity of deeper levels of the network to
extract strong and general features, and the use of cross-
channel learning to create correlations between the static and
dynamic streams.

We evaluate our model in two different experiments: First,
we use two kinds of datasets to train the network: The Cohn-
Kanade dataset which contains examples of acted emotions
and the CAM3D corpus which contains spontaneous exam-
ples. We can observe that our model is able to recognize both
acted and spontaneous emotion expressions. In the second
experiment, we deploy our network on a humanoid robotic
head which is able to identify positive/negative emotion
expressions from a subject. In this scenario, the robotic head
is able to react to each recognized emotional expression
and to give an emotional feedback. The network is able
to recognize emotions from different environments, different
subjects performing spontaneous expressions, and in real-
time, which are basic characteristics for real human-robot
interaction scenarios.

One of the attractive properties of our network is the
capability to learn which characteristics of an emotional
expression are the most influential for the positive/negative
emotion classification. As shown in the experiments of the
benchmark trial, our network was able to identify both acted
and spontaneous emotions. When the datasets are mixed
for training and testing, the network was able to identify
emotional characteristics even in spontaneous examples. Our

TABLE III
ACCURACY AND STANDARD DEVIATION FOR THE HRI SCENARIO

EXPERIMENTS.

Subject 1 2 3 4 5 Total
Acc 70.2% 75.7% 73.9% 78.7% 72.5% 74.2%
Std 3.8 2.7 3.2 2.9 3.1 2.8



experiments show that spontaneous emotions have some sort
of structure, even if executed by different persons, since the
network is able to classify spontaneous emotion expressions
learned from acted examples. This was even clearer in our
HRI scenario, were the network was able to identify the
emotions expressed by subjects that were not present in the
dataset, and in a spontaneous way.

For future work, we plan to further develop our network
in a decision making scenario, where the recognized emo-
tions could be used to weight the veracity of the received
information. We also plan to extend the model to work with
audio inputs together with visual stimuli.
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