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Recognizing Complex Mental States With Deep Hierarchical Features
For Human-Robot Interaction
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Abstract— The use of emotional states for Human-Robot
Interaction (HRI) has attracted considerable attention in recent
years. One of the most challenging tasks is to recognize the
spontaneous expression of emotions, especially in an HRI
scenario. Every person has a different way to express emotions,
and this is aggravated by the complexity of interaction with
different subjects, multimodal information and different envi-
ronments. We propose a deep neural model which is able to deal
with these characteristics and which is applied in recognition of
complex mental states. Our system is able to learn and extract
deep spatial and temporal features and to use them to classify
emotions in sequences. To evaluate the system, the CAM3D
corpus is used. This corpus is composed of videos recorded
from different subjects and in different indoor environments.
Each video contains the recording of the upper-body part of
the subject expressing one of twelve complex mental states.
Our system is able to recognize spontaneous complex mental
states from different subjects and can be used in such an HRI
scenario.

I. INTRODUCTION

Recognition of emotional states has become an impor-
tant topic for human-robot interaction in recent years. By
determining emotional states, robots can extend the ways
of communication with humans, being able to approximate
human-human communication, identify human behavior or
extend interaction possibilities. Emotion-sensitive robots can
be aware of how humans behave and adapt to the situation [1]
and use emotion perception to act as specialist systems [2].
When a robot is able to perceive and react to emotions,
human interaction also changes. Spexard et al. [3] discuss
how humans react when interacting with an anthropomor-
phic robot and how their reactions change when the robot
recognizes and expresses emotions. They conclude that when
emotions are expressed, humans are more confident and act
naturally which improves the success in their human-robot
interaction scenario.

As discussed by [4] there is no consensus in the literature
to define emotions, but the observation of several charac-
teristics and among them facial expressions, are used to
identify them. That explains why most of the applications
using emotions for Human-Robot Interaction (HRI) use the
facial basic emotions [5]: “disgust”, “fear”, “happiness”,
“surprise”, “sadness” and “anger”.

Although these emotions are described as universal and
present in many forms of interaction, humans usually express
themselves using the combination of one or more emotions,
which represent complex mental states such as attitudes,
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cognitive states and intentions. Among these complex mental
states are the expressions of neutral states [6] and more
diverse emotions such as confusion, surprise and concen-
tration [7]. These complex emotions extend the universal
concepts described by Ekman et al. [5] and the capability of
understanding them improves the way we can use emotions
in HRI scenarios. For example, to perceive sarcasm in a
dialogue one could change the reaction of an attendance
robot.

In order to recognize emotions it is necessary to under-
stand spontaneous behavior. Expressing emotions sponta-
neously, the subject can act naturally and express them in
different ways, especially when non-verbal communication
is used [8]. However, perceiving emotions by spontaneous
expressions is a challenging task, and most of the automatic
face recognition systems proposed in the literature cannot
deal with it. For non-verbal communication, slight changes
of body posture and face expressions can lead to completely
different emotions.

Non-verbal interaction is a challenging part of HRI due
to environmental noise, technical restrictions or the natural
way to express and perceive commands or dialogues. For
non-verbal emotion perception, the presence of facial ex-
pressions and body posture, especially upper-body motion,
are complementary [9]. The observation of both modalities
could provide a better accuracy in emotion perception [10].
However, there are only few approaches in the literature
[11], [12] that deal with multimodal non-verbal emotion
recognition, but none of them can deal with spontaneous
emotions.

The human brain is capable of correlating information
from different areas and thus recognizing emotions using
different streams of information [13]. Facial transforma-
tions, past experiences and motion perception are used to
generate a representation of the visual stimuli. Processing
this information in computer systems was achieved by neural
models [14], particularly ones which are able to create a
hierarchy of feature representations such as Convolutional
Neural Networks [15].

Convolutional Neural Networks (CNN) [16] are inspired
by the hierarchical process of simple and complex cells
in the human brain which extract and infer different in-
formation from visual stimuli. Each layer of the CNN can
extract unique information from the stimuli and when stacked
together these layers generate a complex representation of
the visual stimuli. The first layers of a CNN act as edge
detectors which are able to enhance simple characteristics
such as border and pattern contrast. Deep layers receive the
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Fig. 1. Each layer of the CNN is composed of simple and complex cells,
simulated using convolution and pooling operations. There are different
filters representing simple cells that, when applied to the visual stimulus,
generate a different representation. The pooling process reduces the dimen-
sionality of the stimulus and increases the invariance of the representation.

simple information and are able to generate complex feature
representations of shape, orientation, position, and texture
among others. Due to the different visual representations that
these models could extract they were applied in several visual
tasks [17], [18], [19].

In this paper we propose a CNN-based model for auto-
matic emotion recognition. Our system is based on the visual
stimuli for multimodal emotion representation described by
[9] and in the deep hierarchical feature representation of
the human brain described by [13]. Our system extends
the visual representation of the CNN by implementing a
multichannel architecture. Each channel receives different
information from a sequence of visual stimuli and is able
to learn and extract spatial and temporal features. The first
layers extract temporal features of a sequence and pass it
to deeper layers, which are able to encode complex spatial
representations. Our model thus is able to learn hierarchical
features, which proved to be ideal for spontaneous emotion
recognition.

We evaluate our system with the CAM3D corpus of spon-
taneous complex mental states [20]. This corpus contains
11 different emotional states expressed spontaneously by
different subjects. The emotional states present in the corpus
can be applied to a range of HRI scenarios, and the evaluation
of our system in this corpus extends the area of affective
computing for HRI.

The paper is structured as follows: The next section
introduces our multichannel convolutional neural network
architecture and describes how temporal and spatial features
are learned and extracted. The methodology for our experi-
ments is given in Section II and the results are reported in
Section III. A discussion about the results and the proposed
system are described in Section IV. Finally, the conclusion
and future work are given in Section V.

A. Learning Hierarchical Features

Our architecture implements a Multichannel Convolutional
Neural Network (MCCNN) [21] to extract hierarchical
features from visual stimuli. Different from a CNN, the
MCCNN implements different channels, each one containing
one CNN. The outputs of the CNNs are connected to
a hidden layer, which is connected to a classifier. Each
channel produces different and unique feature extractors after
training. The first layers of each channel extract edge-like
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Fig. 2. Cubic receptive field implementation of the complex cells. Each
filter implements a cubic kernel, which is applied to a stack of images,
producing a single image which is applied to a pooling operator, simulating
simple cells.

features and the deeper ones generate complex representation
of the emotional expression sequence.

A CNN simulates the simple and complex cells [22],
[14] by applying two operations in a CNN: convolution and
pooling. The simple cells, represented by the convolution
operations, use local filters to compute high-order features
applying a convolution operation on the image. The complex
cells extract spatial invariance by pooling simple cell units
of the same time steps from previous layers for a limited
range.

In a CNN, each simple cell layer has a series of different
filters which are applied to the same region of the image.
Each filter generates one output, resulting in several diffe-
rent representations of the same image for each layer. The
complex cells process each of these images, generating inde-
pendent rotation and scale invariance. All the representations
are passed to the next layer which computes the new feature
representation.

Each set of filters in the simple cell layers operates on a
receptive field in the image. The activation of each unit vxy

nc
at (x,y) of the nth filter in the cth layer is given by

vxy
nc = max

(
bnc +∑

m

H

∑
h=1

W

∑
w=1

whw
(c−1)mv(x+h)(y+w)

(c−1)m ,0

)
, (1)

where max(·,0) implements the rectified linear function,
which was shown to be more suitable than other linear
functions for training deep neural architectures [23], bnc is
the bias for the nth feature map of the cth layer, m indexes
over the set of feature maps in the c−1 layer connected to
the current layer c. In Equation (1), whw

(c−1)m is the weight
of the connection between the unit (h,w) within a receptive
field c−1, which is connected to the previous layer, and to
the filter map m. H and W are the height and width of the
receptive field.

In the complex cell layer, a receptive field of the previous
simple cell layer is connected to a unit in the current
layer, which reduces the dimensionality of the feature maps.
For each complex layer, only the maximum value of non-
overlapping patches of the input feature map are passed to the
next layer. This enhances invariance to scale and distortions
of the input, as described by [24]. Figure 1 illustrates the
simple and complex cell processes.



Grayscale

Sobel X

1st Layer  2nd  Layer

Cubic 
receptive field Fully connected

hidden layer

Logistic regression
layer

Emotional 
State

Simple 
Cells

Complex 
cells

Sobel Y

Time

Simple 
Cells

Complex 
cells

Fig. 3. Proposed architecture for a Multichannel Convolutional Neural Network using 3 channels and 2 layers. Two of the channels apply Sobel-like
filters in each image of the sequence. In the first layer of each channel a cubic receptive field is implemented.

A problem shared among deep neural network architec-
tures is the large amount of computational cost training.
Usually, several layers of simple and complex cells are
necessary to generate different feature representations, which
increases the number of parameters to be updated during
training. The multichannel implementation uses fixed filters
to increase the details of features extracted on the first layers,
and reduces the number of parameters during training. Our
architecture uses 3 channels, each of them implementing one
CNN and processing different information.

The first layer of two of the channels have Sobel-based
filters before the first simple/complex cell layer. The Sobel
filters are performing very simple edge enhancement and are
not learned by the model. In a common CNN, the first layers
will become Gabor-like filters after training. In our imple-
mentation, this representation is different, and the network
is able to achieve a more complex feature representation
than Gabor filters. Also, during training the three channels
influence each other, driving the filters’ training to a different
direction than when training only one channel. The three
channels share the same training process, and although the
weight updates in each channel are individual, the fact that
they are connected in the end creates a bias for the update. As
we are applying three channels with specialized information,
here represented by not trainable and constant filter maps, our
architecture does not need to be so deep, which reduces the
number of parameters to be updated.

B. Learning Temporal Features
An important issue for the recognition of spontaneous

emotion expressions is temporal dependency. Our system
creates a temporal feature representation by using a cubic
receptive field implementation [25]. The cubic receptive field
applies complex cells to a stream of visual stimuli. A cubic
filter is applied at the same region of a stack of images. This
process still extracts the spatial features of the images, but
correlates between the sequences. The complex cells learn
to enhance the structures which are present in the sequence,
generating sequence-dependent features.

In a cubic convolution, the value of each unit (x,y,z) at the
nth filter map in the cth layer is defined as:

vxyz
nc = max(bnc + ∑
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where max(·,0) represents the rectified linear function, bcn

is the bias for the nth filter map of the cth layer, and m
indexes the set of feature maps in the (c-1) layer connected
to the current layer c. In equation (2), whwr

(c−1)m is the weight
of the connection between the unit (h,w,r) within a receptive
field connected to the previous layer (c−1) and the filter map
m. H and W are the height and width of the receptive field
and z indexes each image in the image stack, R is the number
of images stacked together representing the new dimension
of the receptive field.

The same cubic unit is connected to the same region of a
stack of images. The cubic receptive field is used only in the
first layer of each channel, which is connected directly with
the visual stimuli. A series of cubic receptive fields is applied
to a whole image to generate different representations. For
each filter, a single image is obtained containing the spatial
and temporal representation. Simple cells are applied, to
generate feature invariance and Figure 2 illustrates this cubic
receptive field process.

Our system is trained using a limited number of images.
To be able to deal with sequences with different numbers
of frames, we create a sequence dependency scheme. A
sequence of frames is fed into the network, and a label is
generated. For each series of labels, the one occurring most
often is selected.

As described in the work of Bar [26], the human
brain continuously recognizes visual input based on prior
knowledge that is used for a focused identification of vi-
sual stimuli. The implementation of the Sobel-filters in our
architecture simulates prior knowledge by using a simple
edge-like enhancement to drive the learning of features by
the system. The Sobel filters represent this rudimentary



information and help the system to create a complex and
specific representation of the visual stimuli accelerating the
learning process. Our system uses the cubic receptive field
implementation to deal with temporal features in all three
channels. Due to the three channels, the system does not
need to be deep and two layers are enough for the proposed
scenario as we will see in Section III. Figure 3 illustrates
the proposed system, with the modularization of the three
channels and the cubic receptive field.

II. METHODOLOGY

To evaluate our system we used the 3D corpus of spon-
taneous complex mental states (CAM3D) [20]. The corpus
is composed of 108 video/audio recordings from 7 diffe-
rent subjects in different indoor environments. Each video
exhibits the upper body of one subject while an emotion is
generated. Each subject demonstrates the emotions in a natu-
ral and spontaneous way, without following any previously
shown pose. The corpus contains a total of 12 emotional
states, which are labeled using crowd-sourcing: agreeing,
bored, disagreeing, disgusted, excited, happy, interested,
neutral, sad, surprise, thinking and unsure. Figure 4 shows
examples for agreeing, happy and thinking sequences.

Each emotional state video present in the CAM3D corpus
has varying length and sequences were recorded with diffe-
rent subjects. Table I shows the number of videos recorded
for each emotion. The complex emotion expressions present
in the CAM3D corpus can easily be applied to several HRI
scenarios. It is possible to enhance a dialogue, perceiving
interest, for example, or to note when a human is thinking.
Perceiving spontaneous happiness or sadness can be useful
when the robot needs feedback from the human in an HRI
task.

Our system uses a sequence with a limited number of
frames as input. To normalize the data, all the videos are
separated in sub-sequences of 3 frames, generating more
sequences for each emotion. We evaluate the system in a
3-fold cross validation. The same subject is not present in
the videos of the training and testing subgroups at the same
time. The exceptions are disgusted, excited and sad which
have only one video sample. However, not all the sequences
of the training subdivision are present at the testing subgroup.

The network topology used is the same in all the experi-
ments. The network receives 3 frames as input and has 2 lay-
ers in each channel. Table II shows the network parameters

TABLE I
NUMBER OF VIDEOS AVAILABLE FOR EACH EMOTIONAL STATE IN THE

CAM3D DATASET. EACH VIDEO HAS 1 EXECUTION OF THE SAME

EXPRESSION.

Emotional State Videos Emotional State Videos
Agreeing 4 Interested 7

Bored 3 Neutral 2
Disagreeing 2 Sad 1
Disgusted 1 Surprised 5
Excited 1 Thinking 22
Happy 26 Unsure 32

TABLE II
PARAMETERS OF THE PROPOSED SYSTEM USED FOR ALL EXPERIMENTS.

Parameters Layer 1 Layer 2
Filters 5 10
Receptive field size 3×3×3 5×5
Sub sampling size 4×4 2×2
Neurons hidden layer 100
Learning rate 0.01

Fig. 4. Examples of sequences present at the CAM3D corpus. (a) shows
agreeing, (b) being happy and (c) thinking.

used for the experiments. Each image has originally 640x480
pixels and is scaled down by a factor of 10, having 64x48
pixels before being processed by the network. Also, each
image is transformed to gray scale, and the pixel intensities
are normalized to have mean 0 before they are sent to the
network. In this way, each receptive field in the first layer is
connected to the pixel intensities of the image.

The average values of F1-Score, training, and recognition
time of 30 repetitions of the experiment are computed and
reported. To evaluate how important each channel of the
architecture is during classification, experiments with one,
two and three channels were performed. Each channel is
evaluated individually and also the combination of the three
channels is evaluated. All the experiments were implemented
in Python using the library Theano1 and were executed in
a machine with an Intel Core 5i 2.67 Ghz processor, with
8GB of RAM.

III. RESULTS

There are three experiments using one channel. The first
one uses the raw sequence, transformed to grayscale, as
input. The second one applies the Sobel filter in the X
direction in each frame of the sequence and the third one
the Sobel filter in the Y direction. Table III shows the
average and standard deviation of the F-score, training and
recognition time for experiments with one channel. Using the
grayscale our system achieves a recognition rate of 85.2%,
while using Sobel-X achieved 77.0% and Sobel-Y 78.1%.

1http://deeplearning.net/software/theano/



TABLE III
CLASSIFICATION F1-SCORES, STANDARD DEVIATIONS, TRAINING AND

RECOGNITION TIME FOR THE EXPERIMENTS USING ONE CHANNEL OF

THE NETWORK.

F-Score (%) Training time (s) Rec. time (s)
—Grayscale— 85.2% (+/-3.2) 67.4 0.0036

—Sx— 77.0% (+/-1.5) 66.8 0.0032
—Sy— 78.1% (+/-1.0) 66.0 0.0031

TABLE IV
CLASSIFICATION F1-SCORES, STANDARD DEVIATIONS, TRAINING AND

RECOGNITION TIME FOR THE EXPERIMENTS USING TWO CHANNELS OF

THE NETWORK.

F-Score (%) Training time (s) Rec. time (s)
—Grayscale+Sx— 90.8% (+/-2.0) 102.7 0.0072
—Grayscale+Sy— 91.0% (+/-1.8) 107.2 0.0068

—Sx+Sy— 82.4% (+/-4.2) 106.8 0.0064

Three experiments with two channels were evaluated. The
first one contains the combination of the grayscale channel
with the Sobel-X, the second one with Sobel-Y and the
third one the combination of both Sobel inputs. Table IV
shows the results for the two-channel experiments. The
combinations of grayscale and Sobel-Y, and grayscale and
Sobel-X produced a similar F-Score, around 91%. Both of
the combinations with grayscale achieved a higher value than
the combination of the Sobel filters, which achieved 82.4%
of F1-Score.

Combining the three channels produced the highest F1-
Score. Table V reports the F1-Score, training and recognition
time computed for 3 channels. The F1-Score of 97.49% with
3 channels was the highest computed in all the experiments,
improving by more than 6% the F1-Score reported in the
two channels experiment.

IV. DISCUSSION

We are not aware of reported results using the CAM3D
dataset for automatic emotion recognition, and one of the
challenges of the corpus is the small number of videos for
each emotion expression. However, our system was able to
use the small number of sequences present in the dataset by
using the limited length sequence and voting schemes. We
report the first results for automatic emotion recognition for
the 12 emotional states present in the corpus.

From the three experiments which our system was evalu-
ated for, using the three channels was the one which achieved
the highest F-Score, showing that the combination of the

TABLE V
CLASSIFICATION F1-SCORES, STANDARD DEVIATIONS, TRAINING AND

RECOGNITION TIME FOR THE EXPERIMENTS USING THREE CHANNELS

OF THE NETWORK.

F-Score (%) Training time (s) Rec. time (s)
97.49% (+/-1.8) 186.6 0.0136

Fig. 5. Illustration of am HRI scenario where the NIMBRO robot will use
complex emotional states in a learning task.

three channels produces the best feature representation. The
tuning of the filters of each simple cell layer is influenced
by each channel, and produced more complex features which
were able to distinguish better between the emotions. When
compared with the implementation of two channels, the F1-
Score obtained by our system with three channels was better,
but also the training and recognition time increased. Compar-
ing our system with a common CNN implementation, used
in the experiments with 1 channel, also shows that there is an
increase in the F-Score of at least 22 %. When applying only
the Sobel-based channels to the image, the results tend to
become worse because the Sobel filter alone cannot enhance
the learning of learn complex features.

With the results, we show that our model could extract
better features than a common CNN implementation, and that
the use of hierarchical temporal-space features are suitable
to be used for spontaneous emotion recognition.

The CAM3D corpus contains a collection of complex and
spontaneously expressed mental states, which simulates the
ones found in many HRI scenarios. The use of different
subjects and different background increase the difficulty to
use the dataset but approximates the reality of HRI indoor
scenarios. Many HRI scenarios deal with robots interacting
with one subject at a time, but each subject can express emo-
tions in many different ways. Our system is able to deal with
different subjects, different backgrounds and unconstrained
body motion and face expressions. Also, no pre-processing
step is necessary which decreases the computational effort
to use it. Our system is suitable to be applied in an HRI
scenario, with multiple subjects and for a spontaneously
expressed complex mental state recognition. Evaluating our
system with the CAM3D corpus approximates the use of our
architecture in a real-world HRI scenario and gives us the
robustness of a corpus established in the literature.

V. CONCLUSION

The use of emotion recognition improves how humans
and robots communicate in HRI scenarios. In this paper,
we propose a deep neural model for automatic spontaneous
complex mental state recognition. Our system is based on



a multichannel implementation of CNN and is able to learn
hierarchical features from a sequence of images, generating
spatial and temporal representations of the input stimulus.
Our architecture has 3 channels, each one receiving different
information extracted from the same video sequence. The
channels are connected to a hidden layer but are independent
up to this point in the architecture.

The system is evaluated using the CAM3D corpus and is
able to recognize spontaneous complex mental states with
multiple subjects and different backgrounds. The corpus
contains non-visual emotion expressions and it captures the
upper body of the subjects. Our system is able to achieve
an F1-Score of 97.5% and 3 minutes are necessary to train
it. Our system achieves an F1-Score which are 20% higher
than that achieved by a standard CNN. The experiments
show that our architecture produces more reliable features
for spontaneous emotion recognition than the standard CNN
implementation.

For future work, a deeper analysis of the complex cell
configurations could improve the understanding of the sys-
tem. Our system will be embedded in an HRI scenario using
a humanoid robot. A modified NIMBRO [27] robot with
a new head and new arms will be used in a learning task
and will use complex emotional states as feedback for the
learning process. Figure 5 illustrates this scenario. Also, the
use of temporal segmentation for emotion recognition will
be studied which can improve the robustness of the system
for continuous recognition.
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